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We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing
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are important in a practical time-varying communication environment.
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1. INTRODUCTION

Generalized eigendecomposition has extensive applications
in modern signal processing areas, for example, pattern
recognition [1, 2], and signal processing for wireless com-
munications [3, 4]. Many efficient adaptive algorithms have
been proposed for principal component analysis [5–7],
which is a special case of generalized eigendecomposition.
However, developing efficient adaptive algorithms for gen-
eralized eigendecomposition has not been addressed so far.
This paper aims to propose a novel adaptive online algorithm
for generalized eigendecomposition.

Consider the matrix pencil (Ry ,Rx), where Ry and Rx are
M ×M Hermitian and positive-definite matrices. A scalar λ
andM × 1 vector w that satisfy [8, 9]

Ryw = λRxw (1)

are called the generalized eigenvalue and corresponding gen-
eralized eigenvector of matrix pencil (Ry ,Rx), respectively. In
this paper, we are interested in finding the generalized eigen-
vector corresponding to the largest eigenvalue.

Many numerical methods have been presented for
the generalized eigendecomposition problem [8]. However,
these methods are inefficient in a nonstationary signal envi-
ronment, since they are computationally intensive and be-

long to the class of batch processing methods. For practi-
cal signal processing applications, an adaptive online algo-
rithm is preferred, especially in a nonstationary signal envi-
ronment. Chatterjee et al. have presented an online gener-
alized eigendecomposition algorithm for linear discriminant
analysis (LDA) [10]. However, this algorithm as well as those
in [11, 12] are based on the gradient method, and their per-
formance is largely determined by the step size, which is diffi-
cult to select in a practical application. To overcome these dif-
ficulties, Rao et al. apply a fixed-point algorithm to solve the
generalized eigendecomposition problem [13]. The result-
ing RLS-like algorithm is proven to be more computation-
ally feasible and faster than most of the gradient methods.
Recently, by using the recursive least-square learning rule,
Yang et al. develop fast adaptive algorithms for the gener-
alized eigendecomposition problem [14]. Besides RLS tech-
niques, the Newton method is also a well-known powerful
technique in the area of optimization. By constructing a cost
function based on the penalty functionmethod, Mathew and
Reddy develop a quasi-Newton adaptive algorithm for es-
timating the generalized eigenvector corresponding to the
smallest generalized eigenvalue [9]. However, this method
suffers from the difficulty of selecting an appropriate penalty
factor, which requires its priori information of the covariance
matrices, which is unavailable in most applications. As a re-
sult, this will affect the learning performance. In addition, for
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many applications, the generalized eigenvector correspond-
ing to the largest eigenvalue is desired.

In this paper, motivated by the work of Mathew and
Reddy [9], we develop an efficient adaptive modified Newton
algorithm to track the adaptive principal generalized eigen-
vector. The basic idea is that we reformulate the general-
ized eigendecomposition problem as minimizing an uncon-
strained nonquadratic cost function that has a unique global
minimum and no other local minima, and then apply an ap-
propriate Hessian matrix approximation to derive an adap-
tive modified Newton algorithm. The resulting algorithm is
numerically robust nomatter whether it is implemented with
infinite or finite precision. We also illustrate its application
by using it to solve an adaptive signal reception problem in a
multicarrier DS-CDMA (MC-DS-CDMA) system [15].

The rest of the paper is organized as follows. In Section 2,
we formulate the adaptive signal reception problem in an
MC-DS-CDMA system as the principal generalized eigenvec-
tor estimation problem, to show the importance of the gener-
alized eigendecomposition technique. In Section 3, the gen-
eralized eigendecomposition problem is reinterpreted as a
nonlinear optimization problem, and a robust adaptivemod-
ified Newton algorithm is developed to estimate the princi-
pal generalized eigenvector. The convergence property of the
proposed algorithm is also discussed. In Section 4, we present
numerical simulation results to show the performance of the
proposed algorithm. Conclusions are drawn in Section 5.

2. GENERALIZED EIGENDECOMPOSITION
APPLICATION

In this section, we show that it is possible to formulate the
signal reception problem in amulticarrier DS-CDMA system
[16] as a generalized eigendecomposition problem.

