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Combining multisource cooperation and link-adaptive regenerative techniques, a novel protocol is developed capable of achieving
diversity order up to the number of cooperating users and large coding gains. The approach relies on a two-phase protocol.
In Phase 1, cooperating sources exchange information-bearing blocks, while in Phase 2, they transmit reencoded versions of
the original blocks. Different from existing approaches, participation in the second phase does not require correct decoding of
Phase 1 packets. This allows relaying of soft information to the destination, thus increasing coding gains while retaining diversity
properties. For any reencoding function the diversity order is expressed as a function of the rank properties of the distributed
coding strategy employed. This result is analogous to the diversity properties of colocated multi-antenna systems. Particular cases
include repetition coding, distributed complex field coding (DCFC), distributed space-time coding, and distributed error-control
coding. Rate, diversity, complexity, and synchronization issues are elaborated. DCFC emerges as an attractive choice because
it offers high-rate, full spatial diversity, and relaxed synchronization requirements. Simulations confirm analytically established
assessments.
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1. INTRODUCTION

In distributed virtual antenna arrays (VAA) enabled by user
cooperation, there is a distinction as to how users decide
to become part of the VAA for a given transmitted packet.
Most relaying techniques can be classified either as analog
forwarding (AF), decode-and-forward (DF), and selective
forwarding (SF) [1–3]. In SF, prospective cooperators de-
code each source packet and, if correctly decoded, they co-
operate by relaying a possibly reencoded signal. In AF, co-
operating terminals amplify the received (transmitted signal
plus noise) waveform. Both strategies achieve full diversity
equal to the number of users forming the VAA, and in some
sense their advantages and drawbacks are complementary.
One of the major limitations of AF is that it requires storage
of the analog-amplitude received waveform, which strains
resources at relaying terminals, whereas SF implementation
is definitely simpler. However, relaying information in SF is
necessarily done on a per-packet basis eventually leading to
the dismissal of an entire packet because of a small num-
ber of erroneously decoded symbols. This drawback is some-
times obscured in analyses because it does not affect the di-
versity gain of the VAA. It does affect the coding gain, though,
and in many situations, SF does not improve performance of

noncooperative transmissions because the diversity advan-
tage requires too high signal-to-noise ratios (SNR) to “kick-
in” in practice [4].

Simple implementation with high diversity and coding
gains is possible with the DF-based link-adaptive regenera-
tive (LAR) cooperation, whereby cooperators repeat packets
based on the instantaneous SNR of the received signal [4]. In
LAR cooperation, relays retransmit soft estimates of received
symbols with power proportional to the instantaneous SNR
in the source-to-relay link—available through, for example,
training—but never exceeding a given function of the aver-
age SNR in the relay-to-destination link which is available
through, for example, low-rate feedback. With LAR-based
cooperation, it suffices to perform maximum-ratio combin-
ing (MRC) at the destination to achieve full diversity equal to
the number of cooperators [4]. Finally, link-adaptive cooper-
ation was also considered for power-allocation purposes, as
in [5, 6], and references therein.

In the present paper, we extend LAR cooperation to gen-
eral distributed coding strategies operating over either or-
thogonal or nonorthogonal channels. For that matter, we
consider a multisource cooperation (MSC) setup, whereby
a group of users collaborate in conveying information sym-
bols to a common destination [7, 8]. In Phase 1, terminals
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sequentially transmit their information bearing signals. Due
to the broadcast nature of wireless transmissions, signals are
overheard by other terminals that use these received wave-
forms to estimate the information sent by other sources. In
Phase 2, sources (re)encode the aggregate information packet
that they then transmit to the destination. Combining the
signals received during both phases, the destination estimates
the sources data. The goal of this paper is to analyze the di-
versity of LAR-MSC protocols in terms of general properties
of the reencoding function used during Phase 2. Particular
cases of reencoding functions include (LAR based) (i) repe-
tition coding, (ii) distributed complex field coding (DCFC),
(iii) distributed space-time (ST) coding, and (iv) distributed
error control coding (DECC).

The use of coding techniques (i)–(iv) in SF relaying has
been considered in, for example, [8–12], where different di-
versity properties are reported. The use of repetition coding
as in (i) with average SNR source-relay knowledge at the re-
ceivers was tackled in [9] using a piecewise linear (PL) de-
tector that established diversity bounds. Alamouti codes [13]
were considered as in (iii) with regenerative relays in [10, 11].
In particular, full diversity was demonstrated in [11] if the
per-fading error probability of the relay can become avail-
able at the destination. DCFC and DECC cooperation in a
multiple access channel, using a 2-phase protocol similar to
the one proposed here in (ii) and (iv), was advocated by
[8, 12], respectively. Assuming that to participate in the Phase
2, sources have to correctly decode the packets of all other
peers, diversity order as high as the number of cooperating
terminals was established.

In general terms, the present work differs from exist-
ing alternatives in that LAR cooperation is employed to
enable high error performance (in coding gain and diver-
sity) even if packets are not correctly decoded and realis-
tic channel knowledge is available at terminals and desti-
nation. Our main result is to show that the diversity or-
der of LAR-MSC coincides with that of a real antenna ar-
ray using the same encoding function used by the VAA cre-
ated by MSC. In particular, this establishes that for a net-
work with N users, the diversity orders are (i) 2 for repe-
tition coding, (ii) N for DCFC, (iii) at least the same di-
versity order afforded by the ST code in a conventional an-
tenna array when we use distributed ST coding, and (iv) for
DECC, the same diversity achieved by the ECC over an N-lag
block fading channel. Through simulations we also corrobo-
rate that, having the same diversity gain, LAR transmissions
enable higher coding gains than those afforded by SF-based
transmissions.

The rest of the paper is organized as follows. In Section 2,
we introduce the 2-phase LAR-MSC protocol. We define a
generic encoding function and specialize it to repetition cod-
ing and DCFC. We then move on to Section 3 where we
present the main result of the paper characterizing the diver-
sity gain in terms of the properties of the distributed coder.
We discuss the application of our result to repetition coding,
DCFC, distributed ST coding, and DECC in Section 3.2. In
this section, we also compare these four different strategies
in terms of diversity, decoding complexity, synchronization,
and bandwidth efficiency. Section 3.1 is devoted to prove the

main result introduced in Section 3. We present corroborat-
ing simulations in Section 4.

