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This paper presents a system for compact and intuitive video summarisation aimed at both high-end professional production
environments and small-screen portable devices. To represent large amounts of information in the form of a video key-frame
summary, this paper studies the narrative grammar of comics, and using its universal and intuitive rules, lays out visual summaries
in an efficient and user-centered way. In addition, the system exploits visual attention modelling and rapid serial visual presentation
to generate highly compact summaries on mobile devices. A robust real-time algorithm for key-frame extraction is presented. The
system ranks importance of key-frame sizes in the final layout by balancing the dominant visual representability and discovery of
unanticipated content utilising a specific cost function and an unsupervised robust spectral clustering technique. A final layout is
created using an optimisation algorithm based on dynamic programming. Algorithm efficiency and robustness are demonstrated
by comparing the results with a manually labelled ground truth and with optimal panelling solutions.
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1. INTRODUCTION

The conventional paradigm to bridge the semantic gap be-
tween low-level information extracted from the digital videos
and the user’s need to meaningfully interact with large mul-
timedia databases in an intuitive way is to learn and model
the way different users link perceived stimuli and their mean-
ing [1]. This widespread approach attempts to uncover the
underpinning processes of human visual understanding and
thus often fails to achieve reliable results, unless it targets a
narrow application context or only a certain type of the video
content. The work presented in this paper makes a shift to-
wards more user-centered summarisation and browsing of
large video collections by augmenting user’s interaction with
the content rather than learning the way users create related
semantics.

In order to create an effortless and intuitive interaction
with the overwhelming extent of information embedded in
video archives, we propose two systems for generation of
compact video summaries in two different scenarios. The
first system targets high-end users such as broadcasting pro-
duction professionals, exploiting the universally familiar nar-
rative structure of comics to generate easily readable visual
summaries. In case of browsing video archives in a mobile
application scenario, visual summary is generated using a
model of human visual attention. The extracted salient in-

formation from the attention model is exploited to lay out an
optimal presentation of the content on a device with a small
size display, whether it is a mobile phone, handheld PC, or
PDA.

Being defined as “spatially juxtaposed images in deliber-
ate sequence intended to convey information” [2], comics are
the most prevalent medium that expresses meaning through
a sequence of spatially structured images. Exploiting this
concept, the proposed system follows the narrative structure
of comics, linking the temporal flow of video sequence with
the spatial position of panels in a comic strip. This approach
differentiates our work from the typical reverse storyboard-
ing [3, 4] or video summarisation approaches. There have
been attempts to utilise the form of comics as a medium for
visual summarisation of videos [5, 6]. Here, the layout algo-
rithm optimises the ratio of white space left and approxima-
tion error of the frame importance function. However, the
optimisation algorithm utilises a full search method, which
becomes impractical for larger layouts.

This work brings a real-time capability to video sum-
marisation by introducing a solution based on dynamic pro-
gramming and proving that the adopted suboptimal ap-
proach achieves practically optimal layout results. Not only
does it improve the processing time of the summarisa-
tion task, but it enables new functionalities of visualisation
for large-scale video archives, such as runtime interaction,



2 EURASIP Journal on Advances in Signal Processing

Key-frame
extraction

Clustering Cost f -on Saliency

Panel
templates Panel layout Mobile layout RSVP

Figure 1: Block scheme of the video summarisation system. For
the both layout modules, key-frame sizes are being estimated. The
saliency based cropping is applied only in case of mobile scenario.

scalability and relevance feedback. In addition, the presented
algorithm applies a new approach to the estimation of key-
frame sizes in the final layout by exploiting a spectral cluster-
ing methodology coupled with a specific cost function that
balances between good content representability and discov-
ery of unanticipated content. Finally, by exploiting visual at-
tention in the small screen scenario, displayed key frames are
intelligently cropped, displaying only the most salient image
regions. This completely unsupervised algorithm demon-
strated high precision and recall values when compared with
hand-labelled ground truth.

The initial step of key-frame extraction, presented in
Section 3, utilises underlying production rules to extract the
best visual representative of a shot in an efficient manner [7].
In order to rank the importance of key frames in the final vi-
sual layout, a specific cost function that relies on a novel ro-
bust image clustering method is presented in Section 4. Two
optimisation techniques that generate a layout of panels in
comic-like fashion are described in Section 5. The first tech-
nique finds an optimal solution for a given cost function,
while the second suboptimal method utilises dynamic pro-
gramming to efficiently generate the summary [8]. In order
to adapt the summaries to small screen devices, visual atten-
tion modelling [9] is used to estimate the most salient regions
of extracted key-frames, as given in Section 6. The number of
salient regions is defined by the desired response time, deter-
mined from the required speed of rapid serial visual presen-
tation (RSVP) [10]. Finally, the results of the algorithms pre-
sented are evaluated in Section 7 by comparing achieved out-
put with a manually labelled ground truth and benchmark-
ing the optimal against a suboptimal panelling solution. The
following section outlines the architecture of the overall sys-
tem.

2. SYSTEMDESCRIPTION

The proposed system for video summarisation comprises
two main modules: (i) panel layout and (ii) mobile layout,
as depicted in Figure 1. The panel layout module generates
video summaries for computer screens and exploits infor-
mation from the key-frame extraction module, estimation of
the layout cost function and the panel template generator. On
the other hand,mobile layout module uses key-frame saliency
maps and the timing defined by the visual attention model
and the RSVP trigger. This module generates a sequence of
compact summaries comprising the most salient key-frame
regions. In order to generate the visual summary, a set of the
most representative frames is generated from the analysed

video sequence. It relies on the precalculated information
on shot boundary locations that is retrieved from an exist-
ing indexed metadata database. The shot-detection module
utilises block-based correlation coefficients and histogram
differences to measure the visual content similarity between
frame pairs [11]. Shot boundary candidates are labelled by
thresholding χ2 global colour histogram frame differences,
while in the second pass, a more detailed analysis is applied
to all candidates below a certain predetermined threshold.
Developed as a part of a joint project [12] that analyses raw
footage of wildlife rushes, this algorithm achieves a higher
recall and precision compared with the conventional shot-
detection techniques. Once the shot boundaries are deter-
mined, a single key frame is extracted from each shot to rep-
resent its content in the best possible way.

