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We consider a wireless relay network, where a transmitter node communicates with a receiver node with the help of relay nodes.
Most coding strategies considered so far assume that the relay nodes are used for one hop. We address the problem of code design
when relay nodes may be used for more than one hop. We consider as a protocol a more elaborated version of amplify-and-
forward, called distributed space-time coding, where the relay nodes multiply their received signal with a unitary matrix, in such a
way that the receiver senses a space-time code. We first show that in this scenario, as expected, the so-called full-diversity condition
holds, namely, the codebook of distributed space-time codewords has to be designed such that the difference of any two distinct
codewords is full rank. We then compute the diversity of the channel, and show that it is given by the minimum number of relay
nodes among the hops. We finally give a systematic way of building fully diverse codebooks and provide simulation results for their
performance.
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1. INTRODUCTION

Cooperative diversity is a popular coding technique for wire-
less relay networks [1]. When a transmitter node wants
to communicate with a receiver node, it uses its neigh-
bor nodes as relays, in order to get the diversity known
to be achieved by MIMO systems. Intuitively, one can
think of the relay nodes playing the role of multiple anten-
nas. What the relays perform on their received signal de-
pends on the chosen protocol, generally categorized between
amplify-and-forward (AF) and decode-and-forward (DF).
In order to evaluate their proposed cooperative schemes (for
either strategy), several authors have adopted the diversity-
multiplexing gain tradeoff proposed originally by Zheng and
Tse for the MIMO channel, for single or multiple antenna
nodes [2–5].

As specified by its name, AF protocols ask the relay nodes
to just forward their received signal, possibly scaled by a
power factor. Distributed space-time coding [6] can be seen
as a sophisticated AF protocol, where the relays perform on
their received vector signal a matrix multiplication instead of
a scalar multiplication. The receiver thus senses a space-time
code, which has been “encoded” by both the transmitter and
the relay nodes with their matrix multiplication.

Extensive work has been done on distributed space-time
coding since its introduction. Different code designs have
been proposed, aiming at improving either the coding gain,
the decoding, or the implementation of the scheme [7–10].
Scenarios where different antennas are available have been
considered in [11, 12].

Recently, distributed space-time coding has been com-
bined with differential modulation to allow communication
over relay channels with no channel information [13–15].
Schemes are also available for multiple antennas [16].

Finally, distributed space-time codes have been consid-
ered for asynchronous communication [17].

In this paper, we are interested in considering distributed
space-time coding in a multihop setting. The idea is to
iterate the original two-step protocol: in a first step, the
transmitter broadcasts the signal to the relay nodes. The
relays receive the signal, multiply it by a unitary matrix,
and send it to a new set of relays, which do the same,
and forward the signal to the final receiver. Some multihop
protocols have been recently proposed in [18, 19], for the
amplify-and-forward protocol. Though we will give in detail
most steps with a two-hop protocol for the sake of clarity,
we will also emphasize how each step is generalized to more
hops.
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The paper is organized as follows. In Section 2, we
present the channel model, for a two-hop channel. We then
derive a Chernoff bound on the pairwise probability of
error (Section 3), which allows us to derive the full-diversity
condition as a code design criterion. We further compute the
diversity of the channel, and show that if we have a two-hop
network, with R1 relay nodes at the first hop, and R2 relay
nodes at the second hop, then the diversity of the network is
min(R1,R2). Section 4 is dedicated to the code construction
itself, and some examples of proposed codes are simulated in
Section 5.

2. A TWO-HOP RELAY NETWORKMODEL

Let us start by describing precisely the three-step transmis-
sion protocol, already sketched above, that allows communi-
cation for a two-hop wireless relay network. It is based on the
two step protocol of [6].

We assume that the power available in the network is, re-
spectively, P1T , P2T , and P3T at the transmitter, at the first
hop relays, and at the second hop relays for T-time trans-
mission. We denote by Ai ∈ CT×T , i = 1, . . . ,R1, the unitary
matrices that the first hop relays will use to process their re-
ceived signal, and by Bj ∈ CT×T , j = 1, . . . ,R2, those at the
second hop relays. Note that the matrices Ai, i = 1, . . . ,R1,
Bj , j = 1, . . . ,R2, are computed beforehand, and given to the
relays prior to the beginning of transmission. They are then
used for all the transmission time.

Remark 1 (the unitary condition). Note that the assumption
that the matrices have to be unitary has been introduced in
[6] to ensure equal power among the relays, and to keep the
forwarded noise white. It has been relaxed in [4].

