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As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used
for finding SVs of an m-by-1 or 1-by-m array with elements representing samples of a signal, it will return only one singular
value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction
methodwhich we call “time-frequencymoments singular value decomposition (TFM-SVD).” In this newmethod, we use statistical
features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain
matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern
clustering methods. The results in using it indicate that the performance of a combined system including this transform and
classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate
TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to
look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph,
developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many
places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to
BCG waveform latency or nonlinear disturbance.

Copyright © 2007 Alireza Akhbardeh et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Ballistocardiogram (BCG) [1, 2] is a movement-related sig-
nal caused by shifts in the center of the mass of the blood,
which consists of components attributable to cardiac activ-
ity, respiration, and body movements. One of the advantages
of the BCG measurement is that no electrodes are needed
to be attached to the subject [3]. Therefore, it could provide
the possibility of serving as a relatively low-cost, noninva-
sive, easy-to-use, home screening procedure for cardiac per-
formance assessment. Also, the BCG provides complimen-
tary information to traditional ECG measurements, telling
us more about the mechanical properties of the heart. An
example of the BCG signal is shown in Figure 1 [4]. Dur-
ing the past several years, some classical as well as intelligent
pattern recognition methods have been developed for BCG
analysis. Yu and Dent [3] and Jansen et al. [5] listed some of

these methods in more detail. The performance of some of
the existing methods is very good when not considering elec-
tromechanical drifts, BCG cycle’s latency, motion artifacts,
or other kinds of nonlinear disturbances [6]. The results will
have some errors if such important factors are not counted.
Another important limitation of the existing approaches is
their suitability for fast implementation as well as online pro-
cessing.

In this paper, we introduce a new method for feature
extraction, which we call “time-frequency moments singu-
lar value decomposition (TFM-SVD).” To evaluate the abil-
ity of the new method, we used it to compute the most im-
portant BCG waveform features and then clustered them
using an artificial neural network (ANN). To find the per-
formance of the combined approach, six test subjects from
three groups were used: two healthy young persons, two
healthy old men, and two old men with a previous heart
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Figure 1: The heart-originated BCG signal during one respiratory
cycle [4]. The “I” and “J” spikes are marked with circles. The dot-
ted lines point the “R” spikes detected from the ECG signal, and
the dashed lines point the beginning and the end of the respiratory
cycle.

(myocardial) infarction. In Section 2, the used measurement
system is presented. The developed signal processing meth-
ods are presented in Section 3, followed by results and dis-
cussion.

2. MEASUREMENT SYSTEM

In the past, the BCG has been measured using several dif-
ferent methods. The most traditional way is to allow free
body movements in a supine (lying) position and to mea-
sure the body movements in the horizontal direction (head-
to-toe axis). In our work, we use pressure sensitive EMFi1

sensors [7, 8] to measure small forces generated by the body
in a sitting position. For this purpose, a special measurement
chair fitted with EMFi-sensors under the upholstery was con-
structed [9]. Two sensor films were used, one for the seat
and one for the backrest. In this paper, we only use the sig-
nal recorded from the seat sensor. The charge signal from the
EMFi-sensors is converted to a voltage signal using a small-
charge amplifier. The converted signal was recorded together
with electrocardiogram (ECG), the impedance cardiogram
(ICG), and some other biosignals using a commercial Circ-
Mon (JR Medical Ltd, Tallinn, Estonia) circulation monitor
with a sampling frequency of 200Hz. The sampling rate is
fixed in CircMon, but according to Shannon theorem and
BCG bandwidth, the sampling rate of 200Hz is adequate, it
is about five times higher than BCG bandwidth (0–40Hz)
[10]. The chair and other devices of the system can be seen
in Figure 2. More information about the use of EMFi-sensors
for BCG measurement and the performance of the measure-
ment system can be found from publications [4, 11].

1 EMFi is a registered trademark of Emfit Ltd.

Figure 2: A chair equipped with an EMFi-film sensor, the charge
amplifier, a CircMon device, and a laptop PC.