2.1. Signal model of MC-DS-CDMA system

Consider an MC-DS-CDMA system with K simultaneous
users. Each one uses the same M carriers. The kth user, for
1 ≤ k ≤ K , generates a data sequence:

b(k) = { . . . , b(k)0 , b(k)1 , b(k)2 , . . .
}

(2)

with a symbol interval of T seconds. We assume that the data

symbols b(k)j are independent variables with E[b(k)j ] = 0 and

E[|b(k)j |] = 1.
The kth user is provided a randomly generated signature

sequence:

a(k) = { . . . , a(k)0 , a(k)1 , . . . , a(k)G−1, . . .
}
, (3)

where G is the spreading gain and the elements a(k)i are mod-
elled as independent and identically distributed (i.i.d.) ran-

dom variables such that Pr(a(k)i = −1) = Pr(a(k)i = 1) = 1/2.
The sequence a(k) is used to spectrally spread the data sym-
bols to form the signal [15]

ak(t) =
∞∑

i=−∞
b(k)�i/G�a

(k)
i ψ

(
t − iTc

)
, (4)

where �x� denotes the largest integer less than or equal to x,
the chip interval Tc is given by Tc = T/G, G is the number
of chips per symbol interval, and ψ(t) is the common chip
waveform for all signals. We assume that the chip waveform
ψ(t) is bandlimited, such as the square-root raised-cosine
pulse [17], and normalized so that

∫∞
−∞ ‖ψ(t)‖2dt = Tc.

Assume a slowly time-varying frequency-selective Ray-
leigh fading channel. Following the approach [16], by suit-
ably choosing M and the bandwidth of ψ(t), we can assume
that each carrier experiences slowly varying flat fading. Then,
the received signal in complex form is given by [18]

r(t) =
K∑

k=1

M∑

m=1

√
2Pkαk,me jωmt

·
[ ∞∑

i=−∞
b(k)�i/G�a

(k)
i ψ

(
t − iTc − τk

)
]

+ n(t),

(5)

where ωm is the frequency of the mth carrier, αk,m accounts
for the overall effects of phase shifts and fading for the mth
carrier of the kth user, Pk and τk ∈ [0,T) represent the power
for each carrier of the transmitted signal and the delay of the
kth user signal, respectively, and n(t) denotes additive white
Gaussian noise.

Without loss of generality, throughout the paper we will
consider the signal from the first user as the desired signal
and the signals from all other users as interfering signals. As-
sume that synchronization has been achieved with the trans-
mitted signal of the desired user. Therefore, the delay of the
desired signal τ1 can be taken to be zero. In order to avoid
interchip interference for the desired signal when it is chip-
synchronous, the waveform is chosen to satisfy the Nyquist
criterion. Then the input signal to the first PN correlator (fin-
ger) associated with themth carrier is written as

xm[g] = 1
Tc

∫∞

−∞
r(t)ψ∗

(
t − gTc

)
e− jωmtdt

= √2P1α1,mb(1)�g/G�a(1)g +
K∑

k=2
ik,m[g] + nm[g],

(6)

where g is the chip index, nm[g] denotes the component due
to AWGN, and

ik,m[g] =
√
2Pkαk,m

∞∑

i=−∞
b(k)�i/G�a

(k)
i Rψ

[
(g − i)Tc − τk

]
(7)

is the component due to the kth user signal, 2 ≤ k ≤ K . The
function Rψ(·) is the autocorrelation of the chip waveform
defined by

Rψ(t) = 1
Tc

∫∞

−∞
ψ(s)ψ∗(s− t)ds. (8)

The input signal vector can be written as

x[g] = [x1[g], x2[g], . . . , xm[g]
]T

= h1b
(1)
�g/G�a

(1)
g +

K∑

k=2
hk

∞∑

i=−∞
b(k)�i/G�a

(k)
i

· Rψ
[
(g − i)Tc − τk

]
+ n[g],

(9)
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where hk = [
√
2Pkαk,1, . . . ,

√
2Pkαk,m]T , 1 ≤ k ≤ K , and

n[g] = [n1[g],n2[g], . . . ,nM[g]]T is a zero-mean Gaussian
random vector with covariance σ2I.