Notation 1. Upper (lower) bold face letters will be used for
matrices (column vectors); [·]i, j ([·]i) for the i, jth (ith) en-
try of a matrix (vector); [·]i,: ([·]:, j) for the ith ( jth) row

(column) of a matrix; [·]i: j will denote a vector formed ex-
tracting elements from i to j; IN the N × N identity matrix;
1N the N ×1 all-one vector;⊗ the Kroneker product; ‖·‖ the
Frobenius norm; R ∪ S (R ∩ S) the union (intersection) of
sets R and S; |S| the cardinality of a set S; ∅ the empty set;
and CN (μ, σ2) will stand for a complex Gaussian distribu-
tion with mean μ and variance σ2.

2. LINK-ADAPTIVE REGENERATIVE
MULTI-SOURCE COOPERATION

Consider a set of sources {Sn}Nn=1 communicating with a
common access point or destination SN+1. Information bits
of Sn are modulated and parsed into K × 1 blocks of symbols
xn := [xn1, . . . , xnK ]T with xnk drawn from a finite alpha-
bet (constellation) As. Terminals cooperate in accordance
to a two-phase protocol. In Phase 1, sources {Sn}Nn=1 trans-
mit their symbols to the destination SN+1 in nonoverlapping
time slots. Thanks to broadcast propagation, symbols trans-
mitted by Sn are also received by the other N − 1 sources

{Sm}Nm=1,m /=n; see also Figure 1. Let y(m)
n represent the K × 1

block received at Sm, m ∈ [1,N + 1], m /=n from Sn, n ∈
[1,N]. The Sn → Sm link is modeled as a block Rayleigh fad-

ing channel with coefficients h(m)
n ∼ CN (0, (σ (m)

n )2γ). Defin-
ing normalized additive white Gaussian noise (AWGN) terms

w(m)
n ∼ CN (0, IK ) for the Sn → Sm link, we can write the

Phase-1 input-output relations as

y(m)
n = h(m)

n xn + w(m)
n , m ∈ [1,N + 1], n ∈ [1,N], n /=m,

(1)

where we recall m = N + 1 denotes the signal received at
the common destination SN+1. For reference, we also define
the instantaneous output SNR of each link γ(m)

n := |h(m)
n |2

and the corresponding average SNR as γ(m)
n = (σ (m)

n )2γ [cf.

h(m)
n ∼ CN (0, (σ (m)

n )2γ) ].
After Phase 1, each source has available an estimate of

the other sources blocks. Let x̂ (m)
n denote the estimate of the

source block xn formed at source Sm, m ∈ [1,N], m /=n. Due
to communication errors, x̂ (m)

n will generally differ from the

original block xn and from estimates x̂(l)
n at different sources

Sl /=Sm.
In Phase 2, each source transmits to the destination a

block that contains coded information from other sources’
blocks. To be precise, consider the set of Phase-1 transmitted
blocks, := {xn}Nn=1. If x were perfectly known at Sm, it would
have been possible to form a reencoded block vm of size L×1
obtained from x through a mapping Mm, that is,

vm =Mm(x). (2)

Note, however, that x is not necessarily known at Sm. In fact,

source Sm collects all estimates {x̂ (m)
n }Nn=1,n /=m plus its own
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Figure 1: Transmitted and received signals at Sm during Phase 1 and
Phase 2.

information xm in the set x̂ (m) := {xm, {x̂ (m)
n }Nn=1,n /=m}. The

L × 1 vector v̂m built by Sm in Phase 2 is thus obtained from
x̂ (m) as

v̂m =Mm
(

x̂ (m)). (3)

Comparing (2) with (3) we see that different from the MSC
strategies in [7, 14], we are encoding based on a set of error-
corrupted blocks x̂ (m). To make this explicit, we denoted the
mapped block as v̂m [cf. (3)] to emphasize that it may be dif-
ferent from the desired vm [cf. (2)].

Propagation of decoding errors can have a detrimental ef-
fect on error performance at the destination. To mitigate this
problem, our approach is to have source Sm adjust its Phase-
2 transmitted power using a channel-adaptive scaling coef-
ficient αm. The block transmitted from Sm in Phase 2 is thus√
αm v̂m. The signal y(N+1,2) received at the destination SN+1 is

the superposition of the N source signals; see Figure 2. Upon
defining a matrix of transmitted blocks ̂V := [v̂1, . . . , v̂N ] =
[M1(x̂ (1)), . . . ,MN (x̂ (N))], a diagonal matrix containing the
αm coefficients Dα := diag([

√
α1, . . . ,

√
αN ]) and the aggre-

gate channel h(N+1) := [h(N+1)
1 , . . . ,h(N+1)

N ]T containing the
coefficients from all sources to the destination, we can write

y(N+1,2) = ̂VDαh(N+1) + w(N+1,2). (4)

The destination estimates the set of transmitted blocks x us-
ing the N blocks of K symbols y(N+1,1)

n received during Phase
1 and the L symbols y(N+1,2) received during Phase 2. As-
suming knowledge of the product Dαh(N+1) (through, e.g.,
a training phase), demodulation at the destination relies on
the detection rule

x̂ = arg min
x∈AKN

s

{ N
∑

n=1

∥

∥

∥y(N+1,1)
n − diag

(

xn
)

h(N+1)
∥

∥

∥

2

+
∥

∥

∥y(N+1,2) −VDαh(N+1)
∥

∥

∥

2
}

,

(5)

where V := [v1, . . . , vN ] = [M1(x), . . . ,MN (x)]. The search
in (5) is performed over the set of constellation codewords
x with size |As|KN . Note that this is a general detector for
performance analysis purposes but its complexity does not
necessarily depend on the size of the set x; see also Section 4.

Phase 1 Phase 2
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√
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Figure 2: Time-division scheduling for N sources during Phase 1
and simultaneous transmissions during Phase 2.

The goal of this paper is to characterize the diversity of
the 2-phase MSC protocol with input/output relations (1)
and (4) and detection rule (5) in terms of suitable proper-
ties of the mappings Mm. In particular, we will show that
for given mappings Mm, an appropiate selection of the co-
efficients Dα enables diversity order equal to an equivalent
multi-antenna system with N colocated transmit antennas;
that is, when no inter-source error occurs. Purposefully gen-
eral, to illustrate notation, let us describe two examples for
Mm yielding different MSC protocols.