In the second stage, a specific layout cost function is as-
signed to each key frame to rank the importance of the key
frame in the final layout. In order to calculate the cost func-
tion, key frames are initially clustered using a robust, unsu-
pervised spectral clustering technique.

For the high-end summaries, comic-like panel templates
are laid out in the final visual summary using an efficient
optimisation algorithm based on dynamic programming. In
this scenario, the aspect ratio of images is fixed to the source
aspect ratio and therefore there are no attempts to crop or
reshape them for the final layout.

However, in order to produce highly compact summaries
for the mobile devices, salient image regions are extracted
using a human visual attention model. A single screen sum-
mary is generated by laying the extracted salient regions on
a screen. Utilising the RSVP approach, layouts are displayed
sequentially to the user until the end of presented video se-
quence is reached.

3. KEY-FRAME EXTRACTION

In order to generate the visual summary, a set of the most
representative frames is generated from the analysed video
sequence. Initially, video data is subsampled in both space
and time to achieve real-time processing capability. Spatial
complexity reduction is achieved by representing an 8 × 8
block with its average pixel value, generating a low-resolution
representation of video frames known as the DC sequence. By
doing this, the decoding process is minimised since the DC
sequence can be efficiently extracted from an MPEG com-
pressed video stream [13]. In the temporal dimension, key
frame candidates are determined either by uniform sampling
every nth frame or after a cumulative pixelwise prediction
error between two adjacent candidate frames reaches a pre-
defined threshold. The latter approach distorts the time in a
nonlinear fashion and thus loses the notion of real motion re-
quired by the camera work classification module. Therefore,
a temporal decimation with the constant factor of n = 5 is
applied.

Having generated the low complexity data representation

with dimensions W × H , a dense optical flow �F(x, y) of the
DC sequence is estimated efficiently using the Lucas-Kanade
image registration technique [14]. In order to apply model
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Table 1: Camera work categories and corresponding error thresh-
hold values.

Zoom Pan Tilt

In Out Left Right Up Down

Thcw <−1.2 >1.2 <−0.7 >0.7 <−0.8 >0.8

fitting of optical flow data to a priori generated camera work
models (i.e., zoom, tilt, and pan), specific transformations are
applied to the optical flow Fi(x, y) for each frame i, as given
in (1):

Φi
z(x, y) = sgn

(
x − W

2

)
Fi
x(x, y) + sgn

(
y − H

2

)
Fi
y(x, y),

Mi
z(x, y) = Φi

z(x, y) · ω(x, y),

Mi
p(x, y) = Fi

x(x, y) · ω(x, y),

Mi
t(x, y) = Fi

y(x, y) · ω(x, y).
(1)

Weighting coefficients ω(x, y) favour influence of the op-
tical flow in image boundary regions in order to detect cam-
era work rather than a moving object, typically positioned in
the centre of the frame. As shown in (2), the weighting coef-
ficients are calculated as an inverted ecliptic Gaussian aligned
to the frame center, with spatial variances determined empir-
ically as σx = 0.4 ·W and σy = 0.4 ·H :

ω(x, y) = 1− e−((x−W/2)2/σx+(y−H/2)2/σy). (2)

The measure of optical flow data fitness for a given
camera work model is calculated as a normalised sum of
Mi

cw(x, y) for each type of camera work (cw): zoom (z), pan
(p), and tilt (t), as given in (3). If the absolute value of fit-
ness function becomes larger than the empirically predefined
threshold Thcw, the frame i is labelled with one of the six
camera work categories, as given in Table 1:

Ψi
cw =

1
wh

W∑
x=1

H∑
y=1

Mi
cw(x, y), where cw ∈ {z, p, t}. (3)

Finally, the binary labels of camera work classes are de-
noised using morphological operators retaining the persis-
tent areas with camera motion while removing short or in-
termittent global motion artefacts.

Once the shot regions are labelled with appropriate cam-
era work, only the regions with a static camera (i.e., no
camera work labelled) are taken into account in selection
of the most representative key-frame candidates. This ap-
proach was adopted after consulting the views of video pro-
duction professionals as well as inspection of manually la-
belled ground truth. The conclusions were that: (i) since the
cameraman tends to focus on the main object of interest us-
ing a static camera, the high-level information will be con-
veyed by the key frame in regions with no camera work la-
bels, (ii) chances to have artefacts like motion and out-of-
focus blur are minimised in those regions.

Subsequently, frames closest to the centre of mass of the
frame candidates’ representation in a multidimensional fea-
ture space are specifically ranked to generate the list of region

representatives. The algorithm for key-frame selection is as
follows:

(1) select Nist ≥ Nk f candidates from static regions,
(2) calculate feature matrices for all candidates,
(3) loop through all candidates:

(a) rank them by L2 distance to all unrepresented
frames of the analysed shot in ascending order;

(b) select the first candidate and label its neighbour-
ing frames as represented;

(c) select the last candidate and label its neighbour-
ing frames as represented;

(4) export Nk f selected key frames as a prioritised list.

The feature vector used to represent key-frame candidates
is an 18 × 3 × 3 HSV colour histogram, extracted from the
DC sequence representation for reasons of algorithm effi-
ciency. As an output, the algorithm returns a sorted list of
Nk f frames and the first frame in the list is used as the key
frame in the final video summary. In addition to the single
key frame representation, this algorithm generates a video
skim for each shot in the video sequence. Depending on
application type, length of the skim can be either prede-
fined (Nk f = const.) or adaptive, driven by the number of
static camera regions and maximum distance allowed dur-
ing the ranking process. By alternately selecting the first and
the last frame from the ranked list, a balance between the
best representability and discovery of unanticipated content
is achieved.

4. ESTIMATION OF FRAME SIZES

As mentioned before, our aim is to generate an intuitive and
easily readable video summary by conveying the significance
of a shot from analysed video sequences by the size of its
key-frame representative. Any cost function that evaluates
the significance is highly dependent upon the application. In
our case, the objective is to create a summary of archived
video footage for production professionals. Therefore, the
summary should clearly present visual content that is dom-
inant throughout the analysed section of the video, as well
as to highlight some cutaways and unanticipated content, es-
sential for the creative process of production.