Then, the output signal of the first PN correlator to ex-
tract the signal at themth carrier can be written as

ym[n] = 1√
G

G−1∑

l=0
a(1)l+Gnxm[Gn + l] (10)

and the output signal vector can be expressed as

y[n] = [y1[n], y2[n], . . . , yM[n]
]T

= h1
√
Gb(1)n +

K∑

k=2
hk

1√
G

G−1∑

l=0
a(1)l+Gn

∞∑

i=−∞
b(k)�i/G�

· a(k)i Rψ
[
(l +Gn− i)Tc − τk

]
+ n1[n],

(11)

where

n1(n) = 1√
G

G−1∑

l=0
a(1)l+Gnn[l +Gn] (12)

is the noise component with E{n1[n]nH
1 [n]} = σ2I. The re-

ceived signal vectors x[g] and y[n] are referred to as un-
despreaded and despreaded received signal vectors of the de-
sired user.

2.2. MSINR signal reception problem

From (11), the despreaded signal vector can be rewritten as

y[n] = s[n] + u[n], (13)

where s[n] = h1
√
Gb(1)[n] denotes the desired signal vector, and

u[n] is the undesired signal vector.
The optimal weight vector under the MSINR perfor-

mance criterion can be found as [15]

wMSINR = argmax
w

wHRsw
wHRuw

, (14)

where Rs = E{s[n]sH[n]} and Ru = E{u[n]uH[n]} are the
covariance matrices of the desired and undesired signals, re-
spectively. It is obvious that the optimal weight vectorwMSINR

is the generalized eigenvector corresponding to the maxi-
mum generalized eigenvalue of the matrix pencil (Rs,Ru),
that is,

RswMSINR = λmaxRuwMSINR, (15)

where λmax is themaximum generalized eigenvalue. Unfortu-
nately, because s[n] and u[n] cannot be separately obtained
from the received signal y[n], it seems difficult to obtain
wMSINR from (14). In the following, we will propose an im-
proved criterion equivalent toMSINR to overcome the above
difficulty.

According to (9) and (11), after some calculations, the
autocorrelation matrices Rx = E{x[g]xH[g]} and Ry =
E{y[n]yH[n]} are given by, respectively,

Rx = h1hH1 +
K∑

k=2
hkhHk

∞∑

i=−∞

∥∥Rψ
(
iTc − τk

)∥∥2 + σ2I,

Ry = Gh1hH1 +
K∑

k=2
hkhHk

∞∑

i=−∞

∥
∥Rψ

(
iTc − τk

)∥∥2 + σ2I.

(16)

Hence, we have

Rx = 1
G
Rs + Ru,

Ry = Rs + Ru.
(17)

Let us consider the following function:

f (w) = wHRyw

wHRxw
= G− G− 1

γ/G + 1
, (18)

where

γ = wHRsw
wHRuw

(19)

for any w except for wHRuw = 0. If Ru is full rank, this func-
tion is valid for any w 
= 0. According to (18), we can see that
if G > 1, the weight vector w that maximizes f (w) eventu-
ally maximizes γ. Therefore, the optimal weight vector can
be found as

wMSINR = argmax
w

wHRyw

wHRxw
. (20)

Hereby, estimating the MSINR weight vector from (20) in-
stead of (14), we do not need to know or estimate the co-
variance matrices of s[n] and u[n], which are basically not
available at the receiving end. Obviously, this is the problem
of estimating the principal generalized eigenvector from two
observed sample sequences y[n] and x[g].

3. ROBUST ADAPTIVEMODIFIED NEWTON
ALGORITHM FOR GENERALIZED
EIGENDECOMPOSITION

To solve a class of signal processing problems similar to that
in Section 2, we construct a novel unconstrained cost func-
tion. Then, starting from this cost function, a robust mod-
ified Newton algorithm is derived. Its convergence is rigor-
ously analyzed by using stochastic approximation theory.

3.1. Generalized eigendecomposition problem
reinterpretation

Let λi and ui (1 ≤ i ≤ M) be the generalized eigenvalue and
the corresponding Rx-orthonormalized generalized eigen-
vector of the matrix pencil (Ry ,Rx), that is, [9]

Ryui = λiRxui,

uHi Rxu j = δi j ,
(21)

where δi j is the Kronecker delta function.
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Consider the following nonlinear scalar cost function:

J(w) = wHRxw − ln
(
wHRyw

)
. (22)

As will be shown next, this is a novel criterion for the gen-
eralized eigendecomposition problem. In the following the-
orem, we assume that the maximum generalized eigenvalue
of (Ry ,Rx) has multiplicity 1. The case when the multiplicity
of the maximum generalized eigenvalue is larger than 1 will
be discussed later.