The protocol is as follows.
(1) The transmitter sends its signal s ∈ CT such that

E[s∗s] = 1. (1)

(2) The ith relay during the first hop receives

ri =
√
P1T︸ ︷︷ ︸
c1

fis + vi ∈ CT , i = 1, . . . ,R1, (2)

where fi denotes the fading from the transmitter to the ith
relay, and vi the noise at the ith relay.

(3) The jth relay during the second hop receives

x j = c2

R1∑

i=1

gi jAi
(
c1 fis + vi

)
+ w j ∈ CT ,

= c1c2
[
A1s, . . . ,AR1s

]

⎡

⎢
⎢
⎣

f1g1 j
...

fR1gR1 j

⎤

⎥
⎥
⎦

+ c2

R1∑

i=1

gi jAivi + w j , j = 1, . . . ,R2,

(3)

where gi j denotes the fading from the ith relay in the first hop
to the jth relay in the second hop. The normalization factor
c2 guarantees that the total energy used at the first hop relays
is P2T (see Lemma 1). The noise at the jth relay is denoted
by w j .

(4) At the receiver, we have

y = c3

R2∑

j=1

hjBjx j + z ∈ CT

= c3c2c1

R2∑

j=1

hjBj
[
A1s, . . . ,AR1s

]

⎡

⎢
⎢
⎣

f1g1 j
...

fR1gR1 j

⎤

⎥
⎥
⎦

+ c3

R2∑

j=1

hjBj

(

c2

R1∑

i=1

gi jAivi + w j

)

+ z

= c3c2c1
[
B1A1s, . . . ,B1AR1s, . . . ,BR2A1s, . . . ,BR2AR1s

]

︸ ︷︷ ︸
S∈CT×R1R2

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1g11h1
...

fR1gR11h1
...

f1g1R2hR2

...
fR1gR1R2hR2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
H∈CR1R2×1

+ c3c2

R1∑

i=1

R2∑

j=1

hjgi jBjAivi + c3

R2∑

j=1

hjBjw j + z

︸ ︷︷ ︸
W∈CT×1

,

(4)

where hj denotes the fading from the jth relay to the receiver.
The normalization factor c3 (see Lemma 1) guarantees that
the total energy used at the first hop relays is P3T . The noise
at the receiver is denoted by z.

In the above protocol, all fadings and noises are assumed
to be complex Gaussian random variables, with zero mean
and unit variance.

Though relays and transmitters have no knowledge of the
channel, we do assume that the channel is known at the re-
ceiver. This makes sense when the channel stays roughly the
same long enough so that communication starts with a train-
ing sequence, which consists of a known code. Thus, instead
of decoding the data, the receiver gets knowledge of the chan-
nel H , since it does not need to know every fading indepen-
dently.

Lemma 1. The normalization factors c2 and c3 are, respec-
tively, given by

c2 =
√

P2

P1 + 1
,

c3 =
√

P3

P2R1 + 1
.

(5)
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Proof. (1) Since E[r∗i ri] = (P1 + 1)T , we have that

E
[
c2

2

(
Airi
)∗Airi

] = P2T ⇐⇒ c2
2

(
P1 + 1

)
T = P2T

⇐⇒ c2 =
√

P2

P1 + 1
.

(6)

(2) We proceed similarly to compute the power at the sec-
ond hop. We have

E
[
x∗j x j
] = E

[

c2
2

( R1∑

i=1

gi jAiri

)∗( R1∑

k=1

gk jAkrk

)]

+ E
[
w∗j w j

]

= c2
2

R1∑

i=1

E
[
r∗i ri
]

+ T = (P2R1 + 1
)
T ,

(7)

so that

E
[
c2

3

(
Bjx j
)∗
Bjx j
] = P3T ⇐⇒ c2

3

(
P2R1 + 1

)
T = P3T

⇐⇒ c3 =
√

P3

P2R1 + 1
.

(8)

Note that from (4), the channel can be summarized as

y = c1c2c3SH + W , (9)

which has the form of a MIMO channel. This explains the
terminology distributed space-time coding, since the code-
word S has been encoded in a distributed manner among the
transmitter and the relays.

Remark 2 (generalization to more hops). Note furthermore
the shape of the channel matrix H . Each row describes a path
from the transmitter to the receiver. More precisely, each row
is of the form figi jh j , which gives the path from the trans-
mitter to the ith relay in the first hop, then from the ith relay
to the jth relay in the second hop, and finally from the jth
relay to the receiver. Thus, though we have given the model
for a two-hop network, the generalization to more hops is
straightforward.