More generally speaking, being essentially a problem of
high-level understanding of any type of analysed content,
the summarisation task requires a balance between the pro-
cess that duly favours dominant information and the dis-
covery of the content that is poorly, if at all, represented by
the summary. Keeping this balance is important especially in
case of visual summarisation, where introduction of unan-
ticipated visual stimuli can dramatically change the con-
veyed meaning of represented content. In a series of experi-
ments conducted to indicate the usefulness and effectiveness
of film editing [15], Russian filmmaker Lev Kuleshov (circa
1918) demonstrated that juxtaposing an identical shot with
different appendices induces completely different meaning of
the shot in audiences. In other words, the conveyed mean-
ing is created by relation and variance between representing
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elements of visual content. This idea of emphasizing differ-
ence, complexity, and non-self-identity rather than favouring
commonality and simplicity and seeking unifying principles
is well established in linguistics and philosophy of meaning
through theory of deconstruction, forged by French philoso-
pher Derrida in the 1960s [16].

In the case of video summarisation, the estimation of
frame importance (in our case frame size) in the final video
summary layout is dependant upon the underlying structure
of available content. Thus, the algorithm needs to uncover
the inherent structure of the dataset and by following the dis-
covered relations evaluate the frame importance. By balanc-
ing the two opposing representability criteria, the overall ex-
perience of visual summary and the meaning conveyed will
be significantly improved.

4.1. Frame grouping

In order to generate the cost function C(i), i = 1, . . . ,N
where C(i) ∈ [0, 1] that represents the desired frame size
in the final layout, the key frames are initially grouped into
perceptually similar clusters. The feature vector used in the
process of grouping is the same HSV colour histogram used
for key-frame extraction appended with the pixel values of
the DC sequence frame representation in order to maintain
essential spatial information.

Being capable of analysing inherent characteristics of the
data and coping very well with high nonlinearity of clusters,
a spectral clustering approach was adopted as method for ro-
bust frame grouping [17]. The choice of the spectral clus-
tering approach comes as a result of test runs of standard
clustering techniques on wildlife rushes data. The centeroid-
based methods like K-means failed to achieve acceptable re-
sults since the number of existing clusters had to be defined
a-priori and these algorithms break down in presence of non-
linear cluster shapes [18].

In order to avoid data-dependent parametrization re-
quired by bipartitioning approaches like N-cut [19], we have
adopted the K-way spectral clustering approach with unsu-
pervised estimation of number of clusters present in the data.

The initial step in the spectral clustering technique is to
calculate the affinity matrix WN×N , a square matrix that de-
scribes a pairwise similarity between data points, as given in
(4):

W(i, j) = e−‖x
2
i −x2

j ‖/2·σ2
. (4)

Instead of manually setting the scaling parameter σ , Zelnic
and Perona [20] introduced a locally scaled affinity matrix,
where each element of the data set has been assigned a lo-
cal scale σi, calculated as median of κ = 7 neighbouring dis-
tances of element i so that the affinity matrix becomes

Wloc(i, j) = e−‖x
2
i −x2

j ‖/2·σi·σj . (5)
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Figure 2: Sorted eigenvalues of affinity matrix with estimated num-
ber of data clusters nClust in the ideal case (λi) and a real case (λr).
By clustering eigenvalues in two groups, the number of eigenvalues
with value 1 in the ideal case can be estimated.

After calculating the locally scaled affinity matrix Wloc, a gen-
eralised eigen-system given in 6 is solved:

(D −W)y = λDy. (6)

Here, D is known as a degree matrix, as given in (7):

D(i, i) =
∑
j

Wloc(i, j). (7)

K-way spectral clustering partitions the data into K clusters at
once by utilising information from eigenvectors of the affin-
ity matrix. The major drawback of this algorithm is that the
number of clusters has to be known a-priori. There have
been a few algorithms proposed that estimate the number
of groups by analysing eigenvalues of the affinity matrix. By
analysing the ideal case of cluster separation, Ng et al. [21]
show that the eigenvalue of the Laplacian matrix L = D−W
with the highest intensity (in the ideal case it is 1) is repeated
exactly k times, where k is a number of well-separated clus-
ters in the data. However, in the presence of noise, when clus-
ters are not clearly separated, the eigenvalues deviate from
the extreme values of 1 and 0. Thus, counting the eigenval-
ues that are close to 1 becomes unreliable. Based on a similar
idea, Polito and Perona in [22] detect a location of a drop in
the magnitude of the eigenvalues in order to estimate k, but
the algorithm still lacks the robustness that is required in our
case.

Here, a novel algorithm to robustly estimate the number
of clusters in the data is proposed. It follows the idea that if
the clusters are well separated, there will be two groups of
eigenvalues: one converging towards 1 (high values) and an-
other towards 0 (low values). In the real case, convergence
to those extreme values will deteriorate, but there will be
two opposite tendencies and thus two groups in the eigen-
value set. In order to reliably separate these two groups,
we have applied K-means clustering on sorted eigenvalues,
where K = 2 and initial locations of cluster centers are set to
1 for high-value cluster and 0 to low-value cluster. After clus-
tering, the size of a high-value cluster gives a reliable estimate
of the number of clusters k in analysed dataset, as depicted in
Figure 2. This approach is similar to the automatic thresh-
olding procedure introduced by Ridler and Calvard [23] de-
signed to optimize the conversion of a bimodal multiple gray
level picture to a binary picture. Since the bimodal tendency
of the eigenvalues has been proven by Ng et al. in [21], this
algorithm robustly estimates the split of the eigenvalues in an
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optimal fashion, regardless of the continuous nature of val-
ues in a real noisy affinity matrix (see Figure 2).

Following the approach presented by Ng et al. in [21], a
Laplacian matrix L = D −W (see (6)) is initially generated
from the locally scaled affinity matrix Wloc with its diagonal
set to zero Ŵloc(i, i) = 0. The formula for calculating the La-
pacian matrix normalised by row and column degree is given
in (8):

L(i, j) = Ŵloc(i, j)(
D(i, i) ·D( j, j)

) . (8)

After solving the eigen system for all eigenvectors eV of L,
the number of clusters k is estimated following the aforemen-
tioned algorithm. The first k eigenvectors eV(i), i = 1, . . . , k
form a matrix XN×k(i, j). This matrix is renormalised for
each row to have unit length, as given in (9):

X̂(i, j) = X(i, j)√∑k
j=1 X(i, j)2

. (9)

Finally, by treating each column of X̂ as a point in Rk, N
vectors are clustered into k groups using the K-means algo-
rithm. The original point i is assigned to cluster j if the vector
X̂(i) was assigned to the cluster j.