Example 1 (repetition coding). A simple cooperation strat-
egy for Phase 2 is that each source retransmits the packet of
one neighbor; that is, if we build a mapping

Mm : vm =
[

0T
(m̃−1)P , xT

m̃, 0T
(N−m̃)P

]T
(6)

with m̃=mod[m,N]+1, the mth terminal repeats the m−1)st
signal’s estimate for m /=1 and the first terminal repeats the
Nth signal’s estimate. Note that the all-zero vectors appended
before and after xT

m̃ are to separate transmissions in time dur-
ing Phase 2. With this definition, it can be seen that the opti-
mum receiver in (5) simplifies for each entry k to

[x̂ (N+1)
m ]k = arg min

x∈As

{∣

∣

∣

[

y(N+1,1)
m

]

k
− h(N+1)

m x
∣

∣

∣

2

+
∣

∣

∣

[

y(N+1,2)
]

(m̃+1)K+k
−√αm̃h(N+1)

m̃ x
∣

∣

∣

2}

.

(7)

Example 2 (distributed complex-field coding). Define the

N×1 column vector p(m)
k := [[x(m)

1 ]k, . . . , [xm]k, . . . , [x(m)
N ]k]T

and linearly code it using a row 1×N vector θTm, taken as the
mth row of a complex-field coding matrix Θ [15]. Repeating
this process for all k, the mapping Mm now becomes

Mm : vm =
[

0T
(m−1)P , θTm

[

p(m)
1 , . . . , p(m)

K

]

, 0T
(N−m)P

]T
. (8)

In this case, the destination SN+1 can decode p(m)
k using the

following detection rule:

p̂ (N+1)
k = arg min

pk∈AN
s

{∥

∥

∥q(N+1,1)
k − diag(pk)h(N+1)

∥

∥

∥

2

+
∥

∥

∥q(N+1,2)
k − diag(Θpk)Dαh(N+1)

∥

∥

∥

2}

,

(9)
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where q(N+1,1)
k := [[y(N+1,1)

1 ]k, . . . , [y(N+1,1)
N ]k]

T
and q(N+1,2)

k :=
[[y(N+1,2)](k−1)N+1, . . . , [y(N+1,2)

N ]kN ]
T

.

3. ERROR-PROBABILITY ANALYSIS

The purpose of this section is to determine the high-SNR di-
versity order of MSC protocols in terms of suitable properties

of the mapping Mm. For given channels H (d) := {h(N+1)
n }Nn=1

from sources to destination and H (s) := {h(m)
n }Nm,n=1,m /=n be-

tween sources, we define the so-called conditional (or in-
stantaneous) pairwise error probability (PEP) Pr {x /=x̂ |
H (s),H (d)} as the probability of decoding x̃ when x was
transmitted and denoted as Pr {x → x̃ | H (s),H (d)}. The
diversity order of the MSC protocol is defined as the slope of
the logarithm of the average PEP as the SNR goes to infinity,
that is,

d = min
x,x̃ /=x

{

− lim
γ→∞

log E
[

Pr
{

x −→ x̃ |H (s),H (d)
}]

log γ

}

. (10)

For MIMO block-fading channels, the diversity order d
depends on the rank distance between constellation code-
words [16]. This will turn out to be generalizable to the VAA
created in LAR-MSC systems. For that matter, define the set

X := {n | xn − x̃n /=0
}

(11)

containing the indices of the sources transmitting different
packets. For the same x and x̃ consider the corresponding
phase-2 blocks V and ˜V. We are interested in a subset of
columns of (V − ˜V) that form a basis of the span of its
columns. This can be formally defined as

V := {n | span
({

vn − ṽn
}

n∈V
) = span(V− ˜V)

}

, (12)

where span(·) denotes the span of a set of vectors or columns
of a matrix. With reference to Figure 2, if we assume ̂V = V,
the equivalent system can be seen as a MISO block-faded
transmission and the achievable diversity order is related to
rank (V − ˜V) = |V| over all possible pairs, where rank(·)
denotes the rank of a matrix. We are now challenged to es-
tablish similar diversity claims when ̂V /=V along with the
contribution to diversity of X after Phase 1. The pertinent
result is summarized in the following theorem we prove in
Section 3.1.

Theorem 1. Consider two distinct blocks x, x̃ and the pairwise-
error indicator sets X and V defined in (11) and (12), respec-
tively. Let the Phase-2 power-weighting coefficients {αn}Nn=1 be

αm := min
{

min m /=n
{

γ(m)
n

}

, γ (N+1)
m

}

γ(N+1)
m

, (13)

where γ(m)
n γ (N+1)

m is the instantaneous (average) SNR of link
Sn − Sm (Sm − SN+1), m ∈ [1,N]. The average diversity order
as defined in (10) of the MSC protocol defined in (1)–(5) is

d = min
x,x̃ /=x

{

− lim
γ→∞

log Pr{x −→ x̃}
log γ

}

= min
x,x̃ /=x

{|X∪V|}.
(14)

The coefficient αm in (13) is formed based on the instan-

taneous SNR of the links through which blocks {y(m)
n }Nn=1,n /=m

arrived (available, e.g., by appending a training sequence)
and the average SNR of its link to the destination, which is
assumed to slowly fade at long scale, and thus is feasible to
be fed back. These same conventions have also been adopted
in the context of DF protocols in [4, 9]. In [9], the average
channel is assumed to be known for decoding at the desti-
nation, whereas in [4] average knowledge is assumed to be
known at the relays; the latter has been proved to be full-
diversity achieving, while the former cannot achieve full-
diversity, which in our set-up amounts to N , the number of
sources transmitting to the destination.

As detailed in the next subsection, the diversity order can
be assessed by establishing proper bounds on the PEP as in,
for example, [9] or [4]. However, for systems with the same
diversity order, comparing relative performance typically re-
lies on their respective coding gains [17, Chapter 2]. Unfor-
tunately, analytical assessment of coding gains is rarely pos-
sible in closed form especially for the DF-based cooperative
systems even for simple constellations using repetition cod-
ing; see also [9] for similar comments. For this reason, we
will resort to simulated tests in order to assess coding-gain
performance in Section 4.

3.1. Proof of Theorem 1

The difficulty in proving Theorem 1 is the possibility of hav-
ing decoding errors between cooperating terminals, that is,
x̂ (m) /=x. Thus, define the set of sources’ indices that estimate
x erroneously,

E := {m | x /=x̂ (m)}. (15)

By definition E ’s complement E contains the indices of the
sources that decoded x correctly. For a given set E of correct
decoders, one expects that sources {Sm}m∈E help to increase
the detection probability, whereas sources {Sm}m∈E tend to
decrease it.