3. PAIRWISE ERROR PROBABILITY

In this section, we compute a Chernoff bound on the pair-
wise probability of error of transmitting a signal s, and de-
coding a wrong signal. The goal is to derive the so-called
diversity property as code-design criterion (Section 3.1). We
then further elaborate the upper bound given by the Cher-
noff bound, and prove that the diversity of a two-hop re-
lay network is actually min(R1,R2), where R1 and R2 are the
number of relay nodes at the first and second hops, respec-
tively, (Section 3.2).

In the following, the matrix I denotes the identity matrix.

3.1. Chernoff bound on the pairwise error probability

In order to determine the maximum likelihood decoder, we
first need to compute

P
(
y | s, fi, gi j ,hj

)
. (10)

If gi j and hj are known, then W is Gaussian with zero mean.
Thus knowing fi, gi j , hj ,H and s, we know that y is Gaussian.

(1) The expectation of y given s and H is

E[y] = c1c2c3SH. (11)

(2) Thevariance of y given gi j and hj is

E
[(
y − E[y]

)(
y − E[y]

)∗]

= E
[
WW∗]

= c2
3c

2
2E

[ R1∑

i=1

R2∑

j=1

hjgi jBjAivi
R1∑

k=1

R2∑

l=1

(
hlgklBlAkvk

)∗
]

+ c2
3E

[ R2∑

j=1

hjBjw j

R2∑

l=1

(
hlBlwl

)∗
]

+ E
[
zz∗
]

= c2
3c

2
2

R1∑

i=1

( R2∑

j=1

gi jhjBj

)( R2∑

l=1

g∗il h
∗
l B

∗
l

)

+ c2
3

R2∑

j=1

∣∣hj

∣∣2
IT + IT =: Ry,

(12)

where

c2
2c

2
3 =

P2P3(
P1 + 1

)(
P2R1 + 1

) . (13)

Summarizing the above computation, we obtain the obvious
following proposition.

Proposition 1.

P
(
y | s, fi, gi j ,hj

)

= 1
πTdet

(
Ry
)exp
(−(y − c1c2c3SH

)∗×R−1
y

(
y−c1c2c3SH

))
.

(14)

Thus the maximum likelihood (ML) decoder of the sys-
tem is given by

arg max
s

P
(
y | s, fi, gi j ,hj

) = arg min
s

∥
∥y − c1c2c3SH

∥
∥2
.

(15)

From the ML decoding rule, we can compute the pairwise
error probability (PEP).

Lemma 2 (Chernoff bound on the PEP). The PEP of send-
ing a signal sk and decoding another signal sl has the following
Chernoff bound:

P
(
sk −→ sl

)

≤Efi,gi j ,hj exp
(− 1

4
c2

1c
2
2c

2
3H

∗ × (Sk − Sl
)∗
R−1
y

(
Sk − Sl

)
H
)
.

(16)
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Proof. By definition,

P
(
sk −→ sl | fi, gi j ,hj

)

= P
(
P(y | sl, fi, gi j ,hj

)
> P
(
y | sk, fi, gi j ,hj

))

= P
(
ln
(
P(y | sl, fi, gi j ,hj

))

− ln
(
P
(
y | sk, fi, gi j ,hj

))
> 0
)

≤EW
[
expλ
(
ln
(
P
(
y | sl, fi, gi j ,hj

))

− ln
(
P
(
y | sk, fi, gi j ,hj

)))]
,

(17)

where the last inequality is obtained by applying the Chernoff
bound, and λ > 0. Using Proposition 1, we have

λ
(
ln
(
P
(
y | sl, fi, gi j ,hj

))− ln
(
P
(
y | sk, fi, gi j ,hj

)))

= −λ[c2
1c

2
2c

2
3H

∗(S∗K − S∗l
)
R−1
y

(
Sk − Sl

)
H + c1c2c3H

∗

× (S∗K−S∗l
)
R−1
y W+c1c2c3W

∗R−1
y

(
Sk−Sl

)
H
]

= −(λc1c2c3
(
Sk − Sl

)
H + W

)∗

× R−1
y

(
λc1c2c3

(
Sk − Sl

)
H + W

)