This clustering algorithm is used as the first step in reveal-
ing the underlying structure of the key-frame dataset. The
following section describes in detail the algorithm for calcu-
lation of the cost function.

4.2. Cost function

To represent the dominant content in the selected section
of video, each cluster is represented with a frame closest to
the centre of the cluster. Therefore the highest cost function
C(i,d, σi) = 1 is assigned for d = 0, where d is the distance
of the key frame closest to the centre of cluster and σi is ith

frame’s cluster variance. Other members of the cluster are
given values (see Figure 3):

C(i,d, σi) = α · (1− e−d
2/2σ2

i
) · hmax. (10)

The cost function is scaled to have a maximum value hmax

in order to be normalised to available frame sizes. Parame-
ter α can take values α ∈ [0, 1], and in our case is chosen
empirically to be 0.7. In Figure 3, a range of different cost de-
pendency curves are depicted for values α ∈ {0.5, . . . , 1.0}
and hmax = 1. The value of α controls the balance between
the importance of the cluster centre and the outliers.

By doing this, cluster outliers (i.e., cutaways, establishing
shots, etc.) are presented as more important and attract more
attention of the user than key frames concentrated around
the cluster centre. This grouping around the cluster centres
is due to common repetitions of similar content in raw video
rushes, often adjacent in time. To avoid the repetition of con-
tent in the final summary, a set of similar frames is rep-
resented by a larger representative, while the others are as-
signed a lower cost function value.
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Figure 3: Cost function dependency on distance from the cluster
centre for values of parameter α ∈ [0.5, 1.0].

5. PANELLING

Given the requirement that aspect ratio of key frames in the
final layout has to be the same as aspect ratio of the source
video frames, the number of possible spatial combinations
of frame layouts will be restricted and the frame size ratios
have to be rational numbers (e.g., 1 : 2, 1 : 3, 2 : 3). In ad-
dition, following the model of a typical comic strip narra-
tive form, a constraint of spatial layout dependance on time
flow is introduced. In our case, the time flow of video se-
quence is reflected by ordering the frames in left-to-right and
top-to-bottom fashion. Excluding this rule would impede the
browsing process.

Two page layout algorithms are presented. The first al-
gorithm searches for all possible combinations of page lay-
out and finds an optimal solution for a given cost function.
However, processing time requirements make this algorithm
unfeasible if the number of frames to be laid out on a single
page exceeds a certain threshold. Therefore, a novel subop-
timal algorithm is introduced. It utilises dynamic program-
ming (DP) to find the best solution in very short time. Re-
sults presented in Section 7 show that the error introduced
by the suboptimal model can be disregarded. Firstly, an al-
gorithm that generates panel templates following the narra-
tive structure of comics is presented, followed by detailed de-
scriptions of layout algorithms.

5.1. Panel generator

Following the definition of the art of comics as a sequential
art [24] where space does the same as time does for film [2],
this work intuitively transforms the temporal dimension of
videos into spatial dimension of the final summary by fol-
lowing the well-known rules of comics’ narrative structure.

The panel is a basic spatial unit of comics as a medium
and it distinguishes an ordered pictorial sequence convey-
ing information from a random set of images laid out on
a page, that is, it enables closure. Closure is a phenomenon
of observing the parts and perceiving the whole. Therefore,
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Figure 4: Panel templates for panel heights 1 to 4. Arrows show the
temporal sequence of images for each template, adopted from the
narrative structure in comics.

in order to achieve an intuitive perception of the comic-like
video summary as a whole, panels in the summary layout
need to follow basic rules of comics’ narrative structure (e.g.,
time flows from left to right, and from top to bottom).

Therefore, a specific algorithm that generates a set of
available panel templates is developed. It creates templates
as vectors of integers xi of normalised image sizes ordered
in time. Panel templates are grouped by panel heights, since
all panels in a row need to have the same height. The al-
gorithm generates all possible panel vectors xi, for all h ∈
{1, . . . ,hmax} ∧ w ∈ {1, . . . ,h} and checks if they fit the fol-
lowing requirements:

(1) h ·w =∑∀i x
2
i ,

(2) the panel cannot be divided vertically in two.

The final output is a set of available panel templates for given
panel heights, stored as an XML file. Examples of panel tem-
plates, for panel heights 1–4, are depicted in Figure 4. Panel-
ing module loads required panel templates as well as the cost
function and key frames from the database and produces a
final page layout, as presented in Section 5.3.

5.2. Optimal solution using full search

In addition to the requirements for a page layout, the op-
timal layout solution needs to fit exactly into a predefined
page width with a fixed number of images per page. This
requirement enables objective comparison of layout algo-
rithms, since the DP solution generates layout with adaptive
page width and number of frames per page.

As a result of these requirements, for a given maximal row
height hmax, a set of available panel templates is generated as
described before. For a given page height h, page width w,
and number of images per page N , distribution of frame sizes
depends on the cost function C(i), i = 1 . . . N . An algorithm
for calculation of the cost function is described in Section 4.

The main task is to find a frame layout that optimally fol-
lows the values of the cost function only using available panel
templates. Each panel template generates a vector of frame
sizes, that approximates the cost function values of corre-
sponding frames. Precision of this approximation depends
upon the maximum size of a frame, defined by the maximum
height of the panel hmax which gives granularity of the solu-
tion. For a given hmax, a set of panel templates is generated
(see Figure 4), assigning a vector of frame sizes to each tem-
plate.

The page-panelling algorithm is divided into two stages:
(i) distribution of row heights and (ii) distribution of pan-
els for each row. Since the second stage always finds an opti-
mal solution, the final page layout is determined by finding a
minimum approximation error for a given set of row height
distributions.

