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1. INTRODUCTION

The signal subspace approach has proved itself useful for
signal enhancement in speech processing and many other
applications—see, for example, the recent survey [1]. The
area has grown dramatically over the last 20 years, along
with advances in efficient computational algorithms for ma-
trix computations [2–4], especially singular value decompo-
sitions and rank-revealing decompositions.

The central idea is to approximate a matrix, derived from
the noisy data, with another matrix of lower rank from which
the reconstructed signal is derived. As stated in [5]: “Rank
reduction is a general principle for finding the right trade-off
between model bias and model variance when reconstructing
signals from noisy data.”

Throughout the literature of signal processing and ap-
plied mathematics, these methods are formulated in terms
of different notations, such as eigenvalue decompositions,
Karhunen-Loève transformations, and singular value de-
compositions. All these formulations are mathematically
equivalent, but nevertheless the differences in notation can
be an obstacle to understanding and using the different
methods in practice.

Our goal is to survey the underlying mathematics and
present the techniques and algorithms in a common frame-

work and a common notation. In addition to methods based
on diagonal (eigenvalue and singular value) decompositions,
we survey the use of rank-revealing triangular decomposi-
tions. Within this framework, we also discuss alternatives to
the classical least-squares formulation, and we show how sig-
nals with general (nonwhite) noise are treated by explicit and,
in particular, implicit prewhitening. Throughout the paper,
we provide small working Matlab codes that illustrate the al-
gorithms and their practical use.

We focus on signal enhancement methods which directly
estimate a clean signal from a noisy one (we do not esti-
mate parameters in a parameterized signal model). Our pre-
sentation starts with formulations based on (estimated) co-
variance matrices, and makes extensive use of eigenvalue de-
compositions as well as the ordinary and generalized sin-
gular value decompositions (SVD and GSVD)—the latter
also referred to as the quotient SVD (QSVD). All these sub-
space techniques originate from the seminal 1982 paper [6]
by Tufts and Kumaresan, who considered noise reduction
of signals consisting of sums of damped sinusoids via linear
prediction methods.

Early theoretical and methodological developments in
SVD-based least-squares subspace methods for signals with
white noise were given in the late 1980s and early 1990s by



2 EURASIP Journal on Advances in Signal Processing

Cadzow [7], De Moor [8], Scharf [9], and Scharf and Tufts
[5]. Dendrinos et al. [10] used these techniques for speech
signals, and Van Huffel [11] applied a similar approach—
using the minimum variance estimates from [8]—to expo-
nential data modeling. Other applications of these methods
can be found, for example, in [1, 12–14]. Techniques for gen-
eral noise, based on the GSVD, originally appeared in [15],
and some applications of these methods can be found in
[16–19].

Next we describe computationally favorable alternatives
to the SVD/GSVD methods, based on rank-revealing trian-
gular decompositions. The advantages of these methods are
faster computation and faster up- and downdating, which are
important in dynamic signal processing applications. This
class of algorithms originates from work by Moonen et al.
[20] on approximate SVD updating algorithms, and in par-
ticular Stewart’s work on URV and ULV decompositions
[21, 22]. Some applications of these methods can be found
in [23, 24] (direction-of-arrival estimation) and [25] (to-

tal least squares). We also describe some extensions of these
techniques to rank-revealing ULLV decompositions of pairs
of matrices, originating in works by Luk and Qiao [26, 27]
and Bojanczyk and Lebak [28].

Further extensions of the GSVD and ULLV algorithms
to rank-deficient noise, typically arising in connection with
narrowband noise and interference, were described in recent
work by Zhong et al. [29] and Hansen and Jensen [30, 31].

Finally, we show how all the above algorithms can be in-
terpreted in terms of FIR filters defined from the decomposi-
tions involved [32, 33], and we introduce a new analysis tool
called “canonical filters” which allows us to compare the be-
havior and performance of the subspace-based algorithms in
the frequency domain. The hope is that this theory can help
to bridge the gap between thematrix notation andmore clas-
sical signal processing terminology.

Throughout the paper, we make use of the important
concept of numerical rank of a matrix. The numerical rank
of a matrix H with respect to a given threshold τ is the num-
ber of columns of H that is guaranteed to be linearly inde-
pendent for any perturbation of H with norm less than τ. In
practice, the numerical rank is computed as the number of
singular values of H greater than τ. We refer to [34–36] for
motivations and further insight about this issue.

We stress that we do not try to cover all aspects of
subspace methods for signal enhancement. For example,
we do not treat a number of heuristic methods such as
the spectral-domain constrained estimator [12], as well as
extensions that incorporate various perceptual constraints
[37, 38].

Here we have a few words about the notation used
throughout the paper: E(·) denotes expectation; R(A) de-
notes the range (or column space) of the matrix A; σi(A) de-
notes the ith singular value of A; AT denotes the transpose
of A, and A−T = (A−1)T = (AT)−1; Iq is the identity matrix
of order q; and H(v) is the Hankel matrix with n columns
defined from the vector v (see (4)).

2. THE SIGNALMODEL

Throughout this paper, we consider only wide-sense station-
ary signals with zero mean, and a digital signal is always a
column vector s ∈ Rn with E(s) = 0. Associated with s is
an n × n symmetric positive semidefinite covariance matrix,
given by Cs ≡ E(s sT); this matrix has Toeplitz structure, but
we do not make use of this property. We will make some im-
portant assumptions about the signal.

The noisemodel

We assume that the signal s consists of a pure signal s ∈ Rn

corrupted by additive noise e ∈ Rn,

s = s + e, (1)

and that the noise level is not too high, that is, ‖e‖2 is some-
what smaller than ‖s‖2. In most of the paper, we also assume
that the covariance matrix Ce for the noise has full rank.
Moreover, we assume that we are able to sample the noise,
for example, in periods where the pure signal vanishes (e.g.,
in speech pauses). We emphasize that the sampled noise vec-
tor e is not the exact noise vector in (1), but a vector that is
statistically representative of the noise.

The pure signal model

We assume that the pure signal s and the noise e are uncorre-
lated, that is, E(seT) = 0, and consequently we have

Cs = Cs + Ce. (2)

In the common case where Ce has full rank, it follows that
Cs also has full rank (the case rank(Ce) < n is treated in
Section 7). We also assume that the pure signal s lies in a
proper subspace of Rn; that is,

s ∈ S ⊂ Rn, rank
(
Cs
) = dim

(
S
) = k < n. (3)

The central point in subspace methods is this assumption
about the pure signal s lying in a (low-dimensional) subspace
ofRn called the signal subspace. The main goal of all subspace
methods is to estimate this subspace and to find a good esti-
mate ŝ (of the pure signal s) in this subspace.

The subspace assumption (which is equivalent to the as-
sumption that Cs is rank-deficient) is satisfied, for example,
when the signal is a sum of (exponentially damped) sinu-
soids. This assumption is perhaps rarely satisfied exactly for
a real signal, but it is a good model for many signals, such as
those arising in speech processing [39].1

For practical computations with algorithms based on the
above n× n covariance matrices, we need to be able to com-
pute estimates of these matrices. The standard way to do this
is to assume that we have access to data vectors which are

1 It is also a good model for NMR signals [40, 41], but these signals are not
treated in this paper.
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longer than the signals we want to consider. For example,
for the noisy signal, we assume that we know a data vec-
tor s′ ∈ RN with N > n, which allows us to estimate the
covariance matrix for s as follows. We note that the length N
is often determined by the application (or the hardware in
which the algorithm is used).

Let H(s′) be the m × n Hankel matrix defined from the
vector s′ as

H(s′) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

s′1 s′2 s′3 · · · s′n
s′2 s′3 s′4 · · · s′n+1
s′3 s′4 s′5 · · · s′n+2
...

...
...

...
...

s′m s′m+1 s′m+2 · · · s′N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

with m + n − 1 = N and m ≥ n. Then we define the data
matrixH =H(s′), such that we can estimate2 the covariance
matrix Cs by

Cs ≈ 1
m
HTH. (5)

Moreover, due to the assumption about additive noise, we
have s′ = s′ + e′ with s′, e′ ∈ RN , and thus we can write

H = H + E with H =H(s′), E =H(e′). (6)

Similar to the assumption about Cs, we assume that
rank(H) = k.

In broad terms, the goal of our algorithms is to compute
an estimate ŝ of the pure signal s from measurements of the
noisy data vector s′ and a representative noise vector e′. This
is done via a rank-k estimate Ĥ of the Hankel matrix H for
the pure signal, and we note that we do not require the esti-
mate Ĥ to have Hankel structure.

There are several approaches to extracting a signal vector
from the m × n matrix Ĥ . One approach, which produces a
length-N vector ŝ ′, is to average along the antidiagonals of Ĥ ,
which we write as

ŝ ′ =A(Ĥ) ∈ RN . (7)

The corresponding Matlab code is

shat = zeros(N,1);
for i=1:N

shat(i) = mean(diag(fliplr(Hhat),n-i));
end

This approach leads to the FIR filter interpretation in
Section 9. The rank-reduction + averaging process can be it-
erated, and Cadzow [7] showed that this process converges
to a rank-k Hankel matrix; however, De Moor [42] showed
that this may not be the desired matrix. In practice, the single
averaging in (7) works well.

2 Alternatively, we could work with the Toeplitz matrices obtained by
reversing the order of the columns of the Hankel matrices; all our rela-
tions will still hold.
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Figure 1: The three signals of length N = 240 used in our exam-
ples. (a) Clean speech signal (voiced segment of male speaker); (b)
white noise generated byMatlab’s randn function; (c) colored noise
(segment of a recording of strong wind). The clean signal slightly vi-
olates the subspace assumption (3), see Figure 3.