+
(
λ2 − λ

)
c2

1c
2
2c

2
3H

∗(Sk − Sl
)∗
R−1
y

(
Sk − Sl

)
H

+ W∗R−1
y W ,

(18)

and thus

EW
[
expλ
(
ln
(
P(y | sl, fi, gi j ,hj

))−ln
(
P
(
y | sk, fi, gi j ,hj

)))]

=
∫

exp
(−W∗R−1

W W
)

πTdet
(
R−1
W

) expλ
(
ln
(
P
(
y | sl, fi, gi j ,hj

))

− ln
(
P
(
y | sk, fi, gi j ,hj

)))
dW

= exp
((
λ2 − λ

)
c2

1c
2
2c

2
3H

∗(Sk − Sl
)∗
R−1
y

(
Sk − Sl

)
H
)

(19)

since Rw = Ry and

1
πTdet

(
R−1
W

)
∫

exp
(− (λc1c2c3

(
Sk − Sl

)
H + W

)∗

× R−1
y

(
λc1c2c3

(
Sk − Sl

)
H + W

))

× dW = 1.
(20)

To conclude, we choose λ = 1/2, which maximizes λ2 − λ,
and thus minimizes −(λ− λ2).

We now compute the expectation over fi. Note that one
has to be careful since the coefficients fi are repeated in the
matrix H , due to the second hop.

Lemma 3 (bound by integrating over f). The following upper
bound holds on the PEP:

P
(
sk −→ sl

)

≤Egij ,hj det
(
IR1 +

1
4
c2

1c
2
2c

2
3H

∗(Sk − Sl
)∗
R−1
y

(
Sk − Sl

)
H
)−1

(21)

whereH is given in (22).

Proof. We first rewrite the channel matrix H as H = H f ,
with

f =

⎡

⎢
⎢
⎣

f1
...
fR1

⎤

⎥
⎥
⎦ ∈ CR1 ,

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g11h1

. . .
gR11h1

...
g1R2hR2

. . .
gR1R2hR2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ CR1R2×R1 .

(22)

Thus we have, since f is Gaussian with 0 mean and variance
IR1 ,

Efiexp
(− 1

4
c2

1c
2
2c

2
3H

∗(Sk − Sl
)∗
R−1
y

(
Sk − Sl

)
H
)

=
∫

exp
(− f∗f

)

πR1
exp
(
− 1

4
c2

1c
2
2c

2
3f
∗H∗(Sk − Sl

)∗

× R−1
y

(
Sk − Sl

)
H f
)
df

= 1
πR1

∫

exp
(
− f∗
[
IR1 +

1
4
c2

1c
2
2c

2
3H

∗(Sk − Sl
)∗

× R−1
y

(
Sk − Sl

)
H
]
f
)
df

= det
(
IR1 +

1
4
c2

1c
2
2c

2
3H

∗(Sk − Sl
)∗ × R−1

y

(
Sk − Sl

)
H
)−1

.

(23)

Similarly to the standard MIMO case, and to the previous
work on distributed space-time coding [6], the full-diversity
condition can be deduced from (21). In order to see it, we
first need to determine the dominant term as a function of P,
the power used for the whole network.

Remark 3 (power allocation). In this paper, we assume that
the power P is shared equally among the transmitter and the
three hops, namely,

P1 = P

3
, P2 = P

3R1
, P3 = P

3R2
. (24)

It is not clear that this strategy is the best, however, it is a
priori the most natural one to try. Under this assumption,
we have that

c2
3 =

P

R2(P + 3)
,

c2
2c

2
3 =

P2

R1R2(P + 3)2 ,

c2
1c

2
2c

2
3 =

P3T

3R1R2(P + 3)2 .

(25)

Thus, when P grows, c2
1c

2
2c

2
3 grows like P.
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Remark 4 (full diversity). It is now easy to see from (21) that
if Sl−Sk drops rank, then the exponent of P increases, so that
the diversity decreases. In order to minimize the Chernoff
bound, one should then design distributed space-time codes
such that det (Sk − Sl)

∗(Sk − Sl) �=0 (property well known as
full diversity). Note that the term R−1

y between Sk − Sl and
its conjugate does not interfere with this reasoning, since Ry

can be upper bounded by tr(Ry)I (see also Proposition 2 for
more details). Finally, the whole computation that yields to
the full-diversity criterion does not depend on H being the
channel matrix of a two-hop protocol, since the decomposi-
tion of H used in the proof of Lemma 3 could be done simi-
larly if there were three hops or more.

