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We address issues for improving handsfree speech recognition performance in different car environments using a single distant
microphone. In this paper, we propose a nonlinear multiple-regression-based enhancement method for in-car speech recogni-
tion. In order to develop a data-driven in-car recognition system, we develop an effective algorithm for adapting the regression
parameters to different driving conditions. We also devise the model compensation scheme by synthesizing the training data using
the optimal regression parameters and by selecting the optimal HMM for the test speech. Based on isolated word recognition
experiments conducted in 15 real car environments, the proposed adaptive regression approach shows an advantage in average
relative word error rate (WER) reductions of 52.5% and 14.8%, compared to original noisy speech and ETSI advanced front end,
respectively.
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1. INTRODUCTION

The mismatch between training and testing conditions is
one of the most challenging and important problems in au-
tomatic speech recognition (ASR). This mismatch may be
caused by a number of factors, such as background noise,
speaker variation, a change in speaking styles, channel effects,
and so on. State-of-the-art ASR techniques for removing the
mismatch usually fall into the following three categories [1]:
robust features, speech enhancement, and model compensa-
tion. The first approach seeks parameterizations that are fun-
damentally immune to noise. The most widely used speech
recognition features are the Mel-frequency cepstral coeffi-
cients (MFCCs) [2]. MFCC’s lack of robustness in noisy or
mismatched conditions has led many researchers to inves-
tigate robust variants or novel feature extraction algorithm.
Some of these researches could be perceptually based on, for
example, the PLP [3] and RASTA [4], while other approaches
are related to the auditory processing, for example, gamma-
tone filter [5] and EIH model [6].

Speech enhancement approach aims to perform noise
reduction by transforming noisy speech (or feature) into
an estimate that more closely resembles clean speech (or
feature). Examples falling in this approach include spec-
tral subtraction [7], Wiener filter, cepstral mean normal-

ization (CMN) [8], codeword-dependent cesptral normal-
ization (CDCN) [9], and so on. Spectral subtraction was
originally proposed in the context of the enhancement of
speech quality, but it can be used as a preprocessing step
for recognition. However, its performance suffers from the
annoying “musical tone” artifacts. CMN performs the sim-
ple linear transformation and aims to remove the cep-
stral bias. Although effective for the convolutional distor-
tions, this technique is not successful for the additive noise.
CDCN may be somewhat intensive to compute since it de-
pends on the online estimation of the channel and additive
noise through an iterative EM approach. Model compen-
sation approach aims to adapt or transform acoustic mod-
els to match the noisy speech feature in a new testing en-
vironment. The representative methods include multistyle
training [8], maximum-likelihood linear regression (MLLR)
[10], and Jacobian adaptation [11, 12]. Their main disad-
vantage is that they require the retraining of a recognizer
or adaptation data, which leads to much higher complex-
ity than speech enhancement approach. Most speech en-
hancement and model compensation methods are accom-
plished by linear functions such as simple bias removal,
affine transformation, linear regression, and so on. How-
ever, it is well known that distortion caused even by ad-
ditive noise only is highly nonlinear in the log-spectral or
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cepstral domain. Therefore, a nonlinear transformation or
compensation is more appropriate.

The use of a neural network allows us to automatically
learn the nonlinear mapping functions between the refer-
ence and testing environments. Such a network can han-
dle additive noise, reverberation, channel mismatches, and
combinations of these. Neural-network-based feature en-
hancement has been used in conjunction with a speech
recognizer. For example, Sorensen used a multilayer net-
work for noise reduction in the isolated word recogni-
tion under F-16 jet noise [13]. Yuk and Flanagan em-
ployed neural networks to perform telephone speech recog-
nition [14]. However, the feature enhancement they im-
plemented was performed in the ceptral domain and the
clean features were estimated using the noisy features
only.

In previous work, we proposed a new and effective
multimicrophone speech enhancement approach based on
multiple regressions of log spectra [15] that used multi-
ple spatially distributed microphones. Their idea is to ap-
proximate the log spectra of a close-talking microphone
by effectively the combining of the log spectra of dis-
tant microphones. In this paper, we extend the idea to
single-microphone case and propose that the log spec-
tra of clean speech are approximated through the nonlin-
ear regressions of the log spectra of the observed noisy
speech and the estimated noise using a multilayer percep-
tron (MLP) neural network. Our neural-network-based fea-
ture enhancement method incorporates the noise informa-
tion and can be viewed as a generalized log spectral subtrac-
tion.