Doclo and Moonen [1] found that the averaging oper-
ation is often unnecessary. An alternative approach, which
produces a length-n vector, is therefore to simply extract (and
transpose) an arbitrary row of the matrix, that is,

ŝ = Ĥ(�, :)T ∈ Rn, � arbitrary. (8)

This approach lacks a solid theoretical justification, but due
to its simplicity it lends itself well to the up- and downdating
techniques in dynamical processing, see Section 8.

Speech signals can, typically, be considered stationary in
segments of length up to 30 milliseconds, and for this rea-
son it is a common practice to process speech signals in
such segments—either blockwisely (normally with overlap
between the block) or using a “sliding window” approach.

Throughout the paper, we illustrate the use of the sub-
space algorithms with a 30 milliseconds segment of a voiced
sound from a male speaker recorded at 8 kHz sampling fre-
quency of length N = 240. The algorithms also work for un-
voiced sound segments, but the voiced sound is better suited
for illustrating the performance.

We use two noise signals, a white noise signal generated
by Matlab’s randn function, and a segment of a recording of
strong wind. All three signals, shown in Figure 1, can be con-
sidered quasistationary in the considered segment.We always
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usem = 211 and n = 30, and the signal-to-noise ratio in the
noisy signals, defined as

SNR = 20 log
( ‖s‖2
‖e‖2

)
dB, (9)

is 10 dB unless otherwise stated.
When displaying the spectrum of a signal, we always use

the LPC power spectrum computed with Matlab’s lpc func-
tion with order 12, which is standard in speech analysis of
signals sampled at 8 kHz.

3. WHITE NOISE: SVDMETHODS

To introduce ideas, we consider first the ideal case of white
noise, that is, the noise covariance matrix is a scaled identity,

Ce = η2In, (10)

where η2 is the variance of the noise. The covariance matrix
for the pure signal has the eigenvalue decomposition

Cs = V ΛV
T
, Λ = diag

(
λ1, . . . , λn

)
(11)

with λk+1 = · · · = λn = 0. The covariance matrix for the
noisy signal, Cs = Cs + η2In, has the same eigenvectors while
its eigenvalues are λi + η2 (i.e., they are “shifted” by η2). It
follows immediately that given η and the eigenvalue decom-
position of Cs, we can perfectly reconstruct Cs simply by sub-
tracting η2 from the largest k eigenvalues of Cs and inserting
these in (11).

In practice, we cannot design a robust algorithm on this
simple relationship. For one thing, the rank k is rarely known
in advance, and white noise is a mathematical abstraction.
Moreover, even if the noise e is close to being white, a prac-
tical algorithm must use an estimate of the variance η2, and
there is a danger that we obtain some negative eigenvalues
when subtracting the variance estimate from the eigenvalues
of Cs.

A more robust algorithm is obtained by replacing k with
an underestimate of the rank, and by avoiding the subtraction
of η2. The latter is justified by a reasonable assumption that
the largest k eigenvalues λi, i = 1, . . . , k, are somewhat greater
than η2.

A working algorithm is now obtained by replacing the
covariance matrices with their computable estimates. For
both pedagogical and computational/algorithmic reasons, it
is most convenient to describe the algorithm in terms of the
two SVDs:

H = U ΣV
T = (U1U2

)
(
Σ1 0
0 0

)
(
V 1, V 2

)T
, (12)

H = UΣVT = (U1,U2
)
(
Σ1 0
0 Σ2

)
(
V1,V2

)T
, (13)

in which U ,U ∈ Rm×n and V ,V ∈ Rn×n have orthonormal
columns, and Σ,Σ ∈ Rn×n are diagonal. These matrices are
partitioned such that U1,U1 ∈ Rm×k, V 1,V1 ∈ Rn×k, and
Σ1,Σ1 ∈ Rk×k. We note that the SVDs immediately provide

the eigenvalue decompositions of the cross-product matri-
ces, because

H
T
H = V Σ

2
V

T
, HTH = V Σ2VT. (14)

The pure signal subspace is then given by S = R(V 1), and
our goal is to estimate this subspace and to estimate the pure
signal via a rank-k estimate Ĥ of the pure-signal matrix H .

Moving from the covariance matrices to the use of the
cross-product matrices, we must make further assumptions
[8], namely (in the white-noise case) that the matrices E and
H satisfy

1
m
ETE = η2In, H

T
E = 0. (15)

These assumptions are stronger thanCe = η2In and E(s eT) =
0. The first assumption is equivalent to the requirement that
the columns of (

√
mη)−1E are orthonormal. The second as-

sumption implies the requirement thatm ≥ n + k.
Then it follows that

1
m
HTH = 1

m
H

T
H + η2In (16)

and if we insert the SVDs and multiply withm, we obtain the
relation

(
V1,V2

)
(
Σ2
1 0
0 Σ2

2

)
(
V1,V2

)T

= (V 1,V 2
)
(
Σ
2
1+mη2Ik 0

0 mη2In−k

)
(
V 1,V 2

)T
,

(17)

where Ik and In−k are identity matrices. From the SVD of H ,
we can then estimate k as the numerical rank of H with re-
spect to the threshold m1/2η. Furthermore, we can use the
subspaceR(V1) as an estimate of S (see, e.g., [43] for results
about the quality of this estimate under perturbations).

We now describe several empirical algorithms for com-
puting the estimate Ĥ ; in these algorithms k is always the
numerical rank of H . The simplest approach is to compute
Ĥls as a rank-k least-squares estimate of H , that is, Ĥls is the
closest rank-kmatrix toH in the 2-norm (and the Frobenius
norm),

Ĥls = argminĤ‖H − Ĥ‖2 s.t. rank(Ĥ) = k. (18)

The Eckart-Young-Mirsky theorem (see [44, Theorem 1.2.3]
or [2, Theorem 2.5.3]) expresses this solution in terms of the
SVD of H :

Ĥls = U1Σ1V
T
1 . (19)

If desired, it is easy to incorporate the negative “shift” men-
tioned above. It follows immediately from (17) that

Σ
2
1 = Σ2

1 −mη2Ik =
(
Ik −mη2Σ−21

)
Σ2
1, (20)
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which leads Van Huffel [11] to defines a modified least-
squares estimate:

Ĥmls = U1ΦmlsΣ1V
T
1 with Φmls =

(
Ik −mη2Σ−21

)1/2
.
(21)

The estimate ŝ from this approach is an empirical least-
squares estimate of s.

A number of alternative estimates have been proposed.
For example, DeMoor [8] introduced theminimum variance
estimate Ĥmv = HWmv, in whichWmv satisfies the criterion

Wmv = argminW
∥
∥H −HWmv

∥
∥
F, (22)

and he showed (see our appendix) that this estimate is given
by

Ĥmv = U1ΦmvΣ1V
T
1 with Φmv = Ik −mη2Σ−21 . (23)

Ephraim and Van Trees [12] defined a time-domain con-
straint estimate which, in our notation, takes the form Ĥtdc =
HWtdc, whereWtdc satisfies the criterion

Wtdc = argminW ‖H −HW‖F s.t. ‖W‖F ≤ α
√
m, (24)

in which α is a user-specified positive parameter. If the con-
straint is active, then the matrix Wtdc is given by the Wiener
solution3

Wtdc = V 1Σ
2
1

(
Σ
2
1 + λmη2Ik

)−1
V

T
1 , (25)

where λ is the Lagrange parameter for the inequality con-
straint in (24). If we use (17), then we can write the TDC
estimate in terms of the SVD of H as

Ĥtdc=U1ΦtdcΣ1V
T
1 with Φtdc =

(
Ik −mη2Σ−21

)

· (Ik −mη2(1− λ)Σ−21
)−1

.
(26)

This relation is derived in our appendix. If the constraint is
inactive, then λ = 0 and we obtain the LS solution. Note that
we obtain the MV solution for λ = 1.

All these algorithms can be written in a unified formula-
tion as

Ĥsvd = U1ΦΣ1V
T
1 , (27)

where Φ is a diagonal matrix, called the gain matrix, deter-
mined by the optimality criterion, see Table 1. Other choices
of Φ are discussed in [45]. The corresponding Matlab code
for the MV estimate is

[U,S,V] = svd(H,0);
k = length(diag(S) > sqrt(m)*eta);
Phi = eye(k) - m*eta^2*inv(S(1:k,1:k)^2);
Hhat = U(:,1:k)*Phi*S(1:k,1:k)*V(:,1:k)’;

3 In the regularization literature, Wtdc is known as a Tikhonov solution
[34].

Table 1: Overview of some important gain matrix Φ in the SVD-
based methods for the white noise case.

Estimate Gain matrix Φ

LS Ik
MLS

(
Ik −mη2Σ−21

)1/2

MV Ik −mη2Σ−21
TDC

(
Ik −mη2Σ−21

) · (Ik −mη2(1− λ)Σ−21
)−1

with the codes for the other estimates being almost similar
(only the expression for Phi changes).

A few practical remarks are in order here. The MLS, MV,
and TDC methods require knowledge about the noise vari-
ance η2; good estimates of this quantity can be obtained from
samples of the noise e in the speech pauses. The thresholds
used in all our Matlab templates (here, τ = √

mη) are the
ones determined by the theory. In practice, we advice the
inclusion of a “safety factor,” say,

√
2 or 2, in order to ensure

that k is an underestimate (because overestimates included
noisy components). However, since this factor is somewhat
problem-dependent, it is not included in our templates.

We note that (27) can also be written as

Ĥsvd = HWΦ, WΦ = V

(
Φ 0
0 0

)

VT , (28)

whereWΦ is a symmetric matrix which takes care of both the
truncation at k, and the modification of the singular values
(WΦ is a projection matrix in the LS case only). Using this
formulation, we immediately see that the estimate ŝ (8) takes
the simple form

ŝ =WΦH(�, :)T =WΦs, (29)

where s is an arbitrary length-n signal vector. This approach
is useful when the signal is quasistationary for longer periods,
and the same filter, determined byWΦ, can be used over these
periods (or in an exponential window approach).