In both parts of the algorithm, the search space is gener-
ated by the partitioning of an integer (h or w) into its sum-
mands. Since the order of the summands is relevant, it is the
case of composition of an integer n into all possible k parts, in
the form [25]:

n = r1 + r2 + · · · + rk, ri ≥ 0, i = 1, . . . , k. (11)

Due to a large number of possible compositions (see (12)),
an efficient iterative algorithm described in [26] is used to
generate all possible solutions:

Ncompositions =
(
n + k − 1

n

)
. (12)

In order to find an optimal composition of page height h into
k rows with heights h(i), i = 1, . . . , k, for every possible k ∈
[h/hmax,h], a number of frames per row η(i), i = 1, . . . , k is
calculated to satisfy the condition of even spread of the cost
function throughout the rows:

∀i,
η(i)∑
j=1

C( j) = 1
k

N∑
l=1

C(l). (13)

For each distribution of rows η(i), i = 1, . . . , k and a given
page width w, each row is laid out to minimise the differ-
ence between the achieved vector of frame sizes and the cor-
responding part of the cost function C(i). For each composi-
tion of η(i), a set of possible combinations of panel templates
is generated. The vector of template widths used to compose
a row has to fit the given composition, as well as the total
number of used frames has to be η(i). For all layouts that ful-
fill these conditions, the one that generates a vector of frame
sizes with minimal approximation error to the correspond-
ing part of the cost function is used to generate the row lay-
out. The final result is the complete page layout Θ(i) with the
minimal overall approximation error Δ, whereΔ is calculated
as given in (14):

Δ =
∑
∀i

C(i)−Θ(i). (14)
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5.3. Suboptimal solution using dynamic
programming

There have been numerous attempts to solve the problem
of discrete optimisation for spatio-temporal resources. In
our case, we need to optimally utilise the available two-
dimensional space given required sizes of images. However,
unlike many well-studied problems like stock cutting or bin
packing [27, 28], there is a nonlinear transformation layer of
panel templates between the error function and available re-
sources. In addition, the majority of proposed algorithms are
based on heuristics and do not offer an optimal solution.

Therefore, we propose a suboptimal solution using dy-
namic programming and we will show that the deviation of
achieved results from the optimal solution can be practically
disregarded. Dynamic programming finds an optimal solu-
tion to an optimisation problem min ε(x1, x2, . . . , xn) when
not all variables in the evaluation function are interrelated
simultaneously:

ε = ε1
(
x1, x2

)
+ ε2

(
x2, x3

)
+ · · · + εn−1

(
xn−1, xn

)
. (15)

In this case, solution to the problem can be found as an itera-
tive optimisation defined in (16) and (17), with initialisation
f0(x1) = 0:

min ε
(
x1, x2, . . . , xn

) = min fn−1
(
xn
)
, (16)

f j−1
(
xj
) = min

[
f j−2

(
xj−1

)
+ εj−1

(
xj−1, xj

)]
. (17)

The adopted model claims that optimisation of the overall
page layout error, given in (14), is equivalent to optimisation
of the sum of independent error functions of two adjacent
panels xj−1 and xj , where

εj−1
(
xj−1, xj

) = ∑
i∈{xj−1∪xj}

.
(
C(i)−Θ(i)

)2
. (18)

Although the dependency between nonadjacent panels is
precisely and uniquely defined through the hierarchy of the
DP solution tree, strictly speaking the claim about the in-
dependency of sums from (15) is incorrect. The reason for
that is a limiting factor that each row layout has to fit to re-
quired page width w, and therefore, width of the last panel in
a row is directly dependent upon the sum of widths of pre-
viously used panels. If the task would have been to lay out a
single row until we run out of frames, regardless of its final
width, the proposed solution would be optimal. Neverthe-
less, by introducing specific corrections to the error function
εj−1(xj−1, xj) the suboptimal solution often achieves optimal
results.

The proposed suboptimal panelling algorithm comprises
the following procedural steps:

(1) load all available panel templates xi,
(2) for each pair of adjacent panels:

(a) if panel heights are not equal, penalise;
(b) determine corresponding cost function values

C(i);

(c) form the error function table εj−1(xj−1, xj) as
given in (18);

(d) find optimal f j−1(xj) and save it;

(3) if all branches reached row width w, roll back through
optimal f j−1(xj) and save the row solution,

(4) if page height reached, display the page. Else, go to the
beginning.

Formulation of the error function table εj−1(xj−1, xj) in
a specific case when panel reaches the page width w, the fol-
lowing corrections are introduced:

(1) if current width wcurr > w, penalise all but empty pan-
els,

(2) if current width wcurr = w, return standard error func-
tion, but set it to 0 if the panel is empty,

(3) if current width wcurr < w, empty frames are penalised
and error function is recalculated for the row resized
to fit required width w, as given in (19):

εj−1
(
xj−1, xj

) =∑
i

(
C(i)− wcurr

w
·Θ(i)

)2

. (19)

In this context, penalising means assigning the biggest possi-
ble error value to εj−1(xj−1, xj) and w is the required page
width. Typically, normalised dimensions of the page, its
width w and height h, are determined from the cost function
and two values set by the user: expected number of frames
per page N and page aspect ratio R, as given in (20):

w =

√√√√√ 1
R

N∑
i=1

C(i)2, h =R ·w. (20)

This procedure generates a set of sequential displays
without any screen size limitation. In other words, this algo-
rithm targets application where the video summary is being
displayed on a computer screen or is being printed as a page
in video archive catalogue. In case of the small screen devices,
such as mobile phones or PDAs, this approach is not feasible.
The following section introduces an adaptation of the video
summarisation algorithm to small screen displays.

6. ADAPTING THE LAYOUT TOMOBILE DEVICES

For the video summarisation perspective, the main limita-
tion of mobile devices is in its small screen resolution, which
is often smaller than the original size of a single key frame
to be displayed. Therefore, a highly compact presentation is
required in order to enable browsing of the video archives
on a mobile device. This is achieved by displaying the most
salient regions of a key frame determined by the visual at-
tention modelling. In addition, knowing that on a screen a
mobile device can display only a few images, we need to in-
troduce a scheme to sequentially present the whole content
to the user.