Another similar BCG measurement technique is the
static-charge sensitive bed (SCSB). Its structure and opera-
tion are more complex, as it measures the “rubbing” action
applied to the film. Due to its structure, SCSB is more capa-
ble in detectingmovement also parallel to the film plane [12].
The EMFi sensor is closer to a traditional force sensor, which
measures the force applied vertical to the film [13]. Accord-
ing to our experience, the signals measured from a supine
subject have similar temporal and spectral properties, but the
results are not the same. Therefore, in this application, with
measurements carried out in a sitting position and with the
sensor directly under the subject’s body, the EMFi-sensor is
well suited.

2.1. Patient recordings

BCG of the test subjects was recorded in a clinical trial at
Tampere University Hospital in 2004-2005 using the mea-
surement hardware presented in this section. A reference
ECG signal was recorded simultaneously from the chest of
the subject’s body. Examples of the recorded BCG/ECG sig-
nals are presented in Figure 3.

3. SIGNAL ANALYSIS PROCEDURES

Signal processing methods were applied to the data after the
recordings. The procedure we used for post-recording classi-
fication (Figure 4) of the recorded BCG data includes these
three steps: (A) BCG cycle extraction using the ECG signal
of the subject (segmentation stage); (B) feature computing
using TFM-SVD; (C) using ANNs to cluster features. These
stages are discussed in detail in the following subsections.

3.1. BCG data segmentation

The final aim of this research work is the BCG cycle cluster-
ing, not BCG data segmentation. In this work, we used the
ECG data of the subjects to extract BCG waveforms in every
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Figure 3: Typical ECG and BCG records of a normal subject.

cardiac period. To achieve this aim, the R-components of
the ECG signal, threshold detecting, and 250 point windows
were used. The raw signal from the EMFi-sensor includes
components of breathing, motion artifacts, low and high fre-
quency noises, and so forth. Thus, we had to use a bandpass
filter to extract the heart-originated BCG signal. According
to our experience, if we use a bandpass filter of [3, 14] Hz to
smooth the recorded BCG signals, we can extract the most
important components of BCG signals for pattern recogni-
tion purposes, and remove other components. Of course, for
monitoring or other purposes, we must use another type of
filtering, but for our application this bandwidth was found
suitable.

3.2. BCG features extraction using TFM-SVD

To define TFM-SVD, first we must be familiar with singular
value decomposition (SVD), briefly explained below.

3.2.1. Singular value decomposition

Singular value decomposition is used because it captures the
essential information of a matrix, somewhat similarly as the
eigenvalues do. A singular value and the corresponding sin-
gular vectors of a rectangular matrix A are a scalar σ and a
pair of vectors u and v that satisfy

Aν = σu,

ATu = σν.
(1)

With the singular values on the diagonal of a diagonal matrix
and the corresponding singular vectors forming the columns

Recorded
BCG signal

Recorded
ECG signal

BCG cycles extraction
using R-component of ECG

Time-frequency moments
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Neural networks
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Old
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Figure 4: Block diagram of the post-recording signal analysis.

of two orthogonal matrices U and V , we have

AV = U
∑

,

ATU = V
∑

.
(2)

Since U and V are orthogonal, this becomes the singular
value decomposition

A = U
∑

VT. (3)

The full singular value decomposition of an m-by-n matrix
involves an m-by-m U , an m-by-n

∑
, and an n-by-n V . In

other words, U and V are both square and are the same size
as A. If A has many more rows than columns, the resulting U
can be quite large, but most of its columns are multiplied by
zeros in

∑
. In this situation, the economy sized decomposi-

tion saves both time and storage by producing anm-by-n U ,
an n-by-n

∑
, and the same V [15].

3.2.2. Time-frequencymoments singular
value decomposition

As explained in the previous section, the singular value de-
composition (SVD) is an appropriate tool for analyzing a
mapping from one vector space into another vector space,
possibly with a different dimension. If the matrix under anal-
ysis is square, symmetric, and positive definite, then its eigen-
value and singular value decompositions are the same. In
particular, the singular value decomposition of a real ma-
trix is always real, but the eigenvalue decomposition of a real
nonsymmetric matrix might be complex [15]. However, if
we use it to find SVs of an m-by-1 or 1-by-m array with el-
ements representing samples of a signal, it will return only
one singular value that is not enough to express all parts of a
signal.