3.2. Diversity analysis

The goal is now to show that the upper bound given in (21)
behaves like Pmin(R1,R2) when we let P grows. To do so, let us
start by further bounding the pairwise error probability.

Proposition 2. Assuming that the code is fully diverse, it holds
that the PEP can be upper bounded as follows:

P
(
sk −→ sl

)

≤Egij ,hj

R1∏

i=1

×
(

1 +
λ2

minc
2
1c

2
2c

2
3

4T

×
∑ R2

j=1

∣∣hj

∣∣2∣∣gi j
∣∣2

c2
3c

2
2

∑ R1
k=1

∣
∣
∣
∑ R2

j=1hjgk j
∣
∣
∣

2
+c2

3

∑ R2
j=1

∣
∣hj

∣
∣2

+1

)−1

≤Egij ,hj

R1∏

i=1

×
(

1+
λ2

minc
2
1c

2
2c

2
3

4T

×
∑ R2

j=1|hjgi j|2
c2

3c
2
2(2R2−1)

∑ R1
k=1

∑ R2
j=1|hjgk j|2+c2

3

∑ R2
j=1|hj|2+1

)−1

.

(26)

Proof. (1) Note first that

Ry ≤ tr
(
Ry
)
IT

=
(

c2
3c

2
2

R1∑

i=1

tr

( R2∑

j=1

gi jhjBj

R2∑

l=1

g∗il h
∗
l B

∗
l

)

︸ ︷︷ ︸
α

+ T

(

c2
3

R2∑

j=1

∣
∣hj

∣
∣2

+ 1

))

IT ,

(27)

so that

P
(
sk −→ sl

)

≤Egij ,hj det

(

IR1 +
c2

1c
2
2c

2
3

4
(
c2

3c
2
2α + T

(
c2

3

∑ R2
j=1

∣
∣hj

∣
∣2

+ 1
))

×H∗(Sk − Sl
)∗(

Sk − Sl
)
H

)−1

≤Egij ,hj det

(

IR1 +
λ2

minc
2
1c

2
2c

2
3

4
(
c2

3c
2
2α+T

(
c2

3

∑ R2
j=1

∣∣hj

∣∣2
+1
))H∗H

)−1

,

(28)

where λ2
min denote the smallest eigenvalue of (Sk − Sl)

∗(Sk −
Sl), which is strictly positive under the assumption that the
codebook is fully diverse.

Furthermore, we have that

H∗H =
R2∑

j=1

⎛

⎜
⎜
⎜
⎝

∣
∣hj

∣
∣2∣∣g1 j

∣
∣2

. . .
∣
∣hj

∣
∣2∣∣gR1 j

∣
∣2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R2∑

j=1

∣
∣hj

∣
∣2∣∣g1 j

∣
∣2

. . .
R2∑

j=1

∣
∣hj

∣
∣2∣∣gR1 j

∣
∣2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(29)

which yields

det

(

IR1 +
λ2

minc
2
1c

2
2c

2
3

4
(
c2

3c
2
2α+T

(
c2

3

∑ R2
j=1

∣
∣hj

∣
∣2

+1
))H∗H

)−1

=
R1∏

i=1

(

1+
λ2

minc
2
1c

2
2c

2
3

4
(
c2

3c
2
2α+T

(
c2

3

∑ R2
j=1

∣
∣hj

∣
∣2

+1
))

R2∑

j=1

∣
∣hj

∣
∣2∣∣gi j

∣
∣2
)−1

,

(30)

where

α≤|α|

=
∣
∣∣
∣
∣

R1∑

k=1

tr

( R2∑

j=1

gk jhjBj

R2∑

l=1

g∗klh
∗
l B

∗
l

)∣∣∣
∣
∣

≤
R1∑

k=1

∣∣
∣
∣∣tr

( R2∑

j=1

gk jhjBj

R2∑

l=1

g∗klh
∗
l B

∗
l

)∣∣
∣
∣∣

≤
R1∑

k=1

√√
√
√√tr

( R2∑

j, j′=1

gk jg
∗
k j′hjh

∗
j′BjB

∗
j′

)

tr

( R2∑

l,l′=1

gklg
∗
kl′hlh

∗
l′ BlB

∗
l′

)

,

(31)

where the last inequality uses Cauchy-Schwartz inequality.
Now recall that Bj , j = 1, . . . ,R2, are unitary, thus BjB

∗
j′ and

BlB
∗
l′ are unitary matrices, and

tr
(
BkB

∗
k′
)≤T ∀k, k′. (32)
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Thus

α≤T
R1∑

k=1

√
√
√
√√

( R2∑

j, j′=1

gk jg
∗
k j′hjh

∗
j′

)( R2∑

l,l′=1

gklg
∗
kl′hlh

∗
l′

)

= T
R1∑

k=1

√√
√
√
√

∣
∣∣
∣
∣

R2∑

j=1

hjgk j

∣
∣∣
∣
∣

2∣∣∣
∣
∣

R2∑

l=1

hlgkl

∣
∣∣
∣
∣

2

= T
R1∑

k=1

∣
∣∣
∣
∣

R2∑

j=1

hjgk j

∣
∣∣
∣
∣

2

.