Theorem 1. Let λ1 > λ2 ≥ · · · ≥ λM > 0 be the generalized
eigenvalues of the matrix pencil (Ry ,Rx). Then w = u1 is the
unique global minimal point of J(w) and the others are saddle
points of J(w).

Proof. See Appendix A.

Theorem 1 shows that if the maximum generalized ei-
genvalue has multiplicity 1, J(w) has a global minimum and
no other local minima, and global convergence is guaranteed
when one seeks the Rx-orthonormalized generalized eigen-
vector corresponding to the maximum generalized eigen-
value of (Ry ,Rx) by iterative methods. When the multiplic-
ity of the maximum generalized eigenvalue is more than 1,
there are some local minima. Hence, the iterative algorithm
will converge to one of these local minima. Nevertheless, it
is not a hindrance for one to seek the principal generalized
eigenvector, because these local minima themselves are the
Rx-orthonormalized generalized eigenvectors corresponding
to the maximum generalized eigenvalue. Therefore, the prin-
cipal generalized eigenvector estimation problem can be re-
formulated as the following unconstrained nonlinear opti-
mization problem:

min
w

J(w). (23)

3.2. Adaptivemodified Newton algorithm derivation

The Hessian matrix of J(w) with respect to w is derived in
Appendix A as

H = Rx − Ry
(
wHRyw

)−1
+
(
wHRyw

)−2
RywwHRy. (24)

In order to simplify the Hessian matrix, we drop the second
term on the right-hand side of (24). Therefore, an approxi-
mation to the Hessian matrix can be written as:

H̃ = Rx +
(
wHRyw

)−2
RywwHRy. (25)

The inverse Hessian matrix is given by

H̃−1 = R−1x − R−1x RywwHRyR−1x
(
wHRyw

)2
+wHRyR−1x Ryw

. (26)

Then the modified Newton algorithm for updating the
weight vector w[n + 1] can be written as

w[n + 1] = w[n]− [H̃−1∇J(w)]∣∣w=w[n]
= 2R−1x RywwHRyw
(
wHRyw

)2
+wHRyR−1x Ryw

∣
∣∣
∣
w=w[n]

.
(27)

Remark 2. In the derivation of the updating rule (27), we
approximate the Hessian matrix H by dropping a term so
as to make the Hessian matrix H̃ positive definite, and con-
sequently make the resultant algorithm more robust, since
for stabilizing the Newton-type algorithms it is necessary to
guarantee that the Hessian matrix is positive definite. Al-
though the approximation causes the resultant Hessian ma-
trix to deviate from the true Hessian matrix, as shown in
Section 4, the derived algorithm (27) can asymptotically con-
verge to the principal generalized eigenvector of the matrix
pencil (Ry ,Rx). In addition, the numerical simulation results
show that the approximation has little influence on conver-
gence speed and estimation accuracy. Therefore, the approx-
imation is a reasonable step in developing the adaptive mod-
ified Newton algorithm.

We apply the following equations to recursively estimate
Rx and Ry :

Rx[n + 1] = μRx[n] + x[n + 1]xH[n + 1], (28)

Ry[n + 1] = βRy[n] + (1− β)y[n + 1]yH[n + 1], (29)

where 0 < μ, β < 1 are the forgetting factors.
Let P[n + 1] = R−1x [n + 1]. Then we get

P[n + 1] = 1
μ
P[n]

(
I− x[n + 1]xH[n + 1]P[n]

μ + xH[n + 1]P[n]x[n + 1]

)
.