To overcome this problem, we introduce a new kind
of feature extraction method the so-called time-frequency
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moments singular value decomposition (TFM-SVD) in this
paper. In this new method, we suggest the use of eight sta-
tistical features of the input signal in time domain as well
as frequency domain. The reason for the use of both time
and frequency domains is that if the signal under analysis
is a nonstationary signal, as most biological signals and our
example BCG are, then we will need a time-frequency ana-
lyzing tool to find its most important features, and we can-
not use the transforms that use either temporal or frequency
features. Although there are some other existing transforms
such as the wavelet transform to analyze BCG [14, 16–18], we
tried to introduce another kind of BCG analysis which is able
to give results similar to results of the wavelet transform. Our
suggestion is to form two matrices: one to store the most el-
ementary statistical parameters of the signal in time domain
(Mt) and another one (M f ) to store the most elementary
statistical parameters of the frequency domain representa-
tion of the signal. After that, we can use singular value de-
compositions (SVD) to extract singular values (SVs) of those
matrices. We can use these obtained SVs as the most impor-
tant features of the input signal. The proposed method has
the following steps to compute eight features of signal “x[n]”
with length N (samples), which is inside the range [�5, 5].

(1) Run fast fourier transform (FFT) algorithm to find
spectrum (y[m]) of signal x[n].

(2) Compute four statistical moments of time-series x[n]
which are

mean = E[x] = μ,

variance t = E
[
(x � μ)2

]
,

sharpness t = E
[
(x � μ)3

]
,

4th moment t = E
[
(x � μ)4

]
.

(4)

(3) Compute statistical moments of frequency-series
y[m]:

mean = E[y] = μ f ,

variance f = E
[
(y � μ f )2

]
,

sharpness f = E
[
(y � μ f )3

]
,

4th moment f = E
[
(y � μ f )4

]
.

(5)

(4) Assemble a new matrix (Mt) with the four following
statistical moments of the input signal in time domain
(x[n]):

Mt =
[

a� μ variance t/b

sharpness t/c 4th moment t/d

]
, (6)

where a, b, c, d are constant values and must be in the
range where four elements of this matrix are scaled to
the range [L1,L2]. This scaling is needed to make all
elements of the matrixMt uniform to the same range.

(5) Assemble another matrix (M f ) with the following
four statistical moments of the spectrum of the input

(y[m]):

M f =
[

af �μ f variance f / bf

sharpness f / cf 4th moment f / df

]
, (7)

where, again, af , bf , cf , df are constant values andmust
be in the range where four elements of the matrixM f
are scaled to the range [L3,L4]. This scaling is needed
to make all elements of the matrix Mt uniform to the
same range.

(6) Find singular values (SVs) of the matrix Mt: SVD
(Mt); this will return two SVs for any kind of input sig-
nal x[n], because the dimension ofMt matrix is 2� 2.

(7) Find singular values (SVs) of matrix M f : SVD (M f );
this will return another two SVs for any kind of spec-
trum (y[m]) of an input signal, because the dimension
of theM f matrix is 2� 2.

(8) Finally, assemble the so-called time-frequency mo-
ments (TFM) vector with dimension 4� 1:

TFM matrix =
[
SVD(Mt)

SVD(M f )

]
. (8)

As can be seen, these steps will return fixed four SVs
of time-frequency moments for any type of signal with any
size. The properties of this new kind of the feature extraction
method are suitable especially for our application because we
would like to optimize and reduce the dimension of the in-
put signals (BCG cycles) as much as possible. This method is
quite insensitive to phase shifting of the BCG cycles because
of its structure.

The reason behind choosing the above-mentioned four
moments is their ability to extract essential information from
both time and frequency domains. In probability theory and
statistics, the mean is the expected value of a real-valued ran-
dom variable (signal x), which is also called the population
mean. For a data set, the mean is just the sum of all the obser-
vations divided by the number of observations. The variance
of a random variable is a measure of its statistical dispersion,
indicating how far from the expected value its values typically
are. The variance of a real-valued random variable is its sec-
ond central moment, and it also happens to be its second cu-
mulant. The variance of a random variable is the square of its
standard deviation. Sharpness shows the amplitude and the
direction of the changes in the random process. The fourth
moment, similar to Kurtosis, is a measure of the “peaked-
ness” of the probability distribution of a real-valued random
variable. Higher fourthmomentmeans that more of the vari-
ance is due to infrequent extreme deviations, as opposed to
frequent modestly sized deviations. The other four features
indicate the same measures that form the frequency domain
of a real-valued random variable. In our tests, we found that
higher than four moments do not give us new information
compared to moments one to four. Although we recommend
only using the first four moments of a real-valued random
variable in the proposed algorithm, it is possible to add more
moments, in both time and frequency domains, to the above-
mentioned algorithm.
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Singular value decomposition is used because it captures
the essential information of a matrix (compression), some-
what similarly as the eigenvalues do. Referring to our expe-
riences, using SVD after the extraction of the moments gives
us better ability to train a neural network for pattern classifi-
cation.