(33)

We can now rewrite

P(sk −→ sl)

≤Egij ,hj

R1∏

i=1

(

1 +
λ2

minc
2
1c

2
2c

2
3

4
(
c2

3c
2
2α + T

(
c2

3

∑ R2
j=1

∣
∣hj

∣
∣2

+ 1
))

×
R2∑

j=1

∣
∣hj

∣
∣2∣∣gi j

∣
∣2
)−1

≤Egij ,hj

R1∏

i=1

×
(

1+
λ2

minc
2
1c

2
2c

2
3

4
(
c2

3c
2
2T
∑ R1

k=1

∣
∣
∣
∑ R2

j=1hjgkj
∣
∣
∣

2
+T
(
c2

3

(
c2

3

∑ R2
j=1

∣
∣hj

∣
∣2

+1
))

×
R2∑

j=1

∣
∣hj

∣
∣2∣∣gi j

∣
∣2
)−1

,

(34)

which proves the first bound.
(2) To get the second bound, we need to prove that

∣
∣∣
∣
∣

R2∑

j=1

hjgk j

∣
∣∣
∣
∣

2

≤(2R2 − 1
) R2∑

j=1

∣
∣hjgk j

∣
∣2
. (35)

By the triangle inequality, we have that

∣∣
∣
∣
∣

R2∑

j=1

hjgk j

∣∣
∣
∣
∣

2

≤
( R2∑

j=1

∣∣hjgk j
∣∣
)2

=
R2∑

j=1

∣
∣hjgk j

∣
∣2

+
R2∑

j=1

∣
∣hjgk j

∣
∣

R2∑

l=1,l �= j

∣
∣hlgkl

∣
∣.

(36)

Using the inequality of arithmetic and geometric means, we
get

∣∣hjgk j
∣∣∣∣hlgkl

∣∣ =
√
∣∣hjgk j

∣∣2∣∣hlgkl
∣∣2≤∣∣hjgk j

∣∣2
+
∣∣hlgkl

∣∣2
,

(37)

so that
∣
∣
∣∣
∣

R2∑

j=1

hjgk j

∣
∣
∣∣
∣

2

≤
R2∑

j=1

∣
∣hjgk j

∣
∣2

+
R2∑

j=1

R2∑

l=1,l �= j

(∣∣hjgk j
∣
∣2

+
∣
∣hlgkl

∣
∣2)

= R2

R2∑

j=1

∣∣hjgk j
∣∣2

+
R2∑

j=1

R2∑

l=1,l �= j

∣∣hlgkl
∣∣2

= (2R2 − 1
) R2∑

j=1

∣
∣hjgk j

∣
∣2

,

(38)

which concludes the proof.

We now set xi :=∑ R2
j=1|hjgi j|2, so that the bound

Egij ,hj

R1∏

i=1

×
(

1+
λ2

minc
2
1c

2
2c

2
3

4T︸ ︷︷ ︸
γ1

×
∑ R2

j=1|hjgi j|2
c2

2c
2
3

(
2R2−1

)

︸ ︷︷ ︸
γ2

∑ R1
k=1

∑ R2
j=1|hjgk j|2 +c2

3

∑ R2
j=1|hj|2 +1

)−1

(39)

can be rewritten as

Egij ,hj

R1∏

i=1

(
1 + γ1

xi

γ2

∑ R1
k=1xk + c2

3

∑ R2
j=1

∣
∣hj

∣
∣2

+ 1

)−1

. (40)

Note here that by choice of power allocation (see Remark 3),

γ1 =
λ2

minP
3T

4T3R1R2(P + 3)2 =
λ2

minP
3

12R1R2(P + 3)2 ,

γ2 =
(
2R2 − 1

)
P2

R1R2(P + 3)2 ,

c2
3 =

P

R2(P + 3)
.