(30)

Postmultiplying both sides of (29) with w[n], we have

Ry[n + 1]w[n] = βRy[n]w[n]

+ (1− β)y[n + 1]yH[n + 1]w[n].
(31)

Applying the projection approximation [5] yields

r[n + 1] = Ry[n + 1]w[n + 1] ≈ Ry[n + 1]w[n]. (32)

Then (31) can be rewritten as

r[n + 1] = βr[n] + (1− β)y[n + 1]c∗[n + 1], (33)

where c[n+1] = wH[n]y[n+1]. In addition, we define d[n+
1] = wH[n]Ry[n+1]w[n]. Then according to (29) we obtain

d[n + 1] = βd[n] + (1− β)c∗[n + 1]c[n + 1]. (34)

Let

w̃[n + 1] = Ry[n + 1]w[n]

wH[n]Ry[n + 1]w[n]
(35)

so that the update rule of w[n + 1] can be rewritten as

w[n + 1] = 2P[n + 1]w̃[n + 1]
1 + w̃H[n + 1]P[n + 1]w̃[n + 1]

. (36)
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Thus, the adaptive modified Newton algorithm can be sum-
marized as

P[n + 1] = 1
μ
P[n]

(
I− x[n + 1]xH[n + 1]P[n]

μ + xH[n + 1]P[n]x[n + 1]

)
,

c[n + 1] = wH[n]y[n + 1],

r[n + 1] = βr[n] + (1− β)y[n + 1]c∗[n + 1],

d[n + 1] = βd[n] + (1− β)c[n + 1]c∗[n + 1],

w̃[n + 1] = r[n + 1]
d[n + 1]

,

w[n + 1] = 2P[n + 1]w̃[n + 1]
1 + w̃H[n + 1]P[n + 1]w̃[n + 1]

.

(37)

The simplest way to choose the initial values is to set P[0] =
η1I, w[0] = r[0] = η2[1 0 · · · 0]T , and d[0] = η3, where
ηi (i = 1, 2, 3) are appropriate positive values. During deriv-
ing the algorithm (37), we have adopted the projection ap-
proximation approach [5]. The rationality of using projec-
tion approximation has been concretely explained in [5]. In
this paper, the numerical results show that using the projec-
tion approximation has little impact on the performance of
the proposed algorithm.

Note that the update step for P[n] involves subtraction.
Hence, the numerical error may cause P[n] to lose the Her-
mitian positive definiteness, while P[n] is theoretically Her-
mitian positive definite. An efficient and robust way is to ap-
ply the QR-updatemethod to calculate the square rootmatri-
ces P1/2[n] [19]. Because P[n] = P1/2[n]PH/2[n], the Hermi-
tian positive definiteness remains regardless of any numerical
error.

3.3. Convergence analysis

In this section, we apply the stochastic approximation
method, which is developed by Ljung [20], and Kushner and
Clark [21], to analyze the convergence property of the pro-
posed algorithm based on updating rule (27). According to
the stochastic approximation theory, a deterministic ordi-
nary differential equation (ODE) can be associated with the
recursive stochastic approximation algorithm, and the con-
vergence of the algorithm can be studied in terms of this dif-
ferential equation.

The ordinary differential equation corresponding to the
proposed algorithm based on updating rule (27) can be writ-
ten as

dw(t)
dt

= 2R−1x Ryw(t)wH(t)Ryw(t)
(
wH(t)Ryw(t)

)2
+wH(t)RyR−1x Ryw(t)

−w(t).

(38)

We have the following theorem to demonstrate the conver-
gence of w(t).

Theorem 3. Given the matrix pencil (Ry ,Rx), whose largest
generalized eigenvalue λ1 has multiplicity 1, and assuming that

uH1 Rxw(0) 
= 0, then the ODE (38) has a global asymptoti-
cally stable equilibrium state at (λ1, γu1), where γ is a constant
complex number with norm ‖γ‖ = 1.

Proof. See Appendix B.

Note that if ‖γ‖ = 1, γu1 is also the Rx-orthornormalized
generalized eigenvector corresponding to the maximum gen-
eralized eigenvalue of (Ry ,Rx). Theorem 3 also shows that al-
though we approximate the Hessian matrix when deriving
the updating rule (27), the resultant algorithm can asymp-
totically converge to the principal generalized eigenvector.

4. SIMULATIONS

In this section, we apply the proposed algorithm to the signal
reception problem in multicarrier DS-CDMA, and perform
numerical simulation to investigate its performance. For each
run, the proposed algorithm in this paper, the direct eigen-
decomposition method, the TTJ algorithm [15], and sam-
plematrix/iterative (SMIT) [12] are implemented simultane-
ously in the simulations. The data in each plot is the average
over 100 independent runs.