The choice of TFM normalization parameters depends
on the input signal range. For instance, if the input signal
is inside the range [α1,α2] where α2 > α1, the time domain
moments will be in these ranges:

α1 � μ � α2,

0 � variance t �
(
α2 � α1

)2
,

�

(
α2 � α1

)3
� sharpness t �

(
α2 � α1

)3
,

0 � 4th moment t �
(
α2 � α1

)4
.

(9)

So, the constant values of time domain must be

a = α2 � α1
max

(∣∣α1
∣∣,
∣∣α2

∣∣) ,

b = α2 � α1,

c = (α2 � α1
)2
,

d = (α2 � α1
)3

(10)

to have anMt matrix in the range

[
L1 = �(α2 � α1

)
, L2 = +

(
α2 � α1

)]
. (11)

The moments in the frequency domain will be in these
ranges:

N � α1 � μ f � N � α2,

0 � variance f � N2
�

(
α2 � α1

)2
,

�N3
�

(
α2 � α1

)3
� sharpness f � N3

�

(
α2 � α1

)3
,

0 � 4th moment f � N4
�

(
α2 � α1

)4
,

(12)

where N is the length of the signal. Thus, the constant values
of frequency domain must be

af = α2 � α1
N �max

(∣∣α1
∣∣,
∣∣α2

∣∣) ,

bf = N2
�

(
α2 � α1

)
,

cf = N3
�

(
α2 � α1

)2
,

df = N4
�

(
α2 � α1

)3

(13)

to have anM f matrix in the range
[
L3 = �(α2 � α1

)
, L4 = +

(
α2 � α1

)]
. (14)

3.2.3. BCG feature computing using TFM-SVD

In this study, we used TFM-SVD and computed TFM-SVs
of every BCG cycle x[n] using the procedure explained in
Section 3.2.2. Every BCG cycle has 250 samples because of
our measurement system and its sampling rate (200HZ).
The TFM-SVD method helps us to find the most impor-
tant features of the BCG cycles (waveforms) and to reduce
the cycle’s dimension (N) from N = 250 features to 4 fea-
tures. Before using the TFM-SVD algorithm, we must ini-
tialize its constant values. In this study, we used N = 250,
L1 = L3 = �10, and L2 = L4 = 10, so constants are
a = 2, b = 10, c = 100, d = 1000, af = 2/250, bf =
2502 � 10 = 6.25 � 105, cf = 2503 � 102 = 1.5625�109,
df = 2504 � 103 = 3.90625� 1012. On the other hand, they
shift Mt and M f elements’ values to the range [�10, 10] if
the input signal’s values (x[n]) are inside the range [�5, 5].
This range (L1 = L3 = �10, and L2 = L4 = 10) is chosen for
convenience and there are no restrictions on initializing the
TFM-SVD constants. The results (TFM-SV features of whole
extracted BCG cycles) in a 3D presentation for six typical
subjects (two young normal, two old normal, and two old
abnormal subjects) are shown in Figure 5. As we explained,
the TFM-SVD algorithm returns only four features for every
BCG cycle. To show how these features are scattered in a 3D
presentation, we have to consider only the first three features
and ignore the fourth one for every BCG cycle.

3.3. BCG data clustering using artificial
neural networks

For BCG feature classification, we used two kinds of very fa-
mous ANNs: multilayer perceptrons (MLPs) and radial basis
functions (RBFs) [19, 20]. Before presenting the TFM-SVD
and the coefficients of the BCG cycles to the neural network,
we must normalize them to the range [0,1].