6.1. Rapid serial visual presentation

In order to visually present a summary of the whole video se-
quence to the user, this work follows the idea of rapid serial
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visual presentation (RSVP), a technique that displays visual
information using a limited space in which each piece of in-
formation is displayed briefly in sequential order [29]. The
RSVP method proved to be especially interesting for video
summarisation [30]. We adopt the RSVP method that gen-
erates a spatial layout of presented content together with the
temporal sequencing. The proposed technique combines the
timing of the RSVP with the reaction time of the visual atten-
tion model to generate easily readable spatial layout of pre-
sented content in a novel and efficient way.

In a summary of work on RSVP interfaces [29] the two
main RSVP methods are defined: (i) one as a temporal se-
quencing of single images where each successive image dis-
places the previous one, a paradigmatic case of video fast-
forwarding or channel flipping called keyhole mode, and (ii)
the more interesting techniques that combine some sort of
spatial layout of images with the temporal sequencing. There
are four elaborated variants: carousel mode, collage mode,
floating mode, and shelf mode. These all incorporate some
form of spatio-temporal layout of the image frames that add
additional movement or displacement of the image content
as the presentation proceeds. In three of these four modes
(carousel, floating, and shelf), the images that are upcom-
ing in the sequence are revealed in the background before
moving to a more foreground position (or vice versa). In the
collage mode, the images appear and disappear as the focus
position cycles around the space [10].

Here, we have adopted the sequential display of spatially
combined images, where the temporal sequencing is being
driven by the time needed to attend the most salient dis-
played regions, while the spatial layout is determined by op-
timal utilisation of the display area.

6.2. Visual attentionmodel

Having extracted key frames from video data, salient image
regions are determined in order to optimise available display
space and show the most important image parts. In order to
achieve this, a model of bottom-up salient region selection is
employed [31]. This salient region selection algorithm esti-
mates the approximate extent of attended visual objects and
simulates the deployment of spatial attention in a biologi-
cally realistic model of object recognition in the cortex [32].
In our case, this model determines the visual attention path
for a given key frame and automatically selects regions that
can be visually attended in a limited time interval.

Initially, a set of early visual features, comprising nor-
malised maps of multiscale center-surround differences in
colour, intensity, and orientation space, is extracted for each
key frame, as presented in [19]. A winner-take-all (WTA)
neural network scans the saliency map for the most salient
location and returns the location’s coordinates. Finally, in-
hibition of return is applied to a disc-shaped region of fixed
radius around the attended location in the saliency map. Fur-
ther iterations of the WTA network generate a cascade of suc-
cessively attended locations in order of decreasing saliency.

Knowing the cascade of attended regions and reaction
time needed to attend them, a predefined parameter Tmax se-

lects a set ofN most important salient regions Ri, i = 1, . . . ,N
if TN < Tmax. In other words, we select the salient regions that
can be attended in a fixed time interval Tmax. Afterwards, a
Gaussian distribution is fitted to a union set of the saliency
regions R = ⋃N

i=1 Ri, as given in (21):

Γ j(x, y) = e−((x−μx j /σx j )2+(y−μy j /σy j )2). (21)

The Gaussian parameters 〈μx j , σx j ,μy j , σy j〉 are determined
for each key-frame j defining the location and size of their
most important parts. This information is later utilised in
the layout algorithm. The RSVP timing is calculated as a sum
of time intervals Tmax for all key frames in the layout.

6.3. Layout algorithm

After determining the Gaussian parameters 〈μx j , σx j ,μy j , σy j〉
of the most relevant image region for each key-frame j, the
objective is to lay out selected salient image parts in an opti-
mal way for a given display size.

There have been numerous attempts to solve the problem
of discrete optimisation for spatio-temporal resources [27].
In our case, we need to utilise the available two-dimensional
space given the sizes of salient image regions. However, un-
like many well-studied problems like stock cutting or bin
packing [28], there is a requirement to fit the salient image
regions into a predefined area in a given order. In addition,
the majority of proposed algorithms are based on heuristics
and do not offer an optimal solution.

Therefore, we propose an optimal solution using dy-
namic programming that is a modification of the algorithm
given in Section 5. Just as before, we claim that optimisation
of the overall layout error is equivalent to optimisation of the
sum of independent error functions of two adjacent images
xj−1 and xj . In our case, the error function is defined as a sum
of parts of Gaussians that fell outside of display boundaries
(h,w) in a given layout. Knowing the overall sum of Gaus-
sians, given in (22), and the sum of the parts within the dis-
play boundaries, given in (23), the error function for two ad-
jacent images is defined in (24):

γj =
∑ ∑

∀x,y

Γ j(x, y) = πσ
j
xσ

j
y , (22)

δj =
w∑
x=1

h∑
y=1

Γ j(x, y), (23)

εj−1
(
xj−1, xj

) = γj + γj−1 − δj − δj−1. (24)

The search domain for each pair of Gaussians {Γ j ,Γ j+1} com-
prises uniformly quantised locations of the secondary Gaus-
sian Γ j+1 rotated around the primary Gaussian Γ j . The dis-
tance between the centres of Γ j and Γ j+1 is quantised so that
the ellipses E j := {Γ j = const .} have their semiaxes as
follows:

aj =
√

2 ·K · σx,

bj =
√

2 ·K · σy ,

K ∈ {Kopt − 1, Kopt, Kopt + 1
}
.

(25)
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t j

r j

Ej

r j+1 t j+1

Ej+1

Figure 5: Definition of the search domain parameters. The relative
position of centre of the secondary ellipse is determined from the
condition that the two tangents coincide.

The optimal value Kopt is determined from hand-labelled
ground truth, as explained in detail in Section 7.

Locus of the centre of the ellipse E j+1(x, y) relative to the
centre of E j(x, y), as depicted in Figure 5, is derived from the
condition that the two ellipses touch, that is their tangents
coincide:

xr
(
t j , K

) = aj · cos
(
t j
)

+ aj+1 · cos
(
t j+1

)
,

yr
(
t j , K

) = bj · sin
(
t j
)

+ bj+1 · sin
(
t j+1

)
,

t j+1 = arctan
(
aj · bj+1

aj+1 · bj
tan

(
t j
))

.

(26)

The rotation angle t ∈ [−3π/4,π/4] is uniformly quantised
into 9 values, eliminating the possibility of positioning new
salient region above or to the left of the previous one.