In order to develop a data-driven in-car recognition sys-
tem, we develop an effective algorithm for adapting the re-
gression parameters to different driving conditions. In order
to further reduce the mismatch between training and testing
conditions, we synthesize the training data using the optimal
regression parameters, and train multiple hidden Markov
models (HMMs) over the synthesized data. We also develop
several HMM selection strategies. The devised system results
in a universal in-car speech recognition framework including
both the speech enhancement and the model compensation.

The organization of this paper is as follows: in Section 2,
we describe the in-car speech corpus used in this paper. In
Section 3, we present the regression-based feature enhance-
ment algorithm, and the experimental evaluations are out-
lined in Section 4. In Section 5, we present the environmen-
tal adaptation and model compensation algorithms. Then
the performance evaluation on the adaptive regression-based
speech recognition framework is reported in Section 6. Fi-
nally Section 7 concludes this paper.

2. IN-CAR SPEECH DATA AND SPEECH ANALYSIS

A data collection vehicle (DCV) has been specially designed
for developing the in-car speech corpus at the Center for
Integrated Acoustic Information Research (CIAIR), Nagoya
University, Nagoya, Japan [16]. The driver wears a headset
with a close-talking microphone (#1 in Figure 1) placed in it.
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Figure 1: Side view (top) and top view (bottom) of the arrangement
of multiple spatially distributedmicrophones and the linear array in
the data collection vehicle.

Five spatially distributed microphones (#3 to #7) are placed
around the driver. Among them, microphone #6, located at
the visor location to the speaker (driver), is the closest to
the speaker. The speech recorded at this microphone (also
named “visor mic.”) is used for speech recognition in this
paper. A four-element linear microphone array (#9 to #12)
with an interelement spacing of 5 cm is located at the visor
position.

The test data includes Japanese 50 word sets under 15
driving conditions (3 driving environments ×5 in-car states
= 15 driving conditions as listed in Table 1). Table 2 shows
the average signal-to-noise ratio (SNR) for each driving con-
dition. For each driving condition, 50 words are uttered by
each of 18 speakers. A total of 7000 phonetically balanced
sentences (uttered by 202male speakers and 91 female speak-
ers) were recorded for acoustical modeling. (3600 of them
were collected in the idling-normal condition and 3400 of
them were collected while driving the DCV on the streets
near Nagoya University (city-normal condition).)

Speech signals are digitized into 16 bits at a sampling
frequency of 16 kHz. For spectral analysis, a 24-channel
MFB analysis is performed on 25-millisecond-long win-
dowed speech, with a frame shift of 10 milliseconds. Spec-
tral components lower than 250Hz are filtered out to com-
pensate for the spectrum of the engine noise, which is con-
centrated in the lower-frequency region. Log MFB parame-
ters are then estimated. The estimated log MFB vectors are
transformed into 12 mean normalized Mel-frequency cep-
stral coefficients (CMN-MFCC) using discrete cosine trans-
formation (DCT) and mean normalization, after which the
time derivatives (Δ CMN-MFCC) are calculated.
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Figure 2: Concept of regression-based feature enhancement.

Table 1: Fifteen driving conditions (3 driving environments ×5 in-
car states).

Driving environments In-car states

Idling “i”
City driving “c”
Expressway driving “e”

Normal “n”

CD player on “s”

Air conditioner (AC) on at

low level “l”

Air conditioner (AC) on at

high level “h”

Window (near the driver) open “w”

Table 2: The average SNR values (dB) for 15 driving conditions
(“i-n” indicates the idling-normal condition, and so on).