In terms of diversity, not all of the elements of E con-
tribute to increasing its order. In fact, for Sm to contribute to
the diversity order it also has to belong to the set (X ∪ V).
Thus, we define the set

C := (X∪V)∩ E . (16)

The cardinality of C can be bounded as |C| ≥ |X∪V|−|E |.
Note also that C ∩ E = ∅.

Using these definitions, we can condition on the set of
correct decoders E and bound (i) the probability Pr {x →
{x̂ (m)}Nm=1 | H (s)} of erroneous detection at the sources af-
ter Phase 1; and (ii) the probability Pr {x, {x̂ (m)}Nm=1 → x̃ |
H (s),H (d)} of incorrect detection at the destination after
Phase 1 and Phase 2. The result is stated in the following
lemma.

Lemma 1. Consider a transmitted block x, a set of estimated

blocks {x̂ (m)}Nm=1 at terminals {Sm}Nm=1, and an estimated block
x̃ at the destination. Let (i) E and C denote the sets defined in
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(15) and (16); (ii) let γ(m)
n = |h(m)

n |2 and γ(N+1)
n = |h(N+1)

n |2
be the instantaneous SNRs in the Sn → Sm and Sn → SN+1

links; and (iii) let αm denote the power scaling constant in (13).
Conditioned on fading realizations,

(a) the conditional probability of decoding {x̂ (m)}Nm=1 at
{Sm}Nm=1 given that x was transmitted in Phase-1 can be
bounded as

Pr
{

x −→ {

x̂ (m)}N
m=1 |H (s)

}

≤ κ1 exp

(

− κ2

∑

n∈E
min
m /=n

{

γ(m)
n

}

)

(17)

for some finite constants κ1, κ2;
(b) the conditional probability of detecting x̃ given that

x was transmitted in Phase-1 and {x̂ (m)}Nm=1 in Phase-2 is
bounded as

Pr
{

x,
{

x̂ (m)}N
m=1 −→ x̃ |H (s),H (d)

}

≤ Q

⎛

⎝

κ3
∑

n∈Cαnγ(N+1)
n − κ4

∑

n∈Eαnγ(N+1)
n

√

κ3
∑

n∈Cαnγ
(N+1)
n + κ4

∑

n∈Eαnγ
(N+1)
n

⎞

⎠

(18)

for some finite constants κ3, κ4.

Proof. See Appendices A and B.

Using results (a) and (b) of Lemma 1, we can bound the
PEP in (10) to obtain

Pr
{

x −→ x̃ |H (s),H (d)}

≤
∑

∀{x̂ (m)}Nm=1

κ1 exp

(

− κ2

∑

n∈E
min
m /=n

{

γ(s)
m,n

}

)

×Q

⎛

⎝

κ3
∑

n∈Cαnγ(N+1)
n − κ4

∑

n∈Eαnγ(N+1)
n

√

κ3
∑

n∈Cαnγ
(N+1)
n + κ4

∑

n∈Eαnγ
(N+1)
n

⎞

⎠ .

(19)

To interpret the bound in (19) let us note that the factors
in (17) and (18) are reminiscent of similar expressions that
appear in error-probability analysis of fading channels [18,
Chapter 14]. Taking expected values over the complex Gaus-
sian distribution of the channels in H (s) and H (d) allows us
to bound the right-hand side of (17) as

E

[

exp

(

− κ2
∑

n∈E
min
m /=n

{

γ(m)
n

}

)]

≤ (k1γ
)−|E |

(20)

for some constant k1. With respect to (18), we expect de-
coding errors at Sn when some of the fading coefficients
{γ(m)

n }m /=n are small. In turn, since αn ≤ min m /=n{γ(m)
n } we

expect
∑

n∈Eαnγ(N+1)
n to be small since n ∈ E when decoding

errors are present at Sn. Thus, the right-hand side of (18) can
be approximated as

Q

⎛

⎝

κ3
∑

n∈Cαnγ(N+1)
n − κ4

∑

n∈Eαnγ(N+1)
n

√

κ3
∑

n∈Cαnγ
(N+1)
n + κ4

∑

n∈Eαnγ
(N+1)
n

⎞

⎠

≈ Q

(

√

κ3

∑

n∈C
αnγ

(N+1)
n

)

.

(21)

As is well known [18, Chpater 14], the expected value of the
right-hand side of (21) can be bounded as

E

[

Q

(

√

κ3

∑

n∈C
αnγ

(N+1)
n

)]

≤ (k2γ
)−|C|

(22)

for some constant k2.
Combining (22), (20), and (19), we could deduce that

Pr {x → x̃} := E[Pr {x → x̃ | H (s),H (d)}] ≤ (k1k2γ)−|C|−|E |.
Since |C| ≥ |X ∪ V| − |E |, we have |C| + |E | ≥ |X ∪ V|,
which establishes Theorem 1. This argument is not a proof
however, since (22) is a bound on the approximation (21).
Furthermore, the factors in the products of (19) are depen-
dent through αm := min {min m /=n{γ(m)

n }, γ (N+1)
m }/ γ (N+1)

m [cf.
(13)] and cannot be factored into a product of expectations.
The next lemma helps us to overcome these technical diffi-
culties.

Lemma 2. For some error probability P′e{γc, γe,ηc,ηe} satisfy-
ing

P′e
{

γc, γe,ηc,ηe
} ≤ κ1 exp

(− κ2γe
)

Q

[

κ3γcηc − κ4γeηe
κ3
√

γcηc + κ4γeηe

]

(23)

for some finite constants κ1, κ2, κ3, κ4, and γc ∼ Gamma (|C|,
1/γ), γe ∼ Gamma (|E |, 1/γ); γc, ηc, γe, and ηe are nonneg-
ative and independent of each other, if the probability density
functions p(ηc) and p(ηe) do not depend on γ, the expectation
over γc, γe, ηc, and ηe is bounded as

P′e ≤ (kγ)−|C|−|E | (24)

with k := E[k(ηc,ηe)] a constant not dependent on γ.

Proof. See [19].

Combining Lemmas 1 and 2, we can prove Theorem 1 as
we show next.