4. RANK-REVEALING TRIANGULAR
DECOMPOSITIONS

In real-time signal processing applications, the computa-
tional work in the SVD-based algorithms, both in computing
and updating the decompositions, may be too large. Rank-
revealing triangular decompositions are computationally at-
tractive alternatives which are faster to compute than the
SVD, because they involve an initial factorization that can
take advantage of the Hankel structure, and they are also
much faster to update than the SVD. For example, computa-
tion of the SVD requiresO(mn2) flops while a rank-revealing
triangular decomposition can be computed inO(mn) flops if
the structure is utilized. Detailed flop counts and compar-
isons can be found in [25, 46].

Below we present these decompositions and their use.
Our Matlab examples required the UTV Tools package [47]
and, for the VSV decomposition, also the UTV Expansion
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Pack [48]. These packages include software for efficient com-
putation of all the decompositions, as well as software for up-
and downdating. The software is designed such that one can
either estimate the numerical rank or use a fixed predeter-
mined value for k.

4.1. UTV decompositions

Rank-revealing UTV decompositions were introduced in the
early 1990s by Stewart [21, 22] as alternatives to the SVD, and
they take the forms (referred to as URV and ULV, resp.)

H = UR

(
R11 R12

0 R22

)

VT
R ,

H = UL

(
L11 0

L21 L22

)

VT
L ,

(30)

where R11,L11 ∈ Rk×k . We will adopt Pete Stewart’s notation
T (for “triangular”) for either L or R.

The four “outer” matrices UL,UR ∈ Rm×n, and VL,VR ∈
Rn×n have n orthonormal columns, and the numerical rank4

of H is revealed in the middle n× n triangular matrices:

σi
(
R11
) ≈ σi

(
L11
) ≈ σi(H), i = 1, . . . , k,

∥∥
∥
∥
∥

(
R12

R22

)∥∥
∥
∥
∥
F

≈ ∥∥(L21,L22
)∥∥

F ≈ σk+1(H).
(31)

In our applications, we assume that there is a well-defined
gap between σk and σk+1. The more work one is willing to
spend in the UTV algorithms, the smaller the norm of the
off-diagonal blocks R12 and L21 is.

In addition to information about numerical rank, the
UTV decompositions also provide approximations to the
SVD subspaces, (cf. [34, Section 3.3]). For example, if VR1 =
VR(:, 1 : k), then the subspace angle ∠(V1,VR1) between the
ranges of V1 (in the SVD) and VR1 (in the URV decomposi-
tion) satisfies

sin∠
(
V1,VR1

) ≤ σk
(
R11
)∥∥R12

∥∥
2

σk
(
R11
)2 − ∥∥R22

∥
∥2
2

. (32)

The similar result for VL1 = VL(:, 1 : k) in the ULV decom-
position takes the form

sin∠
(
V1,VL1

) ≤
∥
∥L21

∥
∥
2

∥
∥L22

∥
∥
2

σk
(
L11
)2 − ∥∥L22

∥
∥2
2

. (33)

We see that the smaller the norm of R12 and L21 is, the smaller
the angle is. The ULV decomposition can be expected to give
better approximations to the signal subspace R(V1) than
URV when there is a well-defined gap between σk and σk+1,

4 The case where H is exactly rank-deficient, for which the submatrices
R12, R22, L21, and L22 are zero, was treated much earlier by Golub [49] in
1965.

Table 2: Symmetric gain matrixΨ for UTV and VSV (for the white
noise case), using the notation T11 for either R11, L11, or S11.

Estimate Gain matrix Ψ

LS Ik
MV Ik −mη2T−111 T

−T
11

TDC
(
Ik −mη2T−111 T

−T
11

) · (Ik −mη2(1− λ)T−111 T
−T
11

)−1

due to the factors σk(R11) ≈ σk and ‖L22‖2 ≈ σk+1 in these
bounds.

For special cases where the off-diagonal blocks R12 and
L21 are zero, and under the assumption that σk(T11) >
‖T22‖2—in which case R(VT1) = R(V1)—we can derive
explicit formulas for the estimators from Section 3. For ex-
ample, the least-squares estimates are obtained by simply
neglecting the bottom block T22—similar to neglecting the
block Σ2 in the SVD approach. The MV and TDC estimates
are derived in the appendix.

In practice, the off-diagonal blocks are not zero but have
small norm, and therefore it is reasonable to also neglect
these blocks. In general, our UTV-based estimates thus take
the form

Ĥutv = UT

(
T11Ψ 0

0 0

)

VT
T , (34)

where the symmetric gain matrix Ψ is given in Table 2. The
MV and TDC formulations, which are derived by replacing
the matrix in Σ2

1 in Table 1 with TT
11T11, were originally pre-

sented in [50, 51], respectively; there is no estimate that cor-
responds to MLS. We emphasize again that these estimators
only satisfy the underlying criterion when the off-diagonal
block is zero.

In analogy with the SVD-based methods, we can use the
alternative formulations

Ĥurv = HWR,Ψ, H̃ulv = HWL,Ψ (35)

with the symmetric matrixWT ,Ψ given by

WT ,Ψ = VT

(
Ψ 0

0 0

)

VT
T . (36)

The two estimates Ĥulv and H̃ulv are not identical; they differ
by UL(:, k+1 : n)L21VL(:, 1 : k)T whose norm ‖L21‖2 is small.

The Matlab code for the ULV case with high rank (i.e.,
k ≈ n) takes the form

[k,L,V] = hulv(H,eta);
Ik = eye(k);
Psi = Ik - m*eta^2*...

L(1:k,1:k)\Ik/L(1:k,1:k)’;
Hhat = H*V(:,1:k)*Psi*V(:,1:k)’;

An alternative code that requires more storage for U has the
form

[k,L,V,U] = hulv(H,eta);
Psi = Ik - m*eta^2*...

L(1:k,1:k)\Ik/L(1:k,1:k)’;
Hhat = U(:,1:k)*L(1:k,1:k)*Psi*V(:,1:k)’;



P. C. Hansen and S. H. Jensen 7

For the ULV case with low rank (k � n), change hulv to
lulv, and for the URV cases change ulv to urv.

4.2. Symmetric VSV decompositions

If the signal length N is odd and we use m = n (ignoring the
conditionm ≥ n+k), then the square Hankel matricesH and
E are symmetric. It is possible to utilize this property in both
the SVD and the UTV approaches.

In the former case, we can use that a symmetric matrix
has the eigenvalue decomposition

H = VΛVT (37)

with real eigenvalues in Λ and orthonormal eigenvectors in
V , and thus the SVD of H can be written as

H = VD|Λ|VT , D = diag
(
sign

(
λi
))
. (38)

This well-known result essentially halves the work in com-
puting the SVD. The remaining parts of the algorithm are
the same, using |Λ| for Σ.

In the case of triangular decompositions, a symmetric
matrix has a symmetric rank-revealing VSV decomposition
of the form

H = VS

(
S11 S12
ST12 S22

)

VT
S , (39)

where VS ∈ Rn×n is orthogonal, and S11 ∈ Rk×k and S22
are symmetric. The decomposition is rank-revealing in the
sense that the numerical rank is revealed in the “middle” n×n
symmetric matrix:

σi
(
S11
) ≈ σi(H), i = 1, . . . , k,
∥
∥∥
∥

(
S12
S22

)∥
∥∥
∥
F
≈ σk+1(H).

(40)

The symmetric rank-revealing VSV decomposition was orig-
inally proposed by Luk and Qiao [52], and it was further de-
veloped in [53].

The VSV-based matrix estimate is then given by

Ĥvsv = VS

(
S11Ψ 0

0 0

)

VT
S , (41)

in which the gain matrix Ψ is computed from Table 2 with
T11 replaced by the symmetric matrix S11. Again, these ex-
pressions are derived under the assumption that S12 = 0; in
practice the norm of this block is small.

The algorithms in [53] for computing VSV decomposi-
tions return a factorization of S which, in the indefinite case,
takes the form

S = TTΩT , (42)

where T is upper or lower triangular, and Ω = diag(±1).

Below is Matlab code for the high-rank case (k ≈ n):

[k,R,Omega,V] = hvsvid_R(A,eta);
Ik = eye(k);
M = R(1:k,1:k)’\Ik/R(1:k,1:k);
M = Omega(1:k,1:k)*M*Omega(1:k,1:k);
Psi = Ik - R(1:k,1:k)\M/R(1:k,1:k)’;
Hhat = V(:,1:k)*S(1:k,1:k)*Psi*V(:,1:k)’;

5. WHITE NOISE EXAMPLE

We start with an illustration of the noise reduction for the
white noise case by means of SVD and ULV, using an artifi-
cially generated clean signal:

si = sin(0.4i) + 2 sin(0.9i) + 4 sin(1.7i) + 3 sin(2.6i) (43)

for i = 1, . . . ,N . This signal satisfies the subspace assump-
tion, and the corresponding clean data matrix H has rank 8.

We add white noise with SNR = 0 dB (to emphasize the
influence of the noise), and we compute SVD and ULV LS-
estimates for k = 1, . . . , 9. Figure 2 shows LPC spectra for
each signal, and we see that the two algorithms produce very
similar results.

This example illustrates that as k increases, we include an
increasing number of spectral components, and this occurs
in the order of decreasing energy of these components. It is
precisely this behavior of the subspace algorithms that makes
them so powerful for signals that (approximately) admit the
subspace model.