We consider a K-user asynchronous MC-DS-CDMA sys-
tem ofM = 12 carriers with processing gainG = 32. The sys-
tem uses a square-root raised-cosine chip pulse with roll-off
factor of 0.8 [17]. It is customary to truncate ψ(t) such that it
spans only several chips [18], and we assume that the dura-
tion of the pulse is 4Tc. Throughout this section, the signal-
to-noise ratio (SNR) of the desired user is fixed at 20 dB.

To evaluate the convergence speed and the estimate ac-
curacy, the direction cosine and the normalized projection
error (NPE) [22] are defined, respectively, as

direction cosine =
∥
∥wH(k)wMSINR

∥
∥

∥
∥w(k)

∥
∥
∥
∥wMSINR

∥
∥ ,

NPE = 1−
( ∥∥wH(k)wMSINR

∥
∥

∥
∥w(k)

∥
∥
∥
∥wMSINR

∥
∥

)2
,

(39)

where wMSINR is the theoretically optimal combining weight
vector and can be computed by [23]

wMSINR = R−1u h1. (40)

We use the MSINR performance to assess the MAI sup-
pression capability of the proposed algorithm. The expres-
sion for calculating the SINR at the nth iteration is given by

SINR(n) = 10 log
wH[n]Rsw[n]
wH[n]Ruw[n]

. (41)

The proposed algorithm starts with initial values r[0] =
w[0] = [1 0 · · · 0]T , d[0] = 1, P[0] = 0.01I, μ = 0.995,
and β = 0.8. For the direct eigendecomposition method, we
use the same method as (28) and (29) to estimate the Rx

and Ry at the nth iteration. The initial values Rx[0] = 0.1I,
Ry[0] = 0.1I, and a forgetting factor of 0.9 are set. We also
start the TTJ algorithm with w[0] = [1 0 · · · 0]T . But its
step size should be regulated according to different simula-
tion environments.
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Figure 1: (a) SINR performance in the case of two interferers. (b)
Normalized projection error in the case of two interferers. (c) Di-
rection cosine performance in the case of two interferers.

In the first simulation experiment, we consider the case
when there are two interferers whose received powers are
10 dB stronger than the desired user. Figure 1 shows the sim-
ulation results. It can be observed that the eigenmethod and
the proposed algorithm outperform the TTJ algorithm. The
reason is that the TTJ algorithm belongs to the stochastic gra-
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Figure 2: (a) SINR performance in the case of five interferers. (b)
Normalized projection error in the case of five interferers. (c) Di-
rection cosine performance in the case of five interferers.

dient algorithm class and its fixed step size is chosen based on
some tradeoff between tracking capability and accuracy; too
small a value will bring on slow convergence and too large
a value will lead to overshoot and instability [19]. The eigen
method and SMIT have the best performance. However, their
computational complexity is very high. Compared to these
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Figure 3: (a) SINR performance in the dynamical signal environ-
ment. (b) Normalized projection error in the dynamical signal envi-
ronment. (c) Direction cosine performance in the dynamical signal
environment.

methods, the complexity of the proposed algorithm has been
greatly reduced, while its performance degrades only slightly.
The simulation results also show that the approximation of
the Hessian matrix and the projection approximation have
little influence on the performance of the proposed algo-

rithm, since its performance approaches that of the eigen
method, which uses neither of these approximation tech-
niques.

In the next simulation experiment, we investigate the per-
formance of the proposed algorithm in a signal environment
with strong interference. We assume that there are two 10 dB,
two 20 dB, and one 30 dB interferers. The simulation results
in Figure 2 show that the performance of the eigen method
and the proposed algorithm hardly changes, whereas the per-
formance of the TTJ algorithm degrades rapidly. This is not
surprising because at each step the TTJ algorithm uses a sin-
gle instantaneous sample to update the weight vector, and
as a result, the estimated weight vector oscillates around the
MSINR combining weight vector. As the number and pow-
ers of the interferers increase, the oscillation becomes more
dramatic and the amplitude increases. Consequently, the av-
eraged performance degrades greatly in this scenario. In con-
trast, the proposed algorithm uses all of the data samples
available up to the time instant n + 1 to estimate the opti-
mal weight vector, and as a result, it performs well in a sig-
nal environment with strong interference. This experiment
also shows that in the case with strong interferers, using the
Hessian matrix approximation and the projection approxi-
mation has only a slight impact on the performance of the
proposed algorithm.