Proof of Theorem 1. Using the definition of αm in (13), one
can derive the following bounds on the probability expressed
in (19):

∑

n∈E
αnγ

(N+1)
n =

∑

n∈E

min
{

min m
{

γ(m)
n

}

, γ
}

γ
γ(N+1)
n

≤
(

∑

n∈E
min
m

{

γ(m)
n

}

)∑

n∈Eγ(N+1)
n

γ
,

∑

n∈C
αnγ

(N+1)
n =

(

∑

n∈C
γ(N+1)
n

)

×
[

∑

n∈C

min
{

min m
{

γ(m)
n

}

, γ
}

γ

γ(N+1)
n

∑

n∈Cγ
(N+1)
n

]

≥
(

∑

n∈C
γ(N+1)
n

)

min
{

min∀m,n∈C
{

γ(m)
n

}

, γ
}

γ
,

(25)

where we set all instantaneous SNRs to have the same average
γ; that is, one can pick the maximum average SNR among all
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links of our setup and bound the performance of this system
by another one with the same average SNR γ in all links, as
demonstrated in [19].

If one defines γe :=∑n∈E minn{γ(m)
n }, γc :=∑n∈C γ

(N+1)
n ,

ηe := min{min∀m,n∈C{γ(m)
n }, γ}/γ and ηc := ∑

n∈E γ
(N+1)
n /γ,

then we obtain the upper bound

Pr
{

x −→ x̃ |H (s),H (d)}

≤
∑

∀{x̂ (m)}Nm=1

κ1 exp
(− κ2γe

)

Q

[

κ3γcηc − κ4γeηe
√

κ3γcηc + κ4γeηe

]

,

(26)

where γ(d)
c ∼ Gamma (|C|, 1/γ), γ(s)

e ∼ Gamma (|E |, (N −
1)/γ); γ(d)

c , ηc, γ
(s)
e , and ηe are nonnegative and independent

of each other; that is,

p
(

ηc
) = η(|E |−1)

e
(|E | − 1

)

!
exp

(− ηe
)

,

ηc = 1

with pr
(

min
∀m,n∈C

γ(m)
n ≥ γ

)

= exp
(− |C|(N − 1)

)

,

p
(

ηc
) = |C|(N − 1) exp

(− |C|(N − 1)ηe
)

with pr
(

min
∀m,n∈C

γ(m)
n < γ

)

= 1− exp
(− |C|(N − 1)

)

.

(27)

Finally, because |C| ≥ |X∪V| − |E |, we have

Pr {x −→ x̃} ≤
∑

∀{x̂ (m)}Nm=1

(

kγ
)−|C|−|E |

≤
∑

∀{x̂ (m)}Nm=1

(

kγ
)−|X∪V|+|E |−|E | = (k′γ)−|X∪V|

(28)

for some constant k′ that absorbs the sum over all {x̂ (m)}Nm=1,
because the terms in the sum no longer depend on

{x̂ (m)}Nm=1; that is, the bound is independent of the errors
after Phase 1, and so is its diversity order.

3.2. Corollaries

Theorem 1 not only quantifies error performance bounds
for our system, but also provides insight on how to de-
sign diversity-enabling mappings Mm for each Sm. The fol-
lowing examples illustrate these facts and establish desir-
able tradeoffs (summed up in Table 1) accounting for per-
formance, complexity, spectral efficiency, and synchronism
requirements.

Example 3 (repetition coding). In Section 2 we described a
specific example in which each source transmits information
of neighboring sources in separate time slots [cf. (6)]. Now,
in view of Theorem 1, we can establish the following corol-
lary.

Corollary 1. Repetition coding defined by the encoding strat-
egy in (6) and the detector in (7) achieves diversity d = 2.

Proof. If x and x̃ differ in at least two subblocks, we have
|X| ≥ 2. In the worst-case event in which x differs from x̃
in one unique sub-block, say the nth, we find X = {n}. If we
use repetition coding and permute symbols in one position
as in (6), then V = {ñ}with ñ /=n. Hence, the union of X and
V has at least two elements and the detector in (7) achieves
diversity min x,x̃ /=x{|X∪V|} = 2.

Because information is forwarded without modification,
this scheme can be interpreted as a relay scenario such as the
one in [4]. Thus, Theorem 1 demonstrates diversity for clas-
sical relay schemes based on repetition coding. This result
was already established in [4].

Repetition coding was the first reported cooperation
strategy [3]. It features low-complexity detection and does
not require symbol synchronization, because each source
transmits frames over separate time slots. As demonstrated
here, it can achieve diversity 2. With each source transmitting
a frame of K symbols, and assuming that Phase 1 and Phase
2 have identical duration KN , the per-source bandwidth ef-
ficiency of repetition coding is η = K/(KN +KN) = 1/(2N).

Example 4 (complex-field coding). In Section 2 we described
the use of CFC to code blocks of symbols. In view of
Theorem 1, we can now establish the following corollary.

Corollary 2. For the distributed CFC strategy in (8), if θm is
designed to guarantee that θTm(pk − p̃k) /=0 for any pk /=p̃k and
for anym, the detector in (9) achieves diversity d = N .

Proof. If θTm(pk − p̃k) /=0 for any m, k, the matrix (V− ˜V) has
(full) rank N ; that is, |V| = N . Thus, min x,x̃ /=x{|X∪V|} =
|V| = N .

The condition θTm(pk− p̃k) /=0 is the so-called maximum-
separability criterion. Designs for θm are available in [15] in
the context of MIMO systems with either systematic or nu-
merically optimized constructions. Interestingly, a matrix Θ
enforcing maximum separability exists for any size N [15].

As with repetition coding, distributed CFC does not re-
quire synchronism at the symbol level. Likewise, the per-
source bandwidth efficiency is also η = K/(KN + KN) =
1/(2N), but higher diversity gains are possible.

Example 5 (distributed ST coding). Theorem 1 also allows
us to analyze the performance of the distributed ST coding.
Among the several options one may consider, we here an-
alyze the performance of any generic ST code designed for
a MISO system in which the number of transmit antennas
equals the number of sources in our setup (N). Its implemen-
tation follows these steps. Suppose source Sm builds an N ×1
vector p(m)

k := [[x(m)
1 ]k, . . . , [xm]k, . . . , [x(m)

N ]k]T after Phase 1

and maps it to a generic-size T × N matrix T(m)
k (with rows

denoting time and columns denoting space) using a generic
ST mapping MST. Source Sm builds vm as follows:

Mm : vm =
[([

T(m)
1

]

:,m

)T
, . . . ,

([

T(m)
K

]

:,m

)T]T
, (29)
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Table 1: Comparison between distributed coding strategies.