3.3.1. Multilayer perceptrons

Multilayer perceptrons (MLPs) are feed-forward neural net-
works trained with the standard back propagation algorithm.
They are supervised networks, whichmeans that they require
a desired response in order to be trained. They learn how to
transform input data into a desired response, and therefore
they are widely used for pattern classification. With one or
two hidden layers, they can approximate virtually any input-
output map. They have been shown to approximate the per-
formance of optimal statistical classifiers in difficult prob-
lems. Most neural network applications involve MLPs.

3.3.2. Radial basis functions

RBF networks [19, 20] employ neurons that consist of radial
basis functions. In contrast to classic multilayer perceptrons,
the activation of a neuron is not given by the weighted sum
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Figure 5: A 3D scattergram for TFM-SV features of all extracted BCG cycles of six subjects under test (two young normal, two old normal,
and two old abnormal subjects). Only the first three features of the TFM-SVD algorithm are normalized to [0,1] and shown in this 3D
visualization.

of all its inputs but by the computation of a radial basis func-
tion. Generally, the kernels-Gaussian function

ϕ(u; tk) = exp
(
�

1
σ2k

∥∥u� tk
∥∥2
)
, k = 1, 2, . . . , k, σk > 0,

(15)

is used where u is the input of the neuron, t is the basis of the
neuron, and σ is the amplitude of the neuron. RBF networks
are feed-forward networks and consist of one input layer (u),
one hidden layer of Gaussian neurons (H), and one output
layer (y). The value of an output unit yi (given a network
input u) is computed by

yi =
K∑

k=1
wikϕi

(
u; tk

)
+wi0, (16)

where wik is the weight (= height) of neuron Hi for output yi
and wi0 is a general threshold (bias) of output yi subtracted
from the weighted inputs. The Gaussian neurons work as ex-
perts for certain areas of the d-dimensional input space. Ac-
tivation of each neuron depends on its distance to the input
vector. Learning algorithms like back propagation (we used a
stochastic learning [9, 10]) can be used to adjust the nonfixed
parameters of the network including kernels centers, weights,
and stigma.

4. RESULTS

To demonstrate the performance of our approaches and to
compare results, we used MLP (two hidden layers with 15
and 10 neurons relatively) and RBF neural networks (hidden

layer with 15 neurons) with 4 inputs, and 3 outputs to clas-
sify 6 subjects into 3 categories: young healthy students aged
between 20–30 years (2 subjects), old healthy men aged be-
tween 50–70 years (2 subjects), and two old subjects (50–70
years old) with a heart infarction in their medical history.
The number and the size of the hidden layers for both MLP
and RBF networks were optimized for this application (BCG
classification). If we use another kind of physiological signal
or change the number of subjects under test, we must check
the structure of the network again.

For every subject of the three categories, the previous
stage (TFM-SVD) gave us four features of every BCG cycle.
These data were normalized, mapped to the area [0, 1], and
finally saved randomly into a unique data matrix. We used a
small part of the data for training artificial neural networks
(500 BCG cycles used for MLP nets and 300 BCG for RBF
nets) and the rest of the data (2000 BCG cycles) for testing the
performance of the ANN classifier, not using the same data
for training and testing the system. On the other hand, in
this study there were no excluded subjects for testing and we
used the same subjects for both training and testing the MLP
and RBF neural networks. However, to develop a complete
diagnosing system to find the heart condition of the subjects
under test, we had to exclude some subjects for testing its
performance.

Table 1 shows the performance of the two approaches. In
this test, the MLP performed clearly better than the RBF net-
work (SBJs in the tablemeans subjects). If theMLP hadmade
the decision to which class the subject belongs, it would have
classified every subject correctly. This means that more than
50% of the BCG cycles for every subject were always in the
right class when BCG cycles were selected randomly. Thus
we can say that the whole recordings were classified correctly
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Table 1: Results of the BCG classification using neural networks
and BCG cycles in Figure 5. TFM-SVD is used for computing BCG
waveform features. SBJ means subject. Every cell shows the correct
classification percentage for every class. Class 1: young healthy stu-
dents aged between 20–30 years (2 subjects). Class 2: old healthy
men aged between 50–70 years (2 subjects). Class 3: two old sub-
jects (50–70 years old) with a previous heart infarction. Overall (%):
performance computed using randomly selected training and test-
ing BCG data of 6 subjects.