We now turn to the speech signal from Figure 1, recall-
ing that this signal does not satisfy the subspace assumption
exactly. Figure 3 shows the singular values of the two Hankel
matricesH andH associated with the clean and noisy signals.
We see that the larger singular values of H are quite similar
to those of H , that is, they are not affected very much by the
noise—while the smaller singular values of H tend to level
off around

√
mη, which is the variance of the noise. Figure 3

also shows our “safeguarded” threshold
√
2
√
mη for the trun-

cation parameter, leading to the choice k = 13 for this par-
ticular realization of the noise.

The rank-revealing UTV algorithms are designed such
that they reveal the large and small singular values of H in
the triangular matrices R and L, and Figure 4 shows a clear
grading of the size of the nonzero elements in these matri-
ces. The particular structure of the nonzero elements in R
and L depends on the algorithm used to compute the de-
composition. We see that the “low-rank versions” lurv and
lulv tend to produce triangular matrices whose off-diagonal
blocks R12 and L21 have smaller elements than those from the
“high-rank versions” hurv and hulv (see [47] for more de-
tails about these algorithms).

Next we illustrate the performance of the SVD- and ULV-
based algorithms using the minimum-variance (MV) esti-
mates. Figure 5(a) shows the LPC spectra for the clean and
noisy signals—in the clean signal we see four distinct for-
mants, while only two formants are above the noise level in
the noisy signal.

Figures 5(b) and 5(c) show the spectra for the MV esti-
mates using the SVD and ULV algorithms with truncation
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Figure 2: Example with a sum-of-sines clean signal for which H has rank 8, and additive white noise with SNR 0 dB. Top left: LPC spectra
for the clean and noisy signals. Other plots: LPC spectral for the SVD and ULV LS-estimates with truncation parameter k = 1, . . . , 9.
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Figure 3: The singular values of the Hankel matrices H (clean sig-
nal) and H (noisy signal). The solid horizontal line is the “safe-
guarded” threshold

√
2m1/2η; the numerical rank with respect to

this threshold is k = 13.

parameters k = 8 and k = 16, respectively. Note that the
SVD- and ULV-estimates have almost identical spectra for a
fixed k, illustrating the usefulness of the more efficient ULV
algorithm. For k = 8, the two largest formants are well re-
constructed; but k is too low to allow us to capture all four
formants. For k = 16, all four formants are reconstructed sat-
isfactorily, while a larger value of k leads to the inclusion of
too much noise. This illustrates the importance of choosing
the correct truncation parameter. The clean and estimated
signals are compared in Figure 6.

6. GENERAL NOISE

We now turn to the case of more general noise whose covari-
ance matrix Ce is no longer a scaled identity matrix. We still
assume that the noise and the pure signal are uncorrelated
and that Ce has full rank. Let Ce have the Cholesky factoriza-
tion

Ce = RT
e Re, (44)

where Re is an upper triangular matrix of full rank. Then the
standard approach is to consider the transformed signal R−Te s
whose covariance matrix is given by

E
(
R−Te s sTR−1e

)
= R−Te CsR

−1
e = R−Te CsR

−1
e + In, (45)

showing that the transformed signal consists of a trans-
formed pure signal plus additive white noise with unit vari-
ance. Hence the name prewhitening is used for this pro-
cess. Clearly, we can apply all the methods from the previ-
ous section to this transformed signal, followed by a back-
transformation involving multiplication with RT

e .
Turning to practical algorithms based on the cross-

product matrix estimates for the covariance matrices, our as-
sumptions are now

rank(E) = n, H
T
E = 0. (46)

Since E has full rank, we can compute an orthogonal factor-
ization E = QR in which Q has orthonormal columns and R

is nonsingular. For example, if we use aQR factorization then
R is a Cholesky factor of ETE, andm−1/2R estimates Re above.
We introduce the transformed signal zqr = R−Ts whose co-
variance matrix is estimated by

1
m
R−THTHR−1 = 1

m
R−TH

T
HR−1 +

1
m
In, (47)

showing that the prewhitened signal zqr—similar to the
above—consists of a transformed pure signal plus additive
white noise with variancem−1. Again we can apply any of the
methods from the previous section to the transformed sig-
nal zqr, represented by the matrix Zqr = HR−1, followed by a
back-transformation with RT .

The complete model algorithm for treating full-rank
nonwhite noise thus consists of the following steps. First,
compute the QR factorization E = QR, then form the
prewhitened matrix Zqr = H R−1 and compute its SVD Zqr =
UΣVT . Then compute the “filtered” matrix Ẑqr = ZqrWΦ

with the gain matrix Φ from Table 1 using mη2 = 1. Finally,
compute the dewhitened matrix Ĥqr = ẐqrR and extract the
filtered signal. For example, for the MV estimate this is done
by the following Matlab code:

[Q,R] = qr(E,0);
[U,S,V] = svd(H/R,0);
k = length(diag(S) > 1/sqrt(m));
Phi = eye(k) - inv(S(1:k,1:k))^2;
Hhat = U(:,1:k)*Phi*S(1:k,1:k)...

*V(:,1:k)’*R;

6.1. GSVDmethods

There is a more elegant version of the above algorithm which
avoids the explicit pre- and dewhitening steps, and which
can be extended to a rank-deficient E, (cf. Section 7). It can
be formulated both in terms of the covariance matrices and
their cross-product estimates.

Consider first the covariance matrix approach [16, 17],
which is based on the generalized eigenvalue decomposition
of Cs and Ce:

Cs = X ΛX
T
, Ce = X X

T
, (48)

where Λ = diag(λ1, . . . , λn) and X is a nonsingular matrix5

(see, e.g., [2, Section 8.7]). If we partition X = (X1, X2)
with X1 ∈ Rn×k , then the pure signal subspace satisfies
S =R(X1). Moreover,

Cs = Cs + Ce = X
(
Λ + In

)
X

T
, (49)

showing that we can perfectly reconstruct Cs (similar to the
white noise case) by subtracting 1 from the k largest general-
ized eigenvalues of Cs.

5 The matrix X is not orthogonal, it is chosen such that the columns ξi of

X
−T

satisfy Cs ξi = λiCeξi for i = 1, . . . ,n, that is, (λi, ξi) are the general-
ized eigenpairs of (Cs,Ce).
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Figure 4: The large and small singular values are reflected in the size of the elements in the matrices R and L from the URV and ULV
decompositions. The triangular matrices from the lurv and lulv algorithms (left plots) are closer to block diagonal form than those from
the hurv and hulv algorithms (right plots).

As demonstrated in [15], we can turn the above into a
working algorithm bymeans of the generalized SVD (GSVD)
of H and E, given by

H = UHΓX
T , E = UEΔX

T. (50)

If E has full rank, then X ∈ Rn×n is nonsingular. Moreover,
UH ,UE ∈ Rm×n have orthonormal columns, and Γ,Δ ∈ Rn×n

are diagonal matrices

Γ = diag
(
γ1, . . . , γn

)
, Δ = diag

(
δ1, . . . , δn

)
(51)

satisfying Γ2 +Δ2 = I (see, e.g., [44, Section 4.2]). In the QR-
based algorithm described above, we now replace theQR fac-
torization of E with the factorization E = UE(ΔXT), leading
to a matrix Zgsvd given by

Zgsvd = H
(
ΔXT

)−1 = UH
(
ΓΔ−1

)
, (52)

which is the SVD of Zgsvd expressed in terms of GSVD fac-
tors. The corresponding signal zgsvd = (ΔXT)−Ts = (XΔ)−1s

consists of the transformed pure signal (XΔ)−1s plus addi-
tive white noise with variance m−1. Also, the pure signal
subspace is spanned by the first k columns of X , that is,
S =R(X(:, 1 : k)).

Let Γ1 and Δ1 denote the leading k × k submatrices of Γ
and Δ. Then the filtered and dewhitened matrix Ĥgsvd takes
the form

Ĥgsvd = UHΓ

(
Φ 0

0 0

)

XT = HYΦ (53)

with

YΦ = X−T
(
Φ 0

0 0

)

XT , (54)

where again Φ is from Table 1 with Σ1 = Γ1Δ
−1
1 = Γ1(I −

Γ21)
−1/2 andmη2 = 1. Thus we can compute the filtered signal

either by averaging along the antidiagonals of Ĥgsvd or as

ŝgsvd = YT
Φs = X(:, 1 : k)(Φ, 0)X−1s. (55)
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Figure 5: LPC spectra of the signals in the white noise example, us-
ing SVD- andULV-basedMV estimates. (a) Clean and noisy signals;
(b) and (c) estimates; both SNRs are 12.5 dB for k = 8 and 13.8 dB
for k = 16.

The Matlab code for MV case takes the form

[U,V,X,Gamma,Delta] = gsvd(H,E,0);
S = Gamma/Delta;
k = length(diag(S) > 1);
Phi = eye(k) - inv(S(1:k,1:k))^2;
Hhat = U(:,1:k)*Gamma(1:k,1:k)...

*Phi*X(:,1:k)’;

We note that if we are given (an estimate of) the noise
covariance matrix Ce instead of the noise matrix E, then in
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Figure 6: Comparison of the clean signal and the SVD-based MV
estimate for k = 16.

the GSVD-based algorithm we can replace the matrix E with
the Cholesky factor Re in (44).

6.2. Triangular decompositions

Just as the URV and ULV decompositions are alternatives
to the SVD—with a middle triangular matrix instead of a
middle diagonal matrix—there are alternatives to the GSVD
with middle triangular matrices. They also come in two ver-
sions with upper and lower triangular matrices but, as shown
in [30], only the version using lower triangular matrices is
useful in our applications.