Diversity order (d) BW efficiency η Synchr. at symb. level

DSTC N × T from dST to min {N ,dST + 1} 1
N + T

Needed

Repetition 2
1

2N
Not needed

DCFC N
1

2N
Not needed

DECC KP parity bits min
{

dmin , 1 +
⌊

N
(

1− K

(K + P)log 2

∣

∣As

∣

∣

)⌋}

1
N + P

Not needed

that is, Sm concatenates the mth column of the K ST mapped
matrices T(m)

1 , . . . , T(m)
K . By construction, vm has size KP × 1.

Now, the following corollary assesses its performance when
applied to our VAA setup.

Corollary 3. Given a generic ST mapping MST that enables
diversity dST in a MIMO system, its distributed implementa-
tion as in (29) can achieve diversity at least d = dST and at
most d = min {N ,dST + 1}.

Proof. If MST enables diversity dST, it means that for any k,
rank(Tk − ˜Tk) = dST. Now, adding up contributions from all
sources, matrix V has size KP ×N and is built as [cf. (29)]

V = [TT
1 , . . . , TT

K

]T
. (30)

Equation (30) implies that for any k rank rank (V − ˜V) =
rank(Tk − ˜Tk) = dST. If, by construction, MST is such that
for some x̃, a worst-case event X ∈ V is possible, then d =
min x,x̃ /=x{|X∪V|} = |V| = rank(V) = dST. If, instead, MST

is such that for all x̃ /=x, X∩V /=∅, then d = min x,x̃ /=x{|X∪
V|} = min {N , |X| + |V|} = min {N ,dST + 1}.

Corollary 3 connects the diversity criteria for MIMO ST
codes specified in, for example, [20], with its distributed
error-prone implementation in multisource scenarios. It in-
deed demonstrates that a judicious distributed implementa-
tion of this ST code may increase its diversity by 1.

Compared to repetition coding or distributed CFC, the
distributed ST codes described here require symbol-level
synchronism to operate and their performance may degrade
if sources are not perfectly synchronized [21, 22]. Simula-
tions in Section 4 will consider this effect. For a general time-
span of the code T , the bandwidth efficiency of this strategy
is η = 1/(N + T).

Example 6 (distributed error-correcting codes). Suppose
that each source transmits

Mm : vm =
[

0T
(m−1)P , v′Tm , 0T

(N−m)P

]T
, (31)

and v′m is a P × 1 vector comprising parity check bits of
the block x(m). Such mapping implements the distributed
channel-coding strategy in [7, 14]. As depicted in Figure 3,

Phase 1 Phase 2

x1

x2

. . .

xN

h(N+1)
1

h(N+1)
2

h(N+1)
N

√
α1v′1 √

α2v′2
. . .

√
αNv′N

Figure 3: Time-division scheduling for N sources during Phase 1
and Phase 2.

the aggregate block sequence sent to the destination is
[x1, . . . , xN , v̂′1, . . . , v̂′N ] and has size N(K + P). The first NK
symbols sent during Phase 1 then correspond to the system-
atic symbols and the NP symbols sent during Phase 2 com-
prise the parity-check portion of a generic ECC scheme. The
following corollary states its performance.

Corollary 4. The distributed implementation of ECC codes as
described in (31) achieves diversity order d = dC , where

dC ≤ min
{

dmin , 1 +
⌊

N
(

1− K

(K + P)log 2

∣

∣As

∣

∣

)⌋}

(32)

and dmin is the minimumHamming (free) distance of the ECC.

Proof. It is sufficient to observe that a sequence of systematic-
plus parity-bits [xT

1 , . . . , xT
N , (v′)T1 , . . . , (v′)TN ], if transmitted

over a point-to-point block-faded channel, achieves diversity
dC . This is indeed demonstrated in [16].

Notice that (32) is the Singleton bound. As shown in
(32), the code rate and the constellation-employed affect the
maximum achievable diversity order of coded transmissions
over fading channels [16]. We further remark that in order
to achieve diversity dC , one has to judiciously design inter-
leavers provided that systematic and parity bits are sent as
shown in Figure 3.

Finally, note that DECC features low synchronism re-
quirements (frame-level as in repetition and distributed
CFC) and per-source bandwidth efficiency η = 1/(N + P).
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4. SIMULATIONS AND COMPARISONS

We present numerical simulations to test error performance
of the proposed cooperative protocols. We employ binary
phase-shift keying (BPSK). We suppose that all inter-source
and source-destination links have the same average output
SNR; that is, γ(m)

n = γ, for all n ∈ [1,N], m ∈ [1,N + 1].

4.1. Distributed coding strategies

We will compare the diversity order achieved by the encoding
schemes in Examples 1, 2, 3, and 4 for different numbers of
cooperating sources N .

4.1.1. Distributed orthogonal ST codes

Here we rely on the ST codes proposed in [23]. If N = 2, then

p̂ (m)
k has size 2× 1 and we map it to

̂Tk =

⎡

⎢

⎢

⎣

[

p̂(1)
k

]

1

[

p̂(2)
k

]

2

−
([

p̂(1)
k

]

2

)∗ ([

p̂(2)
k

]

1

)∗

⎤

⎥

⎥

⎦

. (33)

The per-source bandwidth efficiency of this choice is η =
1/4. One can improve the rate without diversity loss by just
sending

̂Tk =
[

−
([

p̂(1)
k

]

2

)∗
,
([

p̂(2)
k

]

1

)∗]
(34)

with per-source bandwidth efficiency η = 1/3. In (33) we
have |V| = 2 whereas in (34) |V| = 1 but still |X∪V| = 2.
This same strategy can be generalized to N > 2 which corre-
sponds to the ST orthogonal codes in [20].

Figure 4 depicts bit-error-rate (BER) as a function of
the average SNRγ for different relay locations and schemes.
Specifically, we compare (33) (LAR-DSTBC1), (34) (LAR-
DSTBC2), and also [10] (DSTBC with no adaptation) and
[11] (DSTBC with full channel knowledge at the destina-
tion). For reference, we also depict the BER when sources are
not cooperating. Designs using LAR achieve diversity with
different coding gains. Designs which do not exploit adap-
tivity suffer diversity loss. The performance is fairly close to
that obtained with instantaneous channel knowledge [11].