The dependency between nonadjacent images is precisely
and uniquely defined through the hierarchy of the DP so-
lution tree and there is no limitation of the boundary ef-
fect described in detail in [33]. Therefore, the solution to
the discrete optimisation of layout driven by parameters
〈μx j , σx j ,μy j , σy j〉 and the display size (h,w) is practically op-
timal.

The proposed layout algorithm comprises the following
procedural steps:

(1) determine Gaussian parameters 〈μx j , σx j ,μy j , σy j〉 for
all images,

(2) for each pair of adjacent images:

(a) determine corresponding cost function values
C(i);

(b) form the error function table εj−1(xj−1, xj) as
given in (18);

(c) find optimal f j−1(xj) and save it;

(3) if all DP tree branches exploited all available images,
roll back through the path with minimal overall cost
function f .

This procedure finds the optimal fit for saliency regions
described by a Gaussian with parameters 〈μx j , σx j ,μy j , σy j〉.
The final step is to determine the rectangular boundaries for
image cropping given the optimal fit. This is done by finding
the intersection of each pair of Gaussian surfaces Γ1,Γ2, and
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Figure 6: Locating the cropping points at intersection of two Gaus-
sian surfaces Γ1 and Γ2 and the Ψ plane defined by two center points
(μx1,μ

y
1 ) and (μx2,μ

y
2 ).

Table 2: Key-frame extraction evaluation results compared to hand
labelling ground truth.

X G N B S Pr1[%] Pr2[%]

T01000.mov 52 121 23 14 210 93.5 93.3

T01002.mov 10 129 32 42 213 73.6 80.3

a plane Ψ (see Figure 6) through their centre points normal
to xy plane, defined by (27):

Ψ : y = μy1 +
(
x − μx1

)μy2 − μy1

μx2 − μx1
. (27)

The intersection Γ1 ∩ Γ2 ∩ Ψ is the minimum value on the
shortest path between two centres on a surface Γ1 ∪ Γ2. The
optimal cropping is calculated for all N images on the page,
generating N(N − 1)/2 possible cropping rectangles. The
cropping that maximises the value of overall sum within dis-
play boundaries Ω, given in (28), is applied:

Ω =
N∑
j=1

w∑
x=1

h∑
y=1

Γ j(x, y). (28)

Finally, the source images are cropped, laid out, and dis-
played on the screen. A number of generated layouts is pre-
sented in the following section.

7. RESULTS

The experiments were conducted on a large video archive of
wildlife rushes, a collection available as a part of the ICBR
project [34]. Approximately 12000 hours of digitised footage
have been indexed with shot boundary metadata used by the
key-frame extraction module. First of all, we present evalu-
ation of the key-frame extraction algorithm, followed by ex-
perimental results of both layout algorithms.
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Figure 7: An example of row layout Θ(i) generated by the DP algo-
rithm, compared to the cost function C(i).

Table 3: Approximation error Δ as function of maximum row
height hmax and number of frames on a page N , expressed in [%].

hmax \N 40 80 120 160 200 240

1 6.40 3.92 3.42 2.81 2.58 2.34

2 2.16 1.83 1.65 1.61 1.39 1.46

3 2.24 2.02 1.81 1.53 1.32 1.43

4 2.67 2.17 1.68 1.65 1.31 1.28

7.1. Evaluation of key-frame extraction

The evaluation of the key-frame extraction algorithm is un-
dertaken by comparing achieved results to the hand-labelled
ground truth. Two video clips with approximately 90 min-
utes of wildlife rushes from the ICBR database were labelled
by a production professional, annotating the good (G), bad
(B), and excellent (X) regions for a potential location of the
key frame. In order to numerically evaluate the quality of the
first version, two precision measures were defined as follows:

Pr
1,2
= D1,2(

D1,2 + B
) ,

D1 = 2∗ X + G−N,

D2 = X + G + N.

(29)

The value D1 incorporates the higher importance of excel-
lent detections and penalise detections that fell into the unla-
belled regions (N), while D2 takes into account only the frac-
tion of key-frame locations that did not fall within regions la-
belled as bad. The precision results for the two hand-labelled
tapes with S shots are given in Table 2.

7.2. Panelling results

In order to evaluate the results of the DP suboptimal pan-
elling algorithm, results are compared against the optimal so-
lution, described in Section 5.2. An example of a single-row
layout approximation is depicted in Figure 7, comparing the
desired cost function C(i) with achieved values of frame sizes
Θ(i).

Results in Table 3 show dependency of the approxima-
tion error defined in (30) for two main algorithm parame-

Table 4: Approximation error Δ using optimal algorithm for given
hmax and N , expressed in [%].

Δoptimal

∣∣ΔDP − Δoptimal

∣∣
hmax \N 40 80 120 40 80 120

1 6.40 3.92 3.42 0.00 0.00 0.00

2 1.87 1.57 1.45 0.29 0.26 0.20

3 2.05 1.34 1.81 0.19 0.68 0.00

4 2.21 1.62 1.60 0.39 0.55 0.08

Figure 8: A page layout for parameters N = 40 and R = 1.2.

ters: maximum row height hmax and number of frames on a
page N :

Δ = 1
N · hmax

√√√√√
N∑
i=1

(
C(i)−Θ(i)

)2
. (30)

As expected, error generally drops as both hmax and N rise.
By having more choices of size combinations for panel tem-
plates with larger hmax, the cost function can be approxi-
mated more accurately. In addition, the effect of higher ap-
proximation error due to the fixed page width, that results
in suboptimal solution of the DP algorithm, has less impact
as number of frames per page N , and thus page width w,
rises. On the other hand, the approximation error rises with
hmax for lower values of N , due to a strong boundary effect
explained in Section 5.3.

The first three columns of Table 4 show approximation
error of the optimal method, while the other three columns
show absolute difference between errors of the optimal and
suboptimal solutions. Due to a high complexity of the opti-
mal algorithm, only page layouts with up to 120 frames per
page have been calculated. As stated in Section 5.3, the overall
error due to the suboptimal model is on average smaller than
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Figure 9: A page layout for parameters N = 250 and R = 1/3.

0.5% of the value of cost function. Therefore, the error can
be disregarded and this result shows that incomparably faster
suboptimal solution achieves practically even results with the
optimal method. The optimal algorithm lays out 120 frames
on a page in approximately 30 minutes, while the subopti-
mal algorithm does it in a fraction of a second on a standard
desktop PC (Pentium 4, 2.4 GHz with 1 GB RAM).