This version is known as the ULLV decomposition of H
and E; it was introduced by Luk and Qiao [26] and it takes
the form

H = UHLHLV
T , E = UELV

T , (56)

where LH ,L ∈ Rn×n are lower triangular, and the three ma-
trices UH ,UE ∈ Rm×n and V ∈ Rn×n have orthonormal
columns. See [50, 51] for applications of the ULLV decom-
position in speech processing.

The prewhitening technique from Section 6 carries over
to the ULLV decomposition. Using the orthogonal decompo-
sition of E in (56), we define the transformed (prewhitened)
signal zullv = (LVT)−Ts = L−TVTs whose scaled covariance
matrix is estimated by (1/m)ZT

ullvZullv, in which

Zullv = H
(
LVT

)−1 = UHLH , (57)

and we see that the ULLV decomposition automatically pro-
vides a ULV decomposition of this matrix. Hence we can use
the techniques from Section 4.1 to obtain the estimate

Ẑullv = UH

(
LH ,11Ψ 0

0 0

)

, (58)

where LH ,11 denotes the leading k × k submatrix of LH . This
leads to the ULLV-based estimate

Ĥullv = ẐullvLV
T = UH

(
LH ,11Ψ 0

0 0

)

LVT. (59)

The alternative version takes the form

H̃ullv = HYΨ with YΨ = VL−1
(
Ψ 0

0 0

)

LVT , (60)
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and the gain matrix Ψ is given by the expressions in Table 2
with T11 replaced by LH ,11 andmη2 = 1. The Matlab code for
the MV estimate is

[k,LH,L,V,UH] = ullv(H,E,1);
Ik = eye(k);
Psi = Ik - LH(1:k,1:k)\Ik/LH(1:k,1:k)’;
Hhat = UH(:,1:k)*LH(1:k,1:k)...

*Psi*L(1:k,1:k)*V(:,1:k)’;

Similar to the GSVD algorithm, we can replace E by the
Cholesky factor Re of the noise covariance matrix in (44), if
it is available.

6.3. Colored noise example

We now switch to the colored noise (the wind signal), and
Figure 7(a) shows the power spectra for the pure and noisy
signals, together with the power spectrum for the noise sig-
nal which is clearly nonwhite. Figure 7(b) shows the power
spectra for the MV estimates using the GSVD and ULLV al-
gorithms with k = 15; the corresponding SNRs are 12.1 dB
and 11.4 dB. The GSVD estimate is superior to the ULLV es-
timate, but both give a satisfactory reduction of the noise in
the frequency ranges between and outside the formants. The
GSVD-based signal estimate is compared with the clean sig-
nal in Figure 8.

Figure 7(c) illustrates the performance of the SVD and
ULV algorithms applied to this signal (i.e., there is no pre-
conditioning). Clearly, the implicit white noise assumption
is not correct and the estimates are inferior to those using
the GSVD and ULLV algorithms because the SVD and ULV
algorithms mistake some components of the colored noise
for signal.

7. RANK-DEFICIENT NOISE

Not all noise signals lead to a full-rank noise matrix E; for
example, narrowband signals often lead to an E that is (nu-
merically) rank-deficient. In this case, we may think of the
noise as an interfering signal that we need to suppress.

When E is rank-deficient, the above GSVD- and ULLV-
based methods do not apply because Δ and L become rank-
deficient. In [31], we extended these algorithms to the rank-
deficient case; we summarize the algorithms here, and refer
to the paper for the—quite technical—details.

The GSVD is not unique in the rank-deficient case, and
several formulations appear in the literature. We use the for-
mulation in Matlab, and our algorithms require an initial
rank-revealing QR factorization of E of the form

E = QR, R ∈ Rp×n, (61)

where R is upper trapezoidal and p = rank(E). Then we use
a GSVD of (H ,R) of the form

H = UH

(
Γ 0

0 Io

)

XT ,

R = UR(Δ, 0)XT ,

(62)

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

−40
−30
−20
−10

0

M
ag
n
it
u
de

(d
B
)

Pure signal
Noisy signal
Colored noise

(a)

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

−40
−30
−20
−10

0

M
ag
n
it
u
de

(d
B
)

Pure signal
GSVD estimate, k = 15
ULLV estimate, k = 15

(b)

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

−40
−30
−20
−10

0

M
ag
n
it
u
de

(d
B
)

Pure signal
SVD estimate, k = 15
ULV estimate, k = 15

(c)

Figure 7: LPC spectra of the signals in the colored-noise exam-
ple, using the MV estimates. (a) Clean and noisy signals together
with the noise signal; (b) GSVD and ULLV estimates; the SNRs are
12.1 dB and 11.4 dB; (c) SVD and ULV estimates (both SNRs are
11.4 dB). Without knowledge about the noise, the SVD and ULV
methods mistake some components of the colored noise for a sig-
nal.
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Figure 8: Comparison of the clean signal and the GSVD-based MV
estimate for k = 15.
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where Γ and Δ are p × p and diagonal, and Io is the identity
matrix of order n− p. Moreover,UH ∈ Rm×n andUR ∈ Rp×p

have orthonormal columns, and X ∈ Rn×n is nonsingular.
The basic idea in our algorithm is to realize that there is

no noise in the subspaceR(X(:, p+1 : n)) spanned by the last
n−k columns ofX , and therefore any component of the noisy
signal s in this subspace should not be filtered. The filtering
should only take place in the subspace R(X(:, 1 : p)). Note
that the vectors in these two subspaces are not orthogonal; as
shown in [30], orthogonal subspaces are inferior to the bases
X(:, 1 : p) and X(:, p+1 : n).

Again let Γ1 and Δ1 denote the leading k × k submatrices
of Γ and Δ. Then the GSVD-based estimate takes the form

Ĥgsvd = UH

(
Γ 0

0 Io

)
⎛

⎜
⎜
⎝

Φ 0 0

0 0 0

0 0 Io

⎞

⎟
⎟
⎠XT , (63)

where, similar to the full-rank case, the k×k gain matrixΦ is
from Table 1 with Σ1 = Γ1Δ

−1
1 = Γ1(I −Γ21)

−1/2 andmη2 = 1.
The corresponding Matlab code for the MV estimate,

which requires UTV Tools for the rank-revealing QR factor-
ization hrrqr, takes the form (where thr is the threshold for
the rank decision in E)

thr = 1e-12*norm(E,’fro’);
[Q,R] = hrrqr(E,thr);
[UH,UR,X,Gamma,Delta] = gsvd(H,R);
S = Gamma/Delta;
k = length(diag(S) > 1);;
i = 1:k; j = p+1:n;
Phi = eye(k) - inv(S(1:k,1:k))^2
Hhat = UH(:,1:k)*Gamma(1:k,1:k)...

*Phi*X(:,1:k)’ +...
UH(:,p+1:n)*X(:,p+1:n)’;

There is also a formulation based on triangular factor-
izations of H and E. Again assuming that we have first com-
puted the QR factorization of E, this formulation is based on
the ULLIV decomposition of (H ,R) [27, 30, 31]:

H = UHLH

⎛

⎝L 0

0 Io

⎞

⎠VT ,

R = UR(L, 0)VT ,

(64)

in which UH ∈ Rm×n, UR ∈ Rp×p, and V ∈ Rn×n have or-
thonormal columns, and LH ∈ Rn×n and L ∈ Rp×p are lower
triangular. The corresponding estimate is given by

Ĥulliv = UHLH

⎛

⎜
⎜
⎝

Ψ 0 0

0 0 0

0 0 Io

⎞

⎟
⎟
⎠

(
L 0

0 Io

)

XT , (65)

where Ψ is from Table 2 with T11 replaced by LH ,11, the lead-
ing k × k submatrix of LH .

The Matlab code requires UTV Tools plus UTV Expan-
sion Pack, and for the MV estimate it takes the form

thr = 1e-12*norm(E,’fro’);
[Q,R] = hrrqr(E,thr);
[k,LH,L,V,UH] = ulliv(A,B,1);
Ik = eye(k);
Phi = Ik - LH(1:k,1:k)\Ik/LH(1:k,1:k)’;
i = 1:k; j = p+1:n;
Hhat = UH(:,1:k)*LH(1:k,1:k)*Phi*X(:,1:k)’...

+ UH(:,p+1:n)*LH(p+1:n,p+1:n)*X(:,p+1:n)’;

8. DYNAMICAL PROCESSING: UP- AND
DOWNDATING

In many applications we are facing a very long signal
whose length prevents the “brute-force” use of the above
algorithms—for example, the long signal may not be quasis-
tationary, and in a real-time application we can only accept a
certain small delay caused by the noise reduction algorithm.

A simple approach to obtain real-time processing is to
apply the algorithms to short segments whose length is cho-
sen such that the delay is acceptable and such that the signal
can be considered quasistationary in the duration of the seg-
ment. However, this simple block approach can lead to highly
undesired modulation effects, due to the fact that the filter
changes in each block.

One remedy for this is to impose constraints on how
much the filters can change from one block to the next, via
imposing a “smoothness constraint” on the basis vectors of
the signal subspace from one segment to the next [54]. This
approach has proven to reduce the modulation effects con-
siderably, at the expense of a nonnegligible increase in com-
putational work.

An alternative approach is to apply the above methods to
the signals in a window that either increases in length or has
fixed length and “slides” along the given signal. In both cases,
we need to recompute the matrix decomposition when the
window changes, which leads to the computational problems
of up- and downdating.