(41)

In order to compute the diversity of the channel, we will con-
sider the asymptotic regime in which P→∞. We will thus use
the notation

x
.= y ⇐⇒ lim

P→∞
x

log P
= lim

P→∞
y

log P
. (42)

With this notation, we have that

γ1
.= P, γ2

.= P0 = 1, c2
3
.= P0 = 1. (43)

In other words, the coefficients γ2 and c3 are constants and
can be neglected, while γ1 grows with P.

Theorem 1. It holds that

Egij ,hj

R1∏

i=1

(

1 + P
xi

∑ R2
k=1xk +

∑ R2
j=1

∣
∣hj

∣
∣2

+ 1

)−1

.= P−min{R1,R2},

(44)
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where xi := ∑ R2
j=1|hjgi j|2. In other words, the diversity of the

two-hop wireless relay network is min(R1,R2).

Proof. Since we are interested in the asymptotic regime in
which P→∞, we define the random variables αj , βi j , so that

∣
∣hj

∣
∣2=P−αj ,

∣
∣gi j
∣
∣2=P−βi j , i=1, . . . ,R1, j=1, . . . ,R2.

(45)

We thus have that

xi =
R2∑

j=1

∣
∣hjgi j

∣
∣2 =

R2∑

j=1

P−(αj+βi j )

= Pmax j{−(αj+βi j )} = P−min j{αj+βi j},

(46)

where the third equality comes from the fact that Pa + Pb .=
Pmax{a,b}.

Similarly (and using the same fact), we have that

R2∑

k=1

xk +
R2∑

j=1

∣
∣hj

∣
∣2

+ 1
.=

R2∑

k=1

P−min j{αj+βk j} +
R2∑

j=1

P−αj + 1

.= Pmaxk(−min j (αj+βk j )) + Pmax j (−αj ) + 1

.= Pmax(−min jk(αj+βk j ),−min j α j ) + 1.
(47)

The above change of variable implies that

d
∣
∣hj

∣
∣2 = (logP)P−αj dαj , d

∣
∣gi j
∣
∣2 = (log P)P−βi j dβi j ,

(48)

and recalling that |hj|2 and |g2
i j| are independent, exponen-

tially distributed, random variables with mean 1, we get

Egij ,hj

R1∏

i=1

(

1 + P
xi

∑ R2
k=1xk +

∑ R2
j=1

∣
∣hj

∣
∣2

+ 1

)−1

=
∫∞

0

R1∏

i=1

(

1 + P
xi

∑ R2
k=1xk +

∑ R2
j=1

∣
∣hj

∣
∣2

+ 1

)−1

×
R1∏

i=1

R2∏

j=1

exp
(− ∣∣gi j

∣
∣2)

d
∣
∣gi j
∣
∣2

×
R2∏

j=1

exp
(− ∣∣hj

∣∣2)
d
∣∣hj

∣∣2

=
∫∞

−∞

R1∏

i=1

(

1 + P
P−min j{αj+βi j}

P−min(min jk(αj+βk j ),min j α j ) + 1

)−1

×
R1∏

i=1

R2∏

j=1

exp
(− P−βi j

)
(logP)P−βi j dβi j

×
R2∏

j=1

exp
(− P−αj

)
(logP) P−αj dαj .

(49)

Note that to lighten the notation by a single integral, we mean
that this integral applies to all the variables. Now recall that

exp
(− P−a

) .= 0, a < 0, exp
(− P−a

) .= 1, a > 0,
(50)

and that

exp
(− P−a

)
exp
(− P−b

)

= exp
(− (P−a + P−b

)) .= exp
(− P−min(a,b)) (51)

meaning that in a product of exponentials, if at least one
of the variables is negative, then the whole product tends
to zero. Thus, only the integral where all the variables are
positive does not tend to zero exponentially, and we are
left with integrating over the range for which αj≥0, βi j≥0,
i = 1, . . . ,R1, j = 1, . . . ,R2. This implies in particular that

P−min(min jk(αj+βk j ),min j α j ) + 1
.= P−c + 1

.= Pmax(−c,0) .= 1
(52)

since c > 0. This means that the denominator does not con-
tribute in P. Note also that the (log P) factors do not con-
tribute to the exponential order.