Cond. SNR Cond. SNR Cond. SNR

i-n 13.41 c-n 9.58 e-n 7.24

i-s 8.82 c-s 8.13 e-s 7.16

i-l 9.56 c-l 8.92 e-l 7.30

i-h 6.84 c-h 6.49 e-h 5.92

i-w 8.87 c-w 6.55 e-w 4.29

3. ALGORITHMS

3.1. Regression-based feature enhancement

Let s(i), n(i), and x(i), respectively, denote the reference clean
speech (referred to the speech at the close-talking micro-
phone in this paper), noise, and observed noisy signals. By
applying a window function and analysis using short-time
discrete Fourier transform (DFT), in the time-frequency do-
main we have S(k, l), N̂(k, l), and X(k, l), where k and l
denote frequency bin and frame indexes, respectively. The
hat above N denotes the estimated version. After the Mel-
filter-bank (MFB) analysis and the log operation, we obtain

S(L)(m, l), X (L)(m, l), and N̂ (L)(m, l), that is,

S(L)(m, l) = log
∑
k

rm,k
∣∣S(k, l)∣∣,

X (L)(m, l) = log
∑
k

rm,k
∣∣X(k, l)∣∣,

N̂ (L)(m, l) = log
∑
k

rm,k
∣∣N̂(k, l)

∣∣,
(1)

where rm,k denotes the weights of the mth filter bank. The
idea of the regression-based enhancement is to approximate
S(L)(m, l) with the combination of X (L)(m, l) and N̂ (L)(m, l),
as shown in Figure 2. Let Ŝ(L)(m, l) denote the estimated log
MFB ouput of the mth filter bank at frame l, and it can be
obtained from the inputs of X (L)(m, l) and N̂ (L)(m, l). In par-
ticular, Ŝ(L)(m, l) can be obtained using the linear regression,
that is,

Ŝ(L)(m, l) = bm +w(x)
m X (L)(m, l) +w(n)

m N̂ (L)(m, l), (2)

where the parameters Θ = {bm,w(x)
m ,w(n)

m } are obtained by
minimizing the mean-squared error:

E(m) =
L∑
l=1

[
S(L)(m, l)− Ŝ(L)(m, l)

]2
, (3)

over the training examples. Here, L denotes the number of
training examples (frames).

On the other hand, Ŝ(L)(m, l) can be obtained by apply-
ing multilayer perceptron (MLP) regression method, where
a network with one hidden layer composed of 8 neurons is
used,1 that is,

Ŝ(L)(m, l)

= f
(
X (L), N̂ (L))

= bm+
8∑

p=1

(
wm,p tanh

(
bm,p+w

(x)
m,pX (L)+w(n)

m,pN̂ (L)
))

,

(4)

1The network was determined experimentally.
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where the filter bank index m and the index frame l are
dropped for compactness. tanh(·) is the tangent hyperbolic
activation function. The parameters Θ={bm,wm,p,w

(x)
m,p,w

(n)
m,p,

bm,p} are found by minimizing (3) through the back-prop-
agation algorithm [17].

The proposed approach is cast into single-channel meth-
odology because once the optimal regression parameters are
obtained by regression learning, they can be utilized in the
test phase, where the speech of the close-talking microphone
is no longer required. Multiple regressions mean that regres-
sion is performed for each Mel-filter bank. The use of min-
imum mean-squared error (MMSE) in the log spectral do-
main is motivated by the fact that log spectral measure is
more related to the subjective quality of speech [18] and that
some better results have been reported with log distortion
measures [19].2

Although neural networks have been employed for fea-
ture enhancement (e.g., [13, 14]) in cepstral domain, the in-
put used for the estimation of the clean feature in their al-
gorithms is the noisy feature only. The proposed method in-
corporates the noise information through the noise estima-
tion, and can be viewed as a generalized log spectral subtrac-
tion. In this paper, |N̂(k, l)| is estimated using the two-stage
noise spectra estimator proposed in [20]. Based on our previ-
ous studies, the incorporation of the noise information con-
tributed a significant performance gain of about 3% absolute
improvement in recognition accuracies, compared to that us-
ing the noisy feature only.