In the former approach, the task is to compute the fac-
torization of the new larger Hankel matrix

Hα
new =

(
αH

aT

)

, aT = s(m+1:N+1), (66)

where α is a forgetting factor between 0 and 1. The computa-
tional problem of efficiently computing the factorization of
Hα

new, given the factorization of H , is referred to as updating.
In the sliding-window approach, the computational

problem becomes that of efficiently computing the factoriza-
tion of the modified matrix

H�
new =H

(
s(2:N+1)

) =
(
H(2:m, :)

aT

)

(67)

given the factorization ofH . We see that this involves a down-
dating step, where the top row is removed from H , followed
by an updating step.
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Up- and downdating of the SVD is a computationally de-
manding task which requires the order of n3 operations when
Σ and V are updated, and it involves the solution of nonlin-
ear equations referred to as the secular equations; see [55, 56]
for details. For these reasons, SVD updating is usually consid-
ered to be infeasible in real-time applications. This is one of
the original motivations for introducing the rank-revealing
triangular decompositions, whose up- and downdating re-
quires only of the order n2 computations.

The details of the up- and downdating algorithms for
the UTV, VSV, ULLV, and ULLIV decompositions are rather
technical; we refer to the packages [47, 48] and the many ref-
erences therein for details.

9. FIR FILTER INTERPRETATIONS

The behavior and the quality of the rank-revealing matrix
factorizations that underly our algorithms are often mea-
sured in terms of linear algebra “tools” such as perturbation
bound and angles between subspaces. While mathematically
being well defined and precise, these “tools” may not give an
intuitive interpretation of the performance of the algorithms
when applied to digital signals.

The purpose of this section is to demonstrate that we can
associate a straightforward FIR filter interpretation with each
algorithm, thus allowing a performance study which is more
directly oriented towards the signal processing applications.
This section expands the SVD/GSVD-based results from [33]
to the methods based on triangular decompositions, and also
introduces the new concept of canonical filters.

The FIR filter interpretation is most conveniently ex-
plained in connection with the estimate ŝ ′ (7) obtained via
averaging along the antidiagonals of the matrix estimate Ĥ .
This interpretation is based on the fact that multiplication of
a vector x by a Hankel matrixH(s′),

[
H(s′)x

]
i =

n∑

j=1
xjsi− j−1, i = 1, . . . ,m, (68)

is equivalent to filtering the signal s′ with an FIR filter whose
coefficients are the elements of x.

9.1. Basic relations

If A(·) denotes the averaging operation defined in (8), then
for an outer product vwT ∈ Rm×n, we have

A
(
vwT

) = D−1H ′(v)Jw, (69)

where D is the N ×N diagonal matrix:

D = diag(1, 2, . . . ,n− 1,n, . . . ,n,n− 1, . . . , 2, 1), (70)

H ′(v) is the N ×nHankel matrix with zero upper and lower
“corners”:

H ′(v) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · v1
...

...
...

...

0 v1 · · · vn−1
v1 v2 · · · vn
v2 v3 · · · vn+1
...

...
...

...

vm−n+1 vm−n+2 · · · vm
vm−n+2 vm−n+3 · · · 0

...
...

...
...

vm 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (71)

and J is the n× n exchange matrix consisting of the columns
of the identity matrix in reverse order, (cf. [32, 33]). If Vk =
(v1, . . . , vk) and Φ = diag(φ1, . . . ,φk) then it follows from
(28) that we can write

Ĥ = HWΦ =
k∑

i=1

(
Hvi

)
φiv

T
i , (72)

and it follows that

ŝ ′ =A(Ĥ) =
k∑

i=1
A
((
Hvi

)
φiv

T
i

) =
k∑

i=1
φiD

−1H ′(Hvi
)
Jvi

= D−1
k∑

i=1
φiH

′(H(s′)vi
)(
Jvi
)
.

(73)

The scaling D takes care of corrections at both ends of the
signal.

We conclude that the estimate ŝ ′ essentially consists of a
weighted sum of k signals, each one obtained by passing the
input signal s′ through a pair of FIR filters with filter coeffi-
cients vi and Jvi. Each of these filter pairs corresponds to a
single FIR filter of length 2n − 1 whose coefficients are the
convolution of vi and Jvi, that is, we can write the filter vec-
tor as ci = H ′(vi)vi. These filters6 are symmetric and have
zero phase.

9.2. SVD/UTV/VSV filters

We first consider the LS algorithms where the filter matrix
is the identity, Φ = Ik and Ψ = Ik, which corresponds to a
simple truncation of the SVD, UTV, or VSV decomposition.
Then ŝ ′ is given by (73) with φ = 1 and with vi denoting the
ith column of any of the matrices V , VL, VR, or VS (depend-
ing on the decomposition used).

6 It is easy to verify that we obtain the same FIR filters if we base our algo-
rithms on Toeplitz matrices.



P. C. Hansen and S. H. Jensen 15

The k individual contributions to ŝ ′ can be judged as
follows. If we write H ′(Hvi) = ‖Hvi‖2H ′(ṽi) with ṽi =
Hvi‖Hvi‖−12 , then we obtain

∥
∥H ′(Hvi

)
Jvi
∥
∥
2 ≤

∥
∥Hvi

∥
∥
2

∥
∥H ′(ṽi

)∥∥
2

∥
∥Jvi

∥
∥
2, (74)

where ‖Jvi‖2 = 1. Moreover,

∥
∥H ′(ṽi

)∥∥
2 ≤

∥
∥H ′(ṽi

)∥∥
F = n1/2

∥
∥ṽi
∥
∥
2 = n1/2, (75)

and thus for i = 1, . . . , k,

∥
∥H ′(Hvi

)
Jvi
∥
∥
2 ≤ n1/2

∥
∥Hvi

∥
∥
2. (76)

For the SVD algorithm, ‖Hvi‖2 = σi. The UTV and VSV
algorithms are designed such that ‖Hvi‖2 ≈ σi. This means
that the energy in the output signal of the ith filter branch is
bounded by σi (or an approximation to σi). By truncating the
decomposition at k, we thus include the k most significant
components in the signal, as determined by the filters defined
by the vectors vi.

In the next section, we demonstrate that these filters are
typically bandpass filters centered at frequencies for which
the signal’s power spectrum has large values. Hence, the fil-
ters “pick out” the dominating spectral components/bands in
the signal; this leads to noise reduction because these compo-
nents/bands are dominated by the pure signal.

For the other SVD-based algorithms (MLS, MV, and
TDC), Φ �= I is still a diagonal matrix and (73) still holds.
The analysis remains unchanged, except that the ith output
signal is multiplied by the weight φi.

For the other UTV- and VSV-based algorithms (MV and
TDC), the filter matrix Ψ is a symmetric k × k matrix with
eigenvalue decomposition

Ψ = YMYT , (77)

in which M = diag(μ1, . . . ,μk) contains the eigenvalues, and
the matrix Y = (y1, . . . , yk) contains the orthonormal eigen-
vectors. Now let Z = V(:, 1 : k)Y denote the n × k matrix
obtained by multiplying the first k columns of V , VL, VR, or
VS by Y . Then we can write

Ĥ = HZMZT , (78)

which immediately leads to the expression

ŝ ′ = D−1
k∑

i=1
μiH

′(Hzi
)
Jzi, (79)

where zi is the ith column of Z. The FIR filter interpretation
described above immediately carries over to this expression:
the estimate ŝ ′ is a weighted sum (with weights μi) of k sig-
nals obtained by passing s′ through the filter pairs zi and Jzi.

As discussed in Section 9, the performance of the sub-
space algorithms can be further studied by means of the FIR
filters associated with the algorithms. Figure 9 shows the fre-
quency responses for the combined FIR filter pairs associ-
ated with the SVD and ULV estimates in Figure 5. We used
the low-rank ULV algorithm lulv from [47], which tends to

produce a V matrix whose leading columns are close to the
principal right singular vectors. As expected, the SVD and
ULV filters are therefore very similar in the frequency do-
main.

The first two filters (for i = 1 and 2) are bandpass fil-
ters that capture the largest formant at 700Hz, while the next
two filters (for i = 3 and 4) are bandpass filters that capture
the second largest formant at 1.1 kHz. The next six filters (for
i = 5 through 10) capture more information in the frequency
range 0–1500Hz. The five filters for i = 11 through 15 cap-
ture the two formants at 2.3 kHz and 3.3 kHz. By adaptively
placing bandpass filters at the portions of the signal with high
energy, the subspace algorithms are able to extract the most
important spectral components of the noisy signal, while at
the same time, suppressing the noise in the frequency ranges
with less energy.

9.3. GSVD/ULLV filters

The subspace algorithms for general noise have FIR filter in-
terpretations similar to those for the white noise algorithms.

To derive the FIR filters for the GSVD algorithms, let
ξ1, . . . , ξk denote the first k columns of the matrix Ξ = X−T

in (54), such that

Ĥgsvd = HYΦ = HΞ(:, 1 : k)ΦX(:, 1 : k)T . (80)

Then it follows from Section 9.1 that

ŝ ′ =A
(
HYΦ

) = D−1
k∑

i=1
φiH

′(H(s′)ξi
)
Jxi. (81)

We see that the coefficients of the ith FIR filter pair ξi and
Jxi consist of the elements of the ith columns of Ξ = X−T

and X (in reverse order), and the combined filters have co-
efficients given by the convolution of ξi and Jxi. In contrast
to the SVD/UTV/VSV algorithms, these are not zero-phase
filters.

In order to obtain bounds similar to (76), we make the
reasonable assumption that ‖E‖2 ≤ ‖H‖2. Then it follows
from the definition of the GSVD that

∥
∥Jxi

∥
∥
2 =

∥
∥xi
∥
∥
2 ≤ ‖X‖2 =

∥
∥∥
∥
∥

(
H

E

)∥∥∥
∥
∥
2

≤ 2‖H‖2. (82)

From the definition, we also have ‖Hξi‖2 = γi. Following the
same procedure as in the previous section, we thus obtain,
for i = 1, . . . , k,

∥
∥H ′(H(s′)ξi

)
Jxi
∥
∥
2 ≤ 2n1/2γi‖H‖2. (83)

Similar to before, we thus include the kmost significant com-
ponents in the signal, as determined by the filters defined by
the vectors ξi and xi.