In the final experiment, we study the tracking capabil-
ity of the proposed algorithm in a dynamic environment. At
the beginning, there are two 10 dB interferers, and at symbol
interval 400, three 20 dB, one 30 dB, and one 40 dB interfer-
ers are added. Figure 3 shows the simulation results. Because
there are few interferers and their powers are not very strong
in the first phase, the TTJ algorithm performs very well. But
in the second phase, too much interference and unregulated
fixed step size cause the performance to degrade greatly. It
can be observed that the eigen method, SMIT, and the pro-
posed algorithm can rapidly adapt to the suddenly changed
signal environment. This is because of using the forgetting
factor in the recursive covariance matrix estimator. The sim-
ulation results also show that in time-varying environment
the influence of the Hessian matrix approximation and the
projection approximation is small.

Therefore, from the above simulation results in various
signal environments, we conclude that the proposed algo-
rithm has rapid convergence, sufficient estimation accuracy,
and good tracking capability. These properties make it very
useful in a practical signal environment, especially when the
interfering power increases due to many practical reasons,
such as too many interferers, incorrect power control, time-
varying channel.

5. CONCLUSIONS

In this paper, we have studied the principal generalized
eigenvector estimation problem. We proposed a new uncon-
strained cost function for the generalized eigendecomposi-
tion problem. Then, based on the proposed cost function,
we have derived a robust adaptive modified Newton algo-
rithm. The convergence of the proposed algorithm has been
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rigorously analyzed. In addition, we applied the proposed al-
gorithm to the adaptive signal reception problem in multi-
carrier DS-CDMA systems, and the numerical simulation re-
sults show that the proposed algorithm has fast convergence
and excellent tracking capability, which are very useful for a
practical communication environment.

APPENDICES

A. PROOF OF THEOREM 1

Proof. Let ∇R and ∇I be the gradient operators with respect
to the real and imaginary parts of w. According to [19], the
complex gradient operator is defined as ∇ = (1/2)[∇R +
j∇I]. After some calculation, we can derive the gradient of
J(w) as

∇J(w) = Rxw − Ryw
(
wHRyw

)−1
. (A.1)

Whenw = ui, it is easy to show that∇J(ui) = 0. This implies
that any Rx-orthonormalized generalized eigenvector, ui, of
(Ry ,Rx) is the stationary point of J(w).

Conversely,∇J(w) = 0 means

Ryw =
(
wHRyw

)
Rxw. (A.2)

Hence, w is the generalized eigenvector of (Ry ,Rx), and the
corresponding generalized eigenvalue is (wHRyw). Premulti-
plying the both sides of (A.2) with wH we have

wHRyw =
(
wHRyw

)(
wHRxw

)
. (A.3)

Since Ry is positive definite, wHRyw > 0 for w 
= 0. There-
fore, we getwHRxw = 1. This shows that stationary point,w,
of J(w) is the Rx-orthonormalized generalized eigenvector of
(Ry ,Rx).

From above analysis, we conclude that w is a stationary
point of J(w) if and only ifw is the Rx-orhtonormalized gen-
eralized eigenvector of (Ry ,Rx).

Let H = ∇∇HJ(w) be the M ×M Hessian matrix [7] of
J(w) with respect to the vector w. After some calculations,
the Hessian matrixH is given as

H = Rx − Ry
(
wHRyw

)−1
+
(
wHRyw

)−2
RywwHRy.

(A.4)

Since Rx is positive definite, we have Rx = VVH , where
V is an invertible M × M matrix. Let ei = VHui and C =
V−1Ry(V−1)H . According to (21) we obtain

Cei = λiei,

eHi e j = δi j .
(A.5)

Obviously, λi and ei are the eigenvalue and the corresponding
eigenvector of C.