4.1.2. Repetition coding and distributed
complex-field coding

Figure 5 shows the BER when employing DCFC, repetition
coding, and the PL detector in [9] for N = 1, 2, 3 cooperat-
ing sources. The CFC matrix Θ is chosen from [15]. For CFC
and repetition-based transmissions, we employ the detectors
in (9) and (7). For reference, we again depict the BER when
sources are not cooperating. We can verify that, as established
in Theorem 1, the slope of the BER varies with N when em-
ploying CFC and remains fixed to 2 when employing repeti-
tion coding with the same bandwidth efficiency. As a byprod-
uct, we also outline the advantages of repetition-based link
adaptation compared to [9]; whereas the former achieves
diversity 2 in any scenario, the latter loses diversity when
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10−3

10−2

10−1

100

B
E

R

0 5 10 15 20 25

SNR

No cooperation
DSTBC with no adaptation
DSTC with full chl. knowl.

LAR-DSTBC1
LAR-DSTBC2

Figure 4: BER of DSTBC for N = 2, 3 sources and no cooperation.
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10−5

10−4

10−3

10−2
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100

B
E

R
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SNR

No cooperation
PL detector N = 2
Repetition N = 2

Repetition N = 3
DCFC N = 2
DCFC N = 3

Figure 5: BER of DCFC versus repetition and PL relaying strategies
for N = 2, 3 sources.

sources are sufficiently separated. As already mentioned, rep-
etition coding is manifested in the well-known DF-relaying.
This motivates us to also include comparisons with the co-
herent piecewise-linear (PL) detector of [9], which assumes
that the average inter-source SNR is known at D.

4.1.3. Distributed convolutional codes

Figure 6 illustrates BER performance when employing the
distributed convolutional codes (DCC) of [14] for N = 2
and N = 4 users. We employ blocks of size K = 52 bits en-
coded through a rate 1/2 convolutional code (K = L) with
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DCC N = 2
DCC N = 4
No cooperation

Figure 6: BER of DCC for N = 2, 4 sources.

generator in octal form [5, 7] with Hamming (free) distance
dfree = 5. According to (32), the achievable diversity orders
are dC = 2 for N = 2 and dC = 3 for N = 4. Figure 6
confirms that diversity orders are achieved as predicted by
Theorem 1. From the same figure we can also observe that
coding gain is reduced. This can be due to the fact that highly
corrupted blocks processed by the Viterbi decoder severely
degrade its optimality at low SNRs.

4.2. Effect of synchronization

In the context of distributed setups, a fair comparison be-
tween distributed Alamouti, DCFC, and repetition coding
should also account for synchronization issues. We fix the
same bandwidth efficiency to be η = 1/4 and set the variation
of timing offset to be uniformly distributed as U(−Ts,Ts)
around the optimum sampling instant. We assume raised co-
sine pulses with roll-off factor β = 0.22. Figure 7 confirms
the severe degradation that simultaneous transmissions suf-
fer when accounting for mistiming across sources. More-
over, performance degradation increases with the number
of users, which clearly offsets the potential diversity gains.
We also show the performance of nonsimultaneous trans-
missions such as CFC, which do not experience this degra-
dation.

4.3. CRC-aided retransmissions versus
adaptive techniques

The advantages of MSC using SF as in [8] hinge upon the as-
sumption of either error-free links between sources or, as is
the case in practice, on correct error-detection decoding per
frame. In this practical case, frames with errors are discarded
and no signal is retransmitted. This strategy, however, can
be inefficient at low SNR and/or when the CRC block size is
large, because a single erroneous bit leads one to discard the
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DSTBC N = 3 asynchr.
DCFC N = 3 synchr.

Figure 7: BER of DCFC versus DSTBC for N = 3 and asyn-
chronous transmissions.
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Figure 8: BER of adaptive versus selective retransmissions for
packet length K = 200 bits and DCFC.

entire block. To delineate this assessment, we set both strate-
gies to use the same error-correction strategy. For the LAR,
we set αn = 1 if no error is detected at user n; otherwise,
the block is transmitted with αn as in (13). This slight mod-
ification of our protocol, which we name LAR-SF, although
not analytically proven here, can be reasonably expected to
achieve full diversity. On the other hand, and for the sake
of a fair comparison, we increase the average power of SF to
match that of adaptive LAR-SF transmissions.

Figures 8 and 9 compare the BER of these strategies for
block sizes of K = 200 and K = 1024 bits, respectively.
As expected, both systems achieve full diversity. Moreover,
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Figure 9: BER of adaptive versus selective retransmissions for
packet length K = 1024 bits and DCFC.

link-adaptive transmissions exhibit larger coding gain, which
corroborates the fact that discarding large packets renders SF
strategies inefficient.

5. CONCLUSIONS

We have developed a link-adaptive relay protocol for use in
multisource cooperative scenarios. General diversity perfor-
mance was analyzed as a function of the rank properties of
the distributed coding strategy. We included repetition cod-
ing, distributed CFC, distributed ST coding, and distributed
ECC as particular cases of this general diversity analysis, con-
cluding that the attainable diversity order is (i) 2 for repeti-
tion coding; (ii) N for DCFC; (iii) at least the same diversity
order afforded by the ST codes in conventional antenna ar-
rays when we use distributed ST coding; and (iv) for DECC
the same diversity achieved by the ECC over an N-lag block
fading channel. Simulations suggested that synchronization
tasks are relevant to be included as part of the design of a
VAA. In this context, we found that DCFC offers high-rate,
full-diversity, and relaxed synchronization requirements.

APPENDICES

A. PROOF OF LEMMA 1(a)

The probability that Sm fails to detect the block xn for all n /=m
sent from Sn can be bounded as

Pr
{

xn −→ x̂ (m)
n |H (s)

}

≤ Q
(∥

∥

∥h(m)
n (xn − x̂ (m)

n )
∥

∥

∥

)

, (A.1)

where Q(z) := 1/
√

2π
∫∞
z exp (−t2/2)dt. Considering that

these are independent processes, the probability that Sm is

in E is

Pr
{

x −→ x̂ (m) |H (s)
}

≤
N
∑

n=1,n /=m
Q
(∥

∥

∥h(m)
n

(

xn − x̂ (m)
n

)∥

∥

∥

)

.