For the ULLV algorithm we insert the eigenvalue decom-
position of Ψ (77) into (60) to obtain

H̃ullv = HVL−1
(
YMYT 0

0 0

)

LVT

=
k∑

i=1

(
HVL−1yi

)
μi
(
VLT yi

)T
.

(84)
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Figure 9: Frequency responses (Magnitude (dB) versus Frequency (Hz)) of the combined FIR filter pairs for the SVD algorithm (thick blue
lines) and the low-rank ULV algorithm lulv (thin red lines) applied to the test problem in Figure 5. Both algorithms compute the MV
estimates, and the filters are computed by means of (73) and (79).

When we insert this result into the expression for A(·), we
immediately obtain

ŝ ′ = D−1
k∑

i=1
φiH

′(H(s′)VL−1yi
)
JVLT yi, (85)

and we see that the coefficients of the ith FIR filter pair are
the elements of the two vectors VL−1yi and JVLT yi.

While it is difficult to immediately interpret, the relations
derived in this section allow us to compute the FIR filters, and
in this way study the performance of the algorithms consid-
ered.

We return to the example from Section 6.3 (and Figure 7)
and the GSVD and ULLV algorithms. The FIR filters for
the two algorithms, computed via (81) and (85), are shown
in Figure 10. We see that the first six filters of both algo-
rithms capture the dominating formants at about 600Hz and
1010Hz, while the next two filters do not focus on a par-
ticular frequency range. The filters for i = 10, . . . , 15 tend
to capture the two formants at approximately 2300Hz and
3200Hz. The two algorithms thus perform as expected (cap-
turing the formants in the order of their amplitudes), and in

a somewhat similar fashion. As we will show in Section 10.3,
the performance of the two algorithms is actually muchmore
similar than what immediately appears from Figure 10.

10. CANONICAL FILTERS

Wewill now present a novel technique, based on the FIR filter
interpretation, for comparing the performance of different
subspace algorithms. To simplify the presentation, we restrict
ourselves to the LS estimation algorithms whereΦ = Ψ = Ik.
The rank-k matrix estimates take the form

Ĥ = HVkV
T
k , (86)

in which Vk denotes the submatrix consisting of the first k
columns of V (in the SVD algorithm), UR orUL (in the UTV
algorithms), or VS (in the VSV algorithm).

10.1. Theory

The important observation here is that the matrix Ĥ is inde-
pendent of the choice of the columns v1, . . . , vk of the matrix
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Figure 10: Frequency responses (Magnitude (dB) versus Frequency (Hz)) of the FIR filters for the GSVD algorithm (thick blue lines) and
ULLV algorithm (thin red lines) applied to the test problem in Figure 7. Both algorithms compute the MV estimates, and the filters are
computed by means of (81) and (85).

Vk, as long as they are orthonormal and span the same sub-
space. To see this, let Q be a k × k orthogonal matrix; then
the columns of the matrix

Wk = VkQ (87)

form a second set of orthonormal vectors spanning R(Vk),
andWkW

T
k = VkQQTVT

k = VkV
T
k . Another way to state this

is to observe that VkV
T
k is an orthogonal projection matrix.

This fact allows us—for each estimation algorithm—to
choose a new set of vectors w1, . . . ,wk that may better de-
scribe the estimate ŝ ′ than the vectors v1, . . . , vk, knowing
that ŝ ′ stays the same. And since these vectors define FIR fil-
ter coefficients in a filter interpretation, this means that we
are free to choose filters as long as (87) is satisfied.

In particular, if we want to compare the output of two
rank-reduction algorithms, then we can try to choose the
vectors w1, . . . ,wk for the two algorithms such that these vec-
tors are as similar as possible. The more similar the filters are,
the more similar the estimates are.

The solution to the problem of choosing these vectors
comes in the form of the canonical vectors associated with the

subspaces spanned by the columns of the Vk-matrices for the
two algorithms in consideration.

To illustrate this, let us compare the truncated SVD and
ULV algorithms which produce LS estimates. We work with
the two matrices Vk and VL,k, and we let Vk = R(Vk)
and VL,k = R(VL,k) denote the subspaces spanned by the
columns of these two matrices. If

VT
k VL,k = UΘΘV

T
Θ (88)

is the SVD of the cross-product matrix, then the canonical
vectors wi and wL,i are the columns of

Wk = VkUΘ, WL,k = VL,kVΘ. (89)

The singular values appearing in Θ are termed the canonical
correlations, and they are equal to the cosines of the canonical
angles θ1, . . . , θk. That is,

Θ = diag
(
cos
(
θ1
)
, . . . , cos

(
θk
))

(90)

with 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk, see [2, 44, 57] for more details.
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We emphasize the following geometric interpretation of
the canonical angles and vectors. The smallest canonical an-
gle θ1 is the smallest angle between any two vectors v and vL
in Vk and VL,k, respectively, and it is attained for v = w1 and
vL = wL,1. The second canonical angle θ2 is the smallest angle
between any two vectors v and vL orthogonal to w1 and wL,1

in Vk and VL,k, and it is attained for v = w2 and vL = wL,2,
and so forth.

Hence, canonical vectors associated with small canoni-
cal angles define subspaces of Vk and VL,k that are as close
as possible, and zero canonical angles define canonical vec-
tors in the intersection of the subspaces Vk and VL,k. Zero
canonical vectors are always present when k is greater than
n/2, because Vk and VL,k (being subspaces of Rn) must have
a nontrivial intersection of dimension 2k − n:

θ1 = · · · = θ2k−n = 0 when 2k > n. (91)

We can now compare the truncated SVD and ULV algo-
rithms by comparing the canonical FIR filters determined by
the canonical vectorsw1, . . . ,wk and wL,1, . . . ,wL,k. If k > n/2,
then we are sure that 2k − n of these filters are identical, and
if some of the nonzero canonical angles θi are small, then the
associated filters are also guaranteed to be similar.

Thus, small (and zero) canonical angles define FIR filters
for the two algorithms that extract very similar signal com-
ponents.

Of course, there is more to this analysis than merely the
canonical angles. Even if θi is not very small, meaning that
the vectors wi and wL,i are somewhat different, say, in the 2-
norm, the associated filters may have similar properties in
the frequency domain. For example, wi and wL,i may repre-
sent bandpass filters with approximately the same center fre-
quency and bandwidth.

Hence, it is the size of the canonical angles θi together
with the frequency responses of the canonical FIR filters rep-
resented by wi and wL,i that provide a convenient tool for
comparison of the similarities and differences in the output
signals from the two algorithms characterized byVk andVL,k.

We note that as pointed out in [57], the most accurate
way to compute small canonical angles θi is via the singular
values of the matrix (I −VkV

T
k )VL,k:

for i=1:k
VLk = VLk - Vk(:,i)*(Vk(:,i)’*VLk);

end
theta = asin(min(1,svd(VLk)));
theta = flipud(theta).

Canonical angles primarily provide information about
similarities between two subspace methods. For example, if
only a few canonical angles are small, then the correspond-
ing canonical filters identify those signal components (in a
low-dimensional subspace) that are captured by both algo-
rithms. But the canonical angles cannot tell us which of the
twomethods is better—the FIR filters are more useful for this
purpose.

10.2. Example

We illustrate the above comparison of the truncated SVD and
ULV algorithms with a numerical example using the same
data as in Section 5 and with truncation parameter k = 12.

In order to demonstrate the power of our analysis, we
use the high-rank algorithm hulv from [47] to compute the
ULV decomposition. This algorithm seeks to compute good
approximations to the singular vectors corresponding to the
smallest singular values, but we cannot expect that the prin-
cipal singular vectors are approximated so well in this algo-
rithm. Hence we cannot expect the FIR filters for the SVD-
and ULV-based methods to be very similar, and Figure 11
confirms this.

Nevertheless the truncated SVD and ULV algorithms
produce estimated signals that sound qualitatively the same,
in spite of the fact that the FIR filters appear to be quite dif-
ferent. The canonical angles and filters provide an explana-
tion for this. Figure 12 shows the canonical angles θ1, . . . , θk
associated with the matrices Vk and VL,k , and we see that
many of these angles are quite small. Hence we can expect
that the two algorithms produce estimates ŝ that have very
similar signal components lying in a similar subspaces of the
12-dimensional signal subspaces Vk and VL,k used here.

This is confirmed by the plots in Figure 13 of the SVD/
ULV canonical filters defined by the columns ofWk andWL,k

in (89). We see that actually the first 8 canonical filters are
very similar. We conclude that for this particular noisy sig-
nal, the SVD and ULV algorithms produce filtered signals
that have very similar signal components, each lying in an 8-
dimensional subspace of the respective signal subspaces for
the two methods. This explains why the two estimates sound
so similar, despite the fact that the columns of Vk and VL,k

are quite different.

10.3. Extension to colored-noise algorithms

For white noise algorithms, the filter pairs in the FIR-filter
interpretation are defined from a single vector. For example,
in the SVD algorithm the coefficients of the two filters (vi
and Jvi) are the elements of the vector vi in their original and
reverse order, (cf. (73)).

For the colored-noise algorithms, we are facing the
dilemma that the two filters in a filter pair are related in a
more complicated way; the coefficients of the ith pair are
given by the elements of the ith column of the two matrices
X and Ξ = X−T .

As an example, assume we want to compare the GSVD
and ULLV algorithms, compare for example (81) and (85).
We could try to find transformations Mgsvd and Mullv to
match, as closely as possible, the filters associated with the
matrices XMgsvd and VLTYMullv. When we propagate these
transformations, the other two matrices in these methods
take the form ΞM−T

gsvd and VL−1YM−T
ullv, and there is no guar-

antee that the columns of these matrices will match each
other. In fact, our numerical experiments show that this is
not so.