Let e = VHw. Then we get

H = V
[
I− C

eHCe
+

CeeHC
(
eHCe

)2

]
VH = VF(e)VH , (A.6)

where

F(e) = I− C
eHCe

+
CeeHC
(
eHCe

)2 . (A.7)

From the fact that eH1 Ce1 = λ1 and Ce1eH1 = λ21e1e
H
1 we

have

F
(± e1

) = I− C
λ1

+ e1eH1 ,

F
(± e1

)
e1 = e1,

F
(± e1

)
ei =

(
1− λi

λ1

)
ei,

(A.8)

where i = 2, . . . ,M. Since (1− λi/λ1) > 0, all the eigenvalues
of F(e1) are positive. We can conclude that F(e) is positive
definite at the point e = ±e1. Similarly, we can derive

F
(
ei
)
e1 =

(
1− λ1

λi

)
e1,

F
(
ei
)
ei = ei,

(A.9)

where i = 2, . . . ,M. Because (1 − λ1/λi) < 0, F(ei) is neither
positive definite nor negative definite. According to (A.6), we
have

H|w=±ui = VF
(
ei
)
VH. (A.10)

It is clear that H is positive definite at the stationary point
w = u1. At any other stationary point ui (i = 2, . . . ,M), H
is neither positive definite nor negative definite. This means
that w = u1 is the unique global minimal point of J(w), and
the other stationary points ui (i = 2, . . . ,M) are saddle points
of J(w).

B. PROOF OF THEOREM 3

Proof. The vector w(t) can be expressed as a linear combi-
nation ofM generalized eigenvectors ui of (Ry ,Rx), which is
given by

w(t) =
M∑

i=1
αi(t)ui, (B.1)

where αi(t) are complex coefficients.
Substituting (B.1) into (38) and premultipying by uHl Rx

yield

dαl(t)
dt

=
[( M∑

i=1
λi
∥
∥αi(t)

∥
∥2
)2

+
M∑

i=1
λ2i
∥
∥αi(t)

∥
∥2
]−1

·
(

2λlαl(t)
M∑

i=1
λi
∥∥αi(t)

∥∥2
)

− αl(t).

(B.2)

Under the assumption uH1 Rxw(0) 
= 0 we can define θl =
αl(t)/α1(t), l = 2, . . . ,M. Then we have

dθl
dt

=
(
α1(t)

dαl(t)
dt

− αl(t)
dα1(t)
dt

)
α−21 (t). (B.3)
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Substituting (B.2) into (B.3) yields

dθl
dt

= −(λ1 − λl
)
κ(t)θl(t), (B.4)

where

κ(t) =
(

2
M∑

i=1
λi
∥∥αi(t)

∥∥2
)

×
[( M∑

i=1
λi
∥
∥αi(t)

∥
∥2
)2

+
M∑

i=1
λ2i
∥
∥αi(t)

∥
∥2
]−1

.

(B.5)

Since κ(t) > 0 for all t > 0, limt→∞ θl = 0, l = 2, . . . ,M.
It follows that limt→∞ αl(t) = 0, l = 2, . . . ,M, and w(t) =
α1(t)u1 is an asymptotically stable solution of (38).

Therefore, when t is large enough and l = 1, (B.2) can be
simplified as

dα1(t)
dt

= α1(t)
[
1− ∥∥α1(t)

∥
∥2]

1 +
∥
∥α1(t)

∥
∥2

. (B.6)

In order to show that limt→∞ ‖α1(t)‖ = 1 we define z(t) =
‖α1(t)‖2 and V[z(t)] = [z(t) − 1]2. Their time derivatives
are

ż(t) = α∗1 (t)α̇1(t) + α̇∗1 (t)α1(t)

= 2
∥∥α1(t)

∥∥2 1−
∥
∥α1(t)

∥
∥2

1 +
∥∥α1(t)

∥∥2
,

V̇
[
z(t)

] = 2
[
z(t)− 1

]
ż(t)

= −4
[
1− ∥∥α1(t)

∥
∥2]2

∥
∥α1(t)

∥
∥2

1 +
∥∥α1(t)

∥∥2
.

(B.7)

According to the theory of Lyapunov stability, V(z) is a Lya-
punov function, and z = 1 is asymptotically stable. More-
over, from (B.6) and limt→∞ ‖α1(t)‖ = 1, we can conclude
limt→∞ α1(t) = γ, where ‖γ‖ = 1. Hence, w(t) in (38) will
asymptotically converge to the stable solution γu1.
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