Class1 Class2 Class3 Overall

Class 1
SBJ1 97% 3% —
SBJ2 93% 7% —

Class 2
SBJ1 — 93% 7%
SBJ2 — 68% 32%

Class 3
SBJ1 — 42% 58%
SBJ2 — 7% 91%

Overall 85%

(a) MLP neural network using 500 epochs for training and 2000 for
testing net

Class 1 Class 2 Class 3 Overall

Class 1
SBJ1 83% 17% —
SBJ2 90% 10% —

Class 2
SBJ1 — 67% 33%
SBJ2 — 84% 16%

Class 3
SBJ1 — 100% 0%
SBJ2 — 49% 51%

Overall 73%

(b) RBF neural network using 300 epochs for training and 2000 for
testing net

using the MLP network. This means that the local minima
or nonlinear disturbances have only a small effect on the
MLP’s overall performance. In terms of our investigations,
this performance will not increase if more epochs or adap-
tation cycles are used during the training phase for the MLP
network.

RBFwould havemisclassified one subject and would have
nearly misclassified another. Again, in terms of our research,
the results will not improve if more epochs or adaptation cy-
cles are used during the training phase for the RBF network.

If we compare the results of using the TFM-SVDmethod
for BCG’s feature extraction with our results using the
wavelet transforms (WT) to extract the most important fea-
tures of the BCG cycles [14, 16–18], we see that the results for
both of these methods are comparable. The overall perfor-
mance of the MLP network using WT was above 90%, while
it was 85% using TFM-SVD for the same (six) subjects un-
der test. Although the performance using the TFM-SVD was
more than 5% lower than using the WT, the TFM-SVD is
faster and easier to implement than the WT. This is because
the WT is a multiresolution time-frequency transform and
we must use an iterative algorithm, the so-called Mallat al-
gorithm, to find a higher resolution in the frequency domain
and low resolution in the time domain [21]. For instance,
in [14, 16–18], we used wavelet coefficients of BCG cycles

in level (resolution) six of Mallat algorithm and this needed
some time to compute.

5. DISCUSSION

To discriminate BCG features, researchers have presented
different methods [1, 3]. Most of the existing methods have
high accuracy in the BCG features discrimination, while not
taking into consideration that the BCG waveforms have la-
tency or nonlinear disturbances such as motion artifacts
and electromechanical drifts/noises. However, ignoring these
kinds of important issues may potentially give us incorrect
information about patients.

In this paper, we developed approaches which have good
performance, even with nonlinear disturbances or latency. To
overcome these kinds of phenomena, we introduced a new
feature extraction method that we call “time-frequency mo-
ments singular value decomposition (TFM-SVD).” For the
classification of the extracted BCG cycles, we used two neural
classifiers, MLP and RBF nets. The results showed that this
classifier multilayer network has a high performance, even
with nonlinear disturbance or latency. The MLP had a better
performance compared to the RBF. Because of the local min-
ima phenomena, the RBF could not classify class 3 (old ab-
normal men) well. This inability will increase if we use more
than 300 BCG cycles for training the RBF net and more than
500 for the MLP net (overtraining problem).

Classifying the BCG cycles correctly is very important for
post processing. The first stage of our classification system
is a segmentation stage used to extract BCG cycles. We cur-
rently use the R-components of the ECG signal for the de-
tection of the cardiac period, but it is also possible to do the
extraction without the ECG. We have already developed the
BCG segmentation method without using ECG [15, 16]. The
method uses a bandpass-filtered low-frequency coarse BCG
signal for the detection of the I-component of BCG, and it
is used for the detection of the cardiac period. It should also
be mentioned that the developed method in this paper is not
limited to BCG data classification and it can be used to other
applications of physiological signal processing such as evoke
potentials, EEG, EOG, and EMG.

Our initial aim in this study is only to introduce a system
to classify BCG waveforms. To have a complete diagnosing
system, we needmuchmore subjects from all of the three cat-
egories, which takes time and more investigations. The more
developed system and analysis method could be used for the
automatic measurement and evaluation of a person’s health
and heart condition, when he/she is visiting a doctor’s of-
fice. The automated analysis assists the doctor in faster deci-
sion making and directs the doctor to perform needed addi-
tional measurements. The system could also be used in home
health monitoring and long term follow-up monitoring ap-
plications.
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