3.2. Comparisonwith the spectral subtraction

The spectral subtraction (SS) [7] is a simple but effective tech-
nique for cleaning the speech from the additive noise. It
was originally developed for the speech quality enhancement.
However, they may also serve as a preprocessing step for the
speech recognition. Let the corrupted speech signal x(i) be
represented as

x(i) = s(i) + n(i), (5)

where s(i) is the clean speech signal and n(i) is the noise sig-
nal. By applying a window function and the analysis using
short-time discrete Fourier transform (DFT), we have

X(k, l) = S(k, l) +N(k, l), (6)

where k and l denote frequency bin and frame indexes, re-
spectively. For compactness, we will drop both k and l. As-
suming that the clean speech s and the noise n are statistically
independent, the power spectrum of clean speech |S|2 can be
estimated as

|Ŝ|2 = |X|2 − |N̂|2, (7)

2 In [19], Porter and Boll found that for speech recognition, minimizing the
mean-squared errors in the log |DFT| is superior to using all other DFT
functions and to spectral magnitude subtraction.

where |N̂|2 is the estimated noise power spectrum. To reduce
the annoying “musical tone” artifacts, SS can be modified as
[21]

|Ŝ|2 =
⎧⎨
⎩|X|

2 − α|N̂|2 if |X|2 > β|N̂|2,
β|N̂|2 otherwise,

(8)

by introducing the subtraction factor α and the spectral
flooring parameter β. SS can be also implemented in the am-
plitude domain and the subband domain [22].

Although the proposed regression-based method and SS
are implemented in the different domains, both of them es-
timate the features of the clean speech using those of noisy
speech and estimated noise. In (8), the SS method results
in a simple subtraction of the weighted noise power spectra
from the noisy speech power spectra. In most literatures, the
parameters α and β are usually determined experimentally.
Compared with SS, the regression-based method employs
more general nonlinear models, and can benefit from the re-
gression parameters, which are statistically optimized. More-
over, the proposed method makes no assumption about the
independence of speech and noise, and can deal with more
complicated distortions rather than the additive noise only.

3.3. Comparisonwith the log-spectra
amplitude (LSA) estimator

The log-spectra amplitude (LSA) estimator [23], proposed by
Ephraim and Malah, also employs minimum mean-squared
errors (MMSEs) cost function in the log domain. However,
this approach explicitly assumes a Gaussian distribution for
the clean speech and the additive noise spectra. Under this
assumption, by using the MMSE estimation on log-spectral
amplitude, we can obtain the estimated amplitude of clean
speech as

|Ŝ| = ξ

1 + ξ
exp

(
1
2

∫∞
v

e−t

t
dt
)
· |X|, (9)

where the a priori and a posteriori SNRs are defined by
ξ = E{|S|2}/E{|N̂|2} and γ = E{|X|2}/E{|N̂|2}, respec-
tively, where E{·} denotes the expectation operator. v is de-
fined by

v = ξ

1 + ξ
γ. (10)

To reduce he “musical tone” artifacts, the dominant param-
eter, the a priori SNR ξ, is calculated using the smoothing
technique, that is, the “decision-directed” method [24].

Compared to SS method, the LSA estimator results in a
nonlinear model and is well known for its reduction of the
“musical tone” artifacts [25]. However, the LSA estimator
is based on the additive noise model and Gaussian distri-
butions of speech and noise spectra, which is not true for
realistic data [26]. In the LSA estimator, the dominant pa-
rameter ξ is simply estimated by the smoothing over the
neighbor frames, and the smoothing parameter is usually
determined experimentally. On the contrary, the proposed
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Figure 3: Diagram of regression-based speech recognition for a particular driving condition.

method makes no assumptions regarding the additive noise
model, nor about the Gaussian distributions of speech and
noise spectra. All the regression parameters in the proposed
regression method are obtained through the statistical opti-
mization.

4. REGRESSION-BASED SPEECH RECOGNITION
EXPERIMENTS

4.1. Experimental setup

We performed isolated word recognition experiments on the
50 word sets under 15 driving conditions as listed in Table 1.
In this section, we assume that the driving conditions are
known as a priori, and the regression parameters are trained
for each condition. For each driving condition, the data ut-
tered by 12 speakers (6 males and 6 females) is used for learn-
ing the regression models, and the remaining words uttered
by 6 speakers (3 males and 3 females) are used for recogni-
tion. A diagram of the in-car regression-based speech recog-
nition for a particular driving condition is given in Figure 3.
The structure of the hidden Markov models (HMMs) used
in this paper is fixed, that is,

(1) three-state triphones based on 43 phonemes that share
1000 states;

(2) each state has 32-component mixture Gaussian distri-
butions;

(3) the feature vector is a 25-dimensional vector (12CMN-
MFCC+12Δ CMN-MFCC + Δ log energy).3

3 The regression is also performed on the log energy parameter. The esti-
mated log MFB and the log energy outputs are first converted into CMN-
MFCC vectors using DCT and mean normalization. Then the derivatives
are calculated.