Instead we must compare the combined filters (of length
2n − 1) for the two methods, given by cgsvd,i = H ′(xi)ξi and
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Figure 11: Frequency responses (Magnitude (dB) versus Frequency (Hz)) of the FIR filters for the truncated SVD algorithm and the high-
rank ULV algorithm hulv (which produce LS estimates), applied to the test problem in Figure 5. Thick blue lines are SVD filters; thin red
lines are ULV filters.
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Figure 12: The canonical angles θ1, . . . , θk (radians) associated with
the matrices Vk and VL,k from the SVD and the ULV decomposi-
tions computed by the high-rank hulv algorithm.

cullv,i = H ′(VLT yi)VL−1yi. Hence, we must compute the
canonical angles and canonical vectors associated with the
two matrices Cgsvd and Cullv whose columns consist of these
convolution vectors (which are easy to compute in Matlab
using conv).

The algorithm involves a preprocessing step where we
compute the QR factorizations

Cgsvd = QgsvdRgsvd, Cullv = QullvRullv, (92)

and then we compute the SVD

CT
gsvdCullv = UΘΘV

T
Θ . (93)

Then, as in Section 10.1, the cosines of the canonical angles
θi are the singular values inΘ, while the canonical vectors are
the columns of QgsvdUΘ and QullvVΘ.

A small θi then indicates that the ith columns of these two
matrices are close, implying that the corresponding FIR fil-
ters are similar. In this way, the analysis from the white noise
case carries over to the colored-noise algorithms.

We now use this analysis to compare the GSVD and
ULLV algorithms applied to the example from Sections 6.3
and 9.3. As mentioned there, the FIR filters (shown in
Figure 10) give us hope that the two algorithms have simi-
lar performance. Figure 14 shows the canonical filters for the
two algorithms, and it is now obvious that their performance
is almost identical.

11. CONCLUSION

In this paper we surveyed the definitions and use of diag-
onal matrix decompositions (eigenvalue and singular value
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Figure 13: Frequency responses (Magnitude (dB) versus Frequency (Hz)) for the SVD/ULV canonical filters defined by the columns ofWk

andWL,k in (89). Thick blue lines are SVD canonical filters; thin red lines are ULV canonical filters.

decompositions) and rank-revealing matrix decompositions
(ULV, URV, VSV, ULLV, and ULLIV) in single-channel
subspace-based noise reduction algorithms for speech sig-
nals, and we illustrated the algorithms with working Mat-
lab code and speech enhancement examples. We have further
provided finite-duration impulse response (FIR) filter rep-
resentations of the noise reduction algorithms and derived
closed-form expressions for the FIR filter coefficients. More-
over, we have introduced a new analysis tool called canonical
filters which allows us to compare the behavior and perfor-
mance of the subspace-based algorithms in the frequency do-
main.

APPENDIX

MV AND TDC ESTIMATES

The following derivation of the SVD-based MV estimate was
given in [8].

Lemma 1. Let the SVDs ofH andH be given by (13) and (12),
and let E satisfy (15). Then the two SVDs are related by

(
U1,U2

) = ((U1Σ1 + EV1
)
Σ−11 ,

(
mη2

)−1/2
EV2

)
,

(
Σ1 0

0 Σ2

)

=
((

Σ
2
1 +mη2Ik

)1/2
0

0 mη2In−k

)

,

(
V1,V2

) = (V 1,V 2
)
.

(A.1)

Proof. Inserting the SVD ofH intoH = H +E and using that

E = EV 1V
T
1 + EV 2V

T
2 , we get H = ZV

T
with

Z = (Z1,Z2
) = (U1Σ1 + EV 1,EV 2

)
. (A.2)

We have

ZT
1 Z1 = Σ1U

T
1U1Σ1 + Σ1U

T
1 EV 1 +V

T
1 E

TU1Σ1

+V
T
1 E

TEV 1 = Σ
2
1 +mη2Ik,

ZT
2 Z2 = V

T
2 E

TEV 2 = mη2In−k,

ZT
2 Z1 = V

T
2 E

TU1Σ1 +V
T
2 E

TEV 1 = 0,

(A.3)

and thus we can write Z = (ZD−1)D with

D =
((

Σ
2
1 +mη2Ik

)1/2
0

0
(
mη2

)1/2
In−k

)

. (A.4)

By comparing the SVDs of H and H , it follows that U =
Z D−1, Σ = D, and V = V .

As a consequence of this lemma, we have

UT
1 U1 = Σ−11

(
Σ1U

T
1U1 +VT

1 E
TU1

) = Σ−11 Σ1,

UT
1 U2 = Σ−11

(
Σ1U

T
1U2 +VT

1 E
TU2

) = 0,

UT
2 U = (mη2

)−1/2
VT
2 E

TU = 0,

(A.5)
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Figure 14: Frequency responses (Magnitude (dB) versus Frequency (Hz)) for the GSVD/ULLV canonical filters, computed via the matrices
Cgsvd and Cullv. Thick blue lines are GSVD canonical filters; thin red lines are ULLV canonical filters. Most of the canonical filters are almost
identical.

and thus

UTU =
⎛

⎝
Σ−11 Σ1 0

0 0

⎞

⎠ . (A.6)

ThematrixWmv that solves (22) isWmv = H†H , whereH† =
VΣ−1UT is the pseudoinverse of H , and thus

Ĥmv = HH†H = UUTU ΣV
T = U1Σ

−1
1 Σ

2
1V

T. (A.7)

Using the relation Σ
2
1 = Σ2

1 −mη2Ik, we immediately obtain
(23).

The derivation of the UTV- and VSV-basedMV estimates
is new; it follows that of the SVD. Note that we must assume
that the off-diagonal blocks in the UTV and VSV decomposi-
tions are zero (in practice, the norm of the off-diagonal block

is small). Hence, in our derivation, the UTV and VSV de-
compositions take the block diagonal forms

H = UT

(
T11 0

0 0

)

V
T
T ,

H = UT

(
T11 0

0 T22

)

VT
T ,

(A.8)

where T denotes either L, R, or S.

Lemma 2. Assuming that E satisfies (15), the two above de-
compositions satisfy

UT =
((
UT1T11 + EVT1

)
T−111 ,

(
mη2

)−1/2
EVT2

)
,

T =
⎛

⎝chol
(
T
T
11T11 +mη2Ik

)
0

0
(
mη2

)1/2
In−k

⎞

⎠ ,

VT = VT ,

(A.9)

where chol(·) denotes the Cholesky factor.
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Proof. We insert the decomposition ofH intoH = H+E and

use E = EVT1V
T
T1 + EVT2V

T
T2 to obtain H = ZV

T
T with

Z = (Z1,Z2
) = (UT1T11 + EVT1,EVT2

)
. (A.10)

We have

ZT
1 Z1 = T

T
11U

T
T1UT1T11 + T11U

T
T1EVT1

+V
T
T1E

TUT1T11 +V
T
T1E

TEVT1

= T
T
11T11 +mη2Ik,

ZT
2 Z2 = V

T
T2E

TEVT2 = mη2In−k,

ZT
2 Z1 = V

T
T2E

TUT1T11 +V
T
T2E

TEVT1 = 0,

(A.11)

and thus we can write Z = (Z D−1)D with

D =
⎛

⎝chol
(
T
T
11T11 +mη2Ik

)
0

0
(
mη2

)1/2
In−k

⎞

⎠ . (A.12)

By comparing the decompositions ofH andH , it follows that
UT = ZD−1, T = D, and VT = VT .

As a consequence of this lemma, we have

UT
T UT =

⎛

⎝T
−T
11 T

T
11 0

0 0

⎞

⎠ (A.13)

(the derivation is similar to that for the SVD). Hence the
UTV-based estimate is

Ĥmv = HH†H = UTU
T
T UTT V

T

= UT1T
−T
11 T

T
11T11V

T
T1

= UT1T11T
−1
11 T

−T
11

(
TT
11T11 −mη2Ik

)
VT
T1

= UT1T11
(
Ik −mη2T−111 T

−T
11

)
VT
T1.

(A.14)

This is the result given in Table 2.
We now turn to the SVD-based TDC estimate, and we

follow the derivation from [12]. The Lagrange function for
the constrained problem in (24) is

L(W , λ) = ∥∥HW −W
∥
∥2
F + λ̃

(‖W‖2F −mα2
)
, (A.15)

where λ̃ is the Lagrange parameter for the constraint. Differ-
entiation with respect to the elements inW yields

L′ = 2H
T(
HW −H

)
+ 2λ̃W , (A.16)

and setting L′ = 0 we obtain the condition

(
H

T
H + λ̃I

)
W = H

T
H. (A.17)

Thus

Wtdc =
(
H

T
H + λ̃I

)−1
H

T
H = V

(
Σ
2
+ λ̃Ik

)−1
Σ
2
V

T

= V 1
(
Σ
2
1 + λ̃Ik

)−1
Σ
2
1V

T
1 .

(A.18)

When we set λ̃ = λmη2, multiply with H , and insert Σ
2
1 =

Σ2
1 − mη2Ik and V 1 = V1 from Lemma 1, then we obtain

(26).
The UTV- and VSV-based TDC estimates are derived

analogously, using again the above block-diagonal decompo-
sitions:

Wtdc = VT
(
T
T
T + λmη2Ik

)−1
T
T
T V

T
T

= VT1
(
T
T
11T11 + λmη2Ik

)−1
T
T
11T11V

T
T1.

(A.19)

Multiplying with H and inserting T
T
11T11 = TT

11T11 −mη2Ik
and VT1 = VT1 we obtain the result in Table 2.
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