(A.2)

Letting δ(m)
n :=

√

∑K
k=1 |[xn]k − [x̂ (m)

n ]k|2 denote the

squared Euclidean distance between xn and x̂ (m)
n , and us-

ing the fact that function Q(·) is monotonically decreas-

ing, its inner term can be bounded as ‖h(m)
n (xn − x̂ (m)

n )‖ =
√

γ(m)
n (δ(m)

n )
2 ≥

√

minm /=n{γ(m)
n }minm /=n{(δ(m)

n )
2}. And thus,

N
∑

m=1,m /=n
Q
(∥

∥

∥h(m)
n

(

xn − x̂ (m)
n

)∥

∥

∥

)

≤ (N − 1) exp
(

− 1
2

min
m /=n

{

γ(m)
n

}

min
m /=n

{(

δ(m)
n

)2})

,

(A.3)

where we also used the fact that Q(z) ≤ exp (−z2/2). The
probability that a set of sources E participates in error detec-
tion can be then readily bounded as

Pr
{

x −→
{

x̂ (m)
}N

m=1
|H (s)

}

≤
∏

m∈E
Pr
{

x−→ x̂ (m) |H (s)
}

≤κ1 exp
(

− κ2

∑

m∈E
min
m /=n

{

γ(m)
n

}

)

(A.4)

for some finite constants κ1 and κ2.

B. PROOF OF LEMMA 1(b)

For compactness, we define D
(N+1)
h := diag (h(N+1)) ⊗ IK ,

Dα := Dα ⊗ IK , y(N+1,1) := [(y(N+1,1)
1 )T , . . . , (y(N+1,1)

N )T]T

and x := [x1, . . . , xN ]T and rewrite
∑ N

n=1‖y(N+1,1)
n −

diag (xn)h(N+1)‖2 = ‖y(N+1,1) − D
(N+1)
h x‖2. With these defi-

nitions, the probability of detection error in (5) is

Pr
{

x,
{

x̂ (m)
}N

m=1
−→ x̃ |H (s),H (d)

}

= Pr
{∥

∥

∥y(N+1,1) −D
(N+1)
h x

∥

∥

∥

2
+
∥

∥

∥y(N+1,2) −VDαh(N+1)
∥

∥

∥

2

>
∥

∥

∥y(N+1,1) −D
(N+1)
h x̃

∥

∥

∥

2
+
∥

∥

∥y(N+1,2) − ˜VDαh(N+1)
∥

∥

∥

2}

,

(B.1)

where x̃ := [x̃T
1 , . . . , x̃T

N ]T . This probability of error can be
written as Pr{X > 0}, where

X := −2 Re
{(

y(N+1,1)
)H

D
(N+1)
h (x − x̃)

}

− 2 Re
{(

y(N+1,2)
)H

(V− ˜V)Dαh(N+1)
}

+
∥

∥

∥D
(N+1)
h x

∥

∥

∥

2 −
∥

∥

∥D
(N+1)
h x̃

∥

∥

∥

2
+
∥

∥

∥VDαh(N+1)
∥

∥

∥

2

−
∥

∥

∥
˜VDαh(N+1)

∥

∥

∥

2
.

(B.2)
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Using y (N+1,1)=D
(N+1)
h x+w(N+1,1) and y(N+1,2)= ̂VDαh(N+1) +

w(N+1,1), it follows that X in (B.2) is a Gaussian random vari-
able. Thus, the error probability is quantified by Pr{X > 0} =
Q(−μ/√σ2), where μ is its mean and σ2 is its variance and is
given by

Pr
{

x,
{

x̂ (m)
}N

m=1
−→ x̃ |H (s),H (d)

}

= Q

( ∥

∥D
(N+1)
h (x − x̃)

∥

∥

2

√

∥

∥D
(N+1)
h (x− x̃)

∥

∥

2
+
∥

∥(V− ˜V)Dαh(N+1)
∥

∥

2

+

∥

∥(̂V− ˜V)Dαh(N+1)
∥

∥

2 − ∥∥(̂V−V)Dαh(N+1)
∥

∥

2

√

∥

∥D
(N+1)
h (x− x̃)

∥

∥

2
+
∥

∥(V− ˜V)Dαh(N+1)
∥

∥

2

)

.

(B.3)

The second term in the denominator of (B.3) can be ex-
panded as ‖(V − ˜V)Dαh(N+1)‖2 ≤ ‖( ̂V − ˜V)Dαh(N+1)‖2 +
‖(̂V − ˜V)Dαh(N+1)‖2. Defining the Euclidean distance δn :=
√

∑ K
k=1|[xn]k − [x̃n]k|2, we can write ‖D

(N+1)
h (x − x̃)‖2 =

∑

n∈Xγ(N+1)
n δ2

n, where we have used the definition of the set
X in (12). Furthermore, one can bound this sum as

∑

n∈X
γ(N+1)
n δ2

n ≥
∑

n∈X∩E
γ(N+1)
n δ2

n. (B.4)

Now we turn our attention to (̂V−V) and (̂V− ˜V). Ma-
trix (̂V − V) has at most |E | linearly independent columns
indexed by E ; one can thus compute its singular value de-
composition (̂V − V) = AΣB and choose B such that
[BDαh(N+1)]n = εn

√
αnh

(N+1)
n for n ∈ E and some nonzero

constant εn, and bound

∥

∥(̂V−V)Dαh(N+1)
∥

∥

2 ≥ ∑

n∈E
αnγ(N+1)

n ε2
nλn, (B.5)

where λn is the associated singular value λn := [Σ]n,n. Like-
wise, (̂V − ˜V) has at least |V ∩ E | linearly independent
columns indexed by V∩E and following the same reasoning
as before, we can bound

∥

∥

∥(̂V− ˜V)Dαh(N+1)
∥

∥

∥

2 ≤ ∑

n∈V∩E
αnγ(N+1)

n ε′2n λ′n (B.6)

for some nonzero ε′2n and λ′n.
Inequalities (B.4) and (B.5) are lower bounds, whereas

(B.6) is an upper bound. Using the fact that Q((a − b)/√
a + b) ≤ Q((c − d)/

√
c − d) if a ≥ c and b ≤ d, we can

rewrite (B.3) as

Pr
{

x,
{

x̂ (m)
}N
m=1 −→ x̃ |H (s),H (d)

} ≤ Q
(

B − B′√
B − B′

)

,

(B.7)

where B denotes
∑

n∈X∩Eγ(N+1)
n δ2

n +
∑

n∈X∩Eαnγ(N+1)
n ε2

nλn,

B′ denotes
∑

n∈Eαnγ(N+1)
n ε′2n λ

′
n. Finally, noticing that sums

over indexes n ∈X∩E and n ∈ V ∩E can be merged into a
single sum with index n ∈ (X∪V)∩ E , and bounding with
appropriate nonzero constants, one can readily arrive to (18).
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