For comparison, we performed the following experi-
ments:

original: recognition of the original noisy speech (#6 in Fig-
ure 1) speech using the corresponding HMM;

SS: recognition of the speech enhanced using the spectral
subtraction (SS) method with (8);

LSA: recognition of the speech enhanced using the log-
spectra amplitude (LSA) estimator;

linear regression: recognition of the speech enhanced using
the linear regression with (2);

nonlinear regression: recognition of the speech enhanced us-
ing the nonlinear regression with (4).

Note that the acoustic models, used for the “SS,” “LSA,” and
the regression method, are trained over the speech at the
close-talking microphone (#1 in Figure 1).

4.2. Speech recognition results

The recognition performance averaged over the 15 driving
conditions is given in Figure 4. From this figure, it is found
that all enhancement methods are effective and outperform
the original noisy speech. The linear regression method ob-
tains a higher recognition accuracy than the spectral subtrac-
tion method. We contribute it to the statistical optimization
of the regression parameters in the linear regression method.
The LSA estimator outperforms the linear regressionmethod
for its highly nonlinear estimation. The best recognition per-
formance is achieved by the nonlinear regression method for
its more flexible model and statistical optimization of the re-
gression parameters. The superiority of the nonlinear regres-
sion method is also confirmed by the subjective and objec-
tive evaluation experiments on the quality of the enhanced
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Figure 4: Recognition performance of different speech enhance-
ment methods (averaged over 15 driving conditions).

speech [27].4 Therefore, the nonlinear regression method is
used in the following experiments.

5. ENVIRONMENTAL ADAPTATION ANDMODEL
COMPENSATION

5.1. Adaptive enhancement of an input speech signal

In the regression-based recognition systems described above,
each driving condition was assumed to be known as a prior
information and the regression parameters were trained
within each driving condition. To develop a data-driven in-
car recognition system, regression weights should be adapted
automatically to different driving conditions. In this sec-
tion, we discriminate in-car environments by using the infor-
mation of the nonspeech signals. In our experiments, Mel-
frequency cepstral coefficients (MFCCs) are selected for the
environmental discrimination because of their good discrim-
inating ability, even in audio classification (e.g., [28, 29]).
The MFCC features are extracted frame by frame from non-
speech signals (preceding the utterance by 200milliseconds,
i.e., 20 frames), their means in one noisy signal are com-
puted, and they are then concatenated into a feature vector:

R = [c1, . . . , c12, e], (11)

where ci and e denote ith-order MFCC and log energy, re-
spectively. The upper bar denotes the mean values of the fea-
tures. Since the variances among the elements in R are differ-
ent, each element is normalized so that their mean and vari-
ance are 0 and 1, respectively. The prototypes of the noise
clusters are obtained by applying the K-means-clustering al-
gorithm [30] to the feature vectors extracted from the train-
ing set of the nonspeech signals.

The basic procedure of the proposed method is as fol-
lows. (1) Cluster the noise signals (i.e., short-time nonspeech
segments preceding the utterances) into several groups. (2)

4 In our previous work [27], we generated the enhanced speech signals by
performing the regressions in the log spectral domain (for each frequency
bin).

For each noise group, train optimal regression weights us-
ing the speech segments. (3) For unknown input speech, find
a corresponding noise group using the nonspeech segments
and perform the estimation with the optimal weights of the
selected noise group, that is, the log MFB outputs of clean
speech can be estimated by

Ŝ(L) = fk
(
X(L), N̂(L)), (12)

where X(L) and N̂(L) indicate the log MFB vector ob-
tained from noisy speech and estimated noise, respectively.
fk(·) corresponds to the nonlinear mapping function in
Section 3.1, where the cluster ID k is specified by minimizing
the Euclidian distance between R and the centroid vectors.

In our experiments, the vectors R′s, exacted from the first
20-frame nonspeech part of the signals by 12 speakers, are
used to cluster the noise conditions, and those by another six
speakers are used for testing, as shown in Figure 5.