An example of a page layout with parameters N = 40 and
R = 1.2 is depicted in Figure 8. It shows how intuitive and
swift the browsing of a 10 minute sequence can be. An hour
of the raw video material is summarised in 7 comprehensi-
ble pages, with a possibility for a production professional to
flip through the content of an archive and get familiar with
the available content, from the desired topical takes to unex-
pected creative flashes and cutaways. In addition, summary
of a 1 hour long tape with parameters N = 250 and R = 1/3
is presented in Figure 9. It demonstrates how quickly an end-
user, whether professional or not, can become familiar with
not only the major characteristics, but as well some impor-
tant details about the content of the tape.

7.3. Results of the layout formobile devices

In order to evaluate results of the salient region extraction,
a set of key frames from wildlife videos is hand labelled
with the most representative regions. By doing this, an ob-
jective measure of high-level abstraction and representation
of analysed content is determined. Firstly, a collection of ap-
proximately 200 key frames extracted randomly from a large
wildlife video archive is sequentially presented to an expert
user. The user marks a single rectangular image region, that
he/she considers as the most relevant and would most appro-
priately represent the image in the final layout.

These results were compared to automatically deter-
mined cropping region 〈μx j ±K · σx j ,μy j ±K · σy j〉, where
K ∈ [0, 4]. As depicted in Figure 10, if the hand-labelled
ground truth was marked as Agrt and the automatically es-
timated salient image regions Aest, the overlapping area-
labelled TP was considered as true positive detection, FN as

Agrt

Aest

FP

TP

FN

Figure 10: Comparison of the hand-labelled ground truth Agrt and
automatically estimated salient image regions Aest.

false negative, while FP counts as the false positive detection.
Thus, we can define measures of precision P and recall R as

R = TP

TP + FN
,

P = TP

TP + FP
.

(31)

Both measures are calculated for values of K ∈ [0, 4], and
the resulting ROC curve is given in Figure 11. At the knee
point of the graph in Figure 11, a balance of false positives
and false negatives is achieved. For values of K < Kopt, some
salient regions are left outside the estimated cropped region,
while for K > Kopt more nonsalient image regions are in-
cluded.

To determine the optimal value of the parameter K , we
located the maximum of the F-measure (or harmonic mean)
of the precision and recall values F = 2 · R · P/(R + P),
as depicted in Figure 12. As expected, the optimal value
Kopt = 2.06 is located exactly at the knee point of the ROC
curve. The corresponding values of the precision and recall
are P(Kopt) = 0.75 and R(Kopt) = 0.89, respectively.
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Figure 11: ROC curve of the image cropping procedure.
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Figure 12: Finding optimal parameter K from the hand-labelled
ground truth.

In Figure 13 a set of source key frames with overlayed
rectangular cropping regions 〈μx j±Kopt·σx j ,μy j±Kopt·σy j〉
are depicted. The maximal time reaction parameter Tmax is
empirically set to 300 milliseconds. The results show excel-
lent selection of regions chosen by the attention model, espe-
cially knowing that the algorithm has been designed to oper-
ate in a fully unsupervised manner.

Two examples of the final layouts adapted for small
screen devices are depicted in Figure 14. One can observe
that the layouts do convey major features of the content and
its semantics, whilst maintaining dense packing of the im-
ages on a small size screen. This method runs in real-time on
a standard PC configuration, allowing for live production of
summaries while the video is being played or broadcasted.

8. CONCLUSION

This paper presents a video summarisation and browsing al-
gorithm that produces compact summaries for both high-
end production environments as well as mobile devices. The
system exploits the narrative structure of comics using well-

Figure 13: Examples of key-frame cropping using visual attention
modelling for the optimal value of the parameter K . The rectangu-
lar region displayed is 〈μx j ±Kopt · σx j , μy j ±Kopt · σy j〉.

(a) (b)
Figure 14: Final screen layouts of salient key-frame regions. High
density of semantically important information is observable, thus
delivering relevant visuals in a highly compact way.

known intuitive rules, creating visual summaries in an effi-
cient and user-centered way.

A robust real-time key-frame extraction algorithm ex-
ploits production rules to select the best visual representation
for a given shot. The results are evaluated by comparing them
with the ground truth that was manually labelled by produc-
tion professionals. The importance of key frames in the final
layout is prioritised utilising a novel approach that balances
the dominant visual representability and discovery of unan-
ticipated content utilising a specific cost function and an un-
supervised robust spectral clustering technique. Frames with
higher importance are displayed larger in the final layout.

The final layout targeting high-end production tools are
generated using an efficient optimisation algorithm based
on dynamic programming. The results of the optimisation
are benchmarked against the optimal solution and proved
to be practically identical. From the results presented, one
can observe that the approximation error introduced by the
suboptimal solution is insignificant, whilst the processing is
much faster, enabling real-time interaction with a long video
sequence. A summary of an hour long video, comprising 250
shots, can be browsed swiftly and easily, while the creative
process of finding interesting as well as representative content
is significantly augmented using the comic-like layout.

On the other hand, the system targeting mobile users ap-
plies intelligent image cropping driven by the visual attention
model. This algorithm shows excellent results in conveying
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semantics as well as appearance of the summarised content.
Finally, the layout algorithm that utilises dynamic program-
ming achieves a high density of relevant information dis-
played on a small size screen. The results show high precision
and recall of the image cropping results evaluated against
hand-labelled ground truth.

Future work will be directed towards an extension of the
summarisation algorithm towards interactive representation
of visual content. Having the potential to create layouts on
various types of displays and a fast system response, this al-
gorithm could be used for interactive search and browsing
of large video and image collections. In addition, a set of
high-level rules of comics grammar [2] will be learned and
exploited to improve representation of time in such a space
constrained environment.
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[34] J. Ćalić, N. W. Campbell, A. Calway, et al., “Towards intelli-
gent content based retrieval of wildlife videos,” in Proceedings
of the 6th International Workshop on Image Analysis for Multi-
media Interactive Services (WIAMIS ’05), Montreux, Switzer-
land, April 2005.
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