5.2. Regression-based HMM training

In our previous work [27], we generated the enhanced speech
signals, by performing the regressions in the log spectral
domain (for each frequency bin). Though few “musical
tone” artifacts were found in the regression-enhanced sig-
nals compared to those obtained using spectral subtraction-
based methods, some noise still remained in the regression-
enhanced signals. We believe there will exist a mismatch
between training and testing conditions, if we use HMM
trained over clean data to test the regression-enhanced
speech. In order to reduce the mismatch and incorporate the
statistical characteristics of the test conditions, we adopt the
K sets of optimal weights obtained from each clustered group
to synthesize 7000-sentence training data, that is, we simu-
lated 7000×K sentences based on K clustered noise environ-
ments. Then K HMMs are trained over each of the synthe-
sized 7000-sentence training data, as shown in Figure 5.

5.3. HMM selection

For the recognition of an input speech signal x, an HMM is
selected from K HMMs based on the following two strate-
gies.

(1) ID-based strategy

This strategy tries to select an HMM trained over the simu-
lated training data, which are close to the test noise environ-
ment, that is,

Ĥ(x) =
K∑
k=1

δ
(
D(x),D

(
Hk
))
Hk, (13)

where the Kronecker delta function δ(·, ·), has value 1 if its
two arguments match, and value 0 otherwise [30]. D(x) and
D(Hk) denote the cluster ID of an input signal x and of the
kth HMM Hk, respectively.
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Figure 5: Diagram of adaptive regression-based speech recognition. X(L), N̂(L), and S(L) denote the log MFB outputs obtained from observed
noisy speech, estimated noise, and reference clean speech, respectively. R denotes the vector representation of the driving environment using
(11).

(2) Maximum-likelihood- (ML-) based strategy

This strategy tries to select the HMM that outputs maximum
likelihood (likelihood selection [31]), that is,

Ĥ(x) = argmax
H

{
P
(
x | H1

)
, . . . ,P

(
x | HK

)}
, (14)

where P(x | Hk) indicates the log likelihood of an input sig-
nal x by using the kth HMM Hk.

5.4. Analysis of the proposed framework

There are some common points in the stereo-based piecewise
linear compensation for environments (SPLICE) method
[32, 33] and our feature enhancement in Section 5.1. Both
of them are stereo-based and consist of two steps: find-
ing the optimal “codeword” and performing the codeword-
dependent compensation (see (12)). However, the proposed
enhancement method does not need any Gaussian assump-
tion required in SPLICE and turns out to be a general non-
linear compensation. Synthesizing the training data using the
optimal regression weights obtained in the test environments
is similar to training data contaminations [1], but the pro-
posed one incorporates the information of test environments
implicitly. Regression-based HMM training andHMM selec-
tion can be viewed as a kind of nonlinear model compen-
sation, which can incorporate the information of the test-
ing environments. A combination of feature enhancement
and HMM selection results in a universal speech recognition
framework where both the noisy features and the acoustic
models are compensated.
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adaptive regression methods (averaged over 15 driving conditions).

6. PERFORMANCE EVALUATION

Figure 6 shows the word recognition accuracies for different
numbers of clusters using adaptive regression methods. It is
found that the recognition performance is improved signif-
icantly by using adaptive regression methods compared to
those of “clean-HMM,” which is trained over the speech at
the close-talking microphone. As the number of clusters in-
creases up to four, the recognition accuracies increase consis-
tently due to there being more noise (environmental) infor-
mation available. However, too many clusters (e.g., eight or
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above) yield a degradation of the recognition performance.
Although the two adaptive regression-based recognition sys-
tems perform almost identically in the two-cluster case, “ID-
based” yields a more stable recognition performance across
the numbers of clusters, and the best recognition perfor-
mance is achieved using “ID-based” and with four clusters.

For comparison, we also performed recognition experi-
ments based on the ETSI advanced front end [34], and an
adaptive beamformer (ABF). The acoustic models used for
the ETSI advanced front end and the adaptive beamform-
ing were trained over the training data they processed. For
the adaptive beamformer, the generalized sidelobe canceller
(GSC) [35] is applied to our in-car speech recognition. Four
linearly spaced microphones (#9 to #12 in Figure 1) with an
interelement spacing of 5 cm at the visor position are used.
The architecture of the GSC used is shown in Figure 7. In our
experiments, τi is set equal to zero since the speakers (drivers)
sit directly in front of the array line, while wi is set equal to
1/4. The delay is chosen as half of the adaptive filter order
to ensure that the component in the middle of each of the
adaptive filters at time n corresponds to yb f (n). The block-
ing matrix takes the difference between the signals at the ad-
jacent microphones. The three FIR filters are adapted sample
by sample using the normalized least-mean square (NLMS)
method [36].

Figure 8 shows the recognition performance averaged
over the 15 driving conditions. “original” cites from Figure 4
and “proposed” cites the best recognition performance
achieved in Figure 6. It is found that all the enhancement
methods outperform the original noisy speech. Recalling
Figure 4, ETSI advanced front end yields higher recognition
accuracy than the LSA estimator. The proposed method sig-
nificantly outperforms ETSI advanced front end and even
performs better than adaptive beamforming, which uses as
many as four microphones. Recalling Figure 6, it is found
that the regression-based method with even one cluster out-
performs ETSI advanced front end. This clearly demon-
strates the superiority of the adaptive regression method.

We also investigated the recognition performance aver-
aged over five in-car states as listed in Table 1. The results
are shown in Figure 9. It is found that the adaptive regres-
sion method outperforms ETSI advanced front end in all the
five in-car states, especially when AC is on at high level and
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Figure 8: Recognition performance of different speech enhance-
ment methods (averaged over 15 driving conditions).
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Figure 9: Recognition performance for five in-car states by using
different methods. Each group represents one in-car state listed in
Table 1. Within each group, the bars represent the recognition ac-
curacy by using different methods: ETSI-ETSI advanced front end;
proposed—the best performance in Figure 6; ABF-adaptive beam-
former; original—recognition of the original noisy speech (no pro-
cessing).

when the window near the driver is open. Adaptive beam-
forming is very effective when the CD player is on and when
the window near the driver is open. This suggests that adap-
tive beamforming with multiple microphones can suppress
the noise coming from undesired directions quite well due
to its spatial filtering capability. However, in the remaining
three in-car states (diffuse noise cases), it does not work as
well as the adaptive regressionmethod. Because the proposed
method is based on statistical optimization and the present
noise estimation cannot track the rapidly changing nonsta-
tionary noise, it can be found from this figure that the pro-
posed method works rather well under the stationary noise
(e.g., air conditioner on), but has some problems in the non-
stationary noise (e.g., CD player on).

7. CONCLUSIONS

In this paper, we have proposed a nonlinear multiple-regres-
sion-based feature enhancement method for in-car speech
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recognition. In the proposed method, the logMel-filter-bank
(MFB) outputs of clean speech are approximated through
the nonlinear regressions of those obtained from the noisy
speech and the estimated noise. The proposed feature en-
hancement method incorporates the noise estimation and
can be viewed as generalized log-spectral subtraction. Com-
pared with the spectral subtraction and the log-spectral am-
plitude estimator, the proposed one statistically optimizes the
model parameters and can deal with more complicated dis-
tortions.

In order to develop a data-driven in-car recognition sys-
tem, we have developed an effective algorithm for adapting
the regression parameters to different driving conditions. We
also devised the model compensation scheme by synthesiz-
ing the training data using the optimal regression parame-
ters and by selecting the optimal HMM for the test speech.
The devised system turns out to be a robust in-car speech
recognition framework, in which both feature enhancement
and model compensation are performed. The superiority of
the proposed system was demonstrated by a significant im-
provement in recognition performance in the isolated word
recognition experiments conducted in 15 real car environ-
ments.

In Section 5, a hard decision is made for environmen-
tal selection. However, when the system encounters a new
noise type, a soft or fuzzy logic decision is desirable, and
should be one of future work. The present speech recogni-
tion system has not addressed the problem of interference
by rapidly changing nonstationary noise. For example, our
experiments confirmed that the present recognition system
did not work well when CD player was on. In the nonsta-
tionary noise cases, the accuracy of noise estimation is very
important in successful applications of denoising schemes.
Some recursive noise estimation algorithm such as “iterated
extended Kalman filter” [37] may be helpful for our speech
recognition system.
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