Hence

Egij ,hj

R1∏

i=1

(

1 + P
xi

∑ R2
k=1xk +

∑ R2
j=1|hj|2 + 1

)−1

.=
∫∞

0

R1∏

i=1

(
1+P1−min j{αj+βi j})−1

R1∏

i=1

R2∏

j=1

P−βi j dβi j

R2∏

j=1

P−αj dαj

.=
∫∞

0

R1∏

i=1

(
P(1−min j{αj+βi j})+)−1 R1∏

i=1

R2∏

j=1

P−βi j dβi j

R2∏

j=1

P−αj dαj

=
∫∞

0

R1∏

i=1

P−(1−min j{αj+βi j})+
R1∏

i=1

R2∏

j=1

P−βi j dβi j

R2∏

j=1

P−αj dαj ,

(53)

where (·)+ denotes max{·, 0} and the second equality is ob-
tained by writing 1 = P0.

By Laplace’s method [20, page 50], [21], this expectation
is equal in order to the dominant exponent of the integrand

Egij ,hj

R1∏

i=1

(

1 + P
xi

∑ R2
k=1xk +

∑ R2
j=1|hj|2 + 1

)−1

.=
∫∞

0
P− f (αj ,βi j )

R1∏

i=1

R2∏

j=1

dβi j

R2∏

j=1

dαj

.= P−inf f (αj ,βi j ),

(54)

where

f
(
αj ,βi j

) =
R1∑

i=1

(
1−min

j

{
αj + βi j

})+
+

R1∑

i=1

R2∑

j=1
βi j +

R2∑

j=1
αj .

(55)

In order to conclude the proof, we are left to show that

inf
αj ,βi j

f
(
αj ,βi j

) = min
{
R1,R2

}
. (56)

(i) First note that if R1 < R2, R1 is achieved when αj = 0,
βi j = 0 and if R1 > R2, R2 is achieved when αj = 1, βi j = 0.

(ii) We now look at optimizing over βi j . Note that one
cannot optimize the terms of the sum separately. Indeed, if
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βi j are reduced to make
∑ R1

i=1

∑ R2
j=1βi j smaller, then the first

term increases, and vice versa. One can actually see that we
may set all βi j = 0 since increasing any βi j from zero does not
decrease the sum.

(iii) Then the optimization becomes one over the αj :

inf
αj≥0

R1∑

i=1

(
1−min

j

{
αj
})+

+
R2∑

j=1

αj . (57)

Using a similar argument as above, note that if αj are taken
greater than 1, then the first term cancels, but then the sec-
ond term grows. Thus the minimum is given by considering
αj ∈ [0, 1] which means that we can rewrite the optimization
problem as

inf
αj∈[0,1]

R1∑

i=1

(
1−min

j

{
αj
})+

+
R2∑

j=1

αj . (58)

Now we have that

R1∑

i=1

(
1−min

j

{
αj
})

+
R2∑

j=1

αj

= R1

(
1−min

j

{
αj
})

+
R2∑

j=1

αj

≥ R1

(
1−min

j

{
αj
})

+ R2min
j

{
αj
}

= R1 + (R2 − R1)min
j

{
αj
}
.

(59)

(iv) This final expression is minimized when αj = 0, j =
1, . . . ,R2 for R1 < R2 and αj = 1, j = 1, . . . ,R2 for R1 > R2,
since if R2−R1 < 0, one will try to remove as much as possible
from R1. Since αj ≤ 1, the optimal is to take αj = 1. Thus if
R1 < R2, the minimum is given by R1, while it is given by
R1 + R2 − R1 = R2 if R2 < R1, which yields min{R1,R2}.

Hence infαj ,βi j f (αj ,βi j) = min{R1,R2} and we conclude
that

Egij ,hj

R1∏

i=1

(
1+P

xi
∑ R2

k=1xk+
∑ R2

j=1|hj|2 + 1

)−1
.=P−min{R1,R2}.

(60)

Let us now comment the interpretation of this result.
Since the diversity is also interpreted as the number of in-
dependent paths from transmitter to receiver, one intuitively
expects the diversity to behave as the minimum between R1

and R2, since the bottleneck in determining the number of
independent paths is clearly min(R1,R2).

4. CODING STRATEGY

We now discuss the design of the distributed space-time code

S = [B1A1s, . . . ,B1AR1s, . . . ,BR2A1s, . . . ,BR2AR1s
] ∈ CT×R1R2 .

(61)

For the code design purpose, we assume that T = R1R2.

Remark 5. There is no loss in generality in assuming that the
distributed space-time code is square. Indeed, if one needs
a rectangular space-time code, one can always pick some
columns (or rows) of a square code. If the codebook satis-
fies that (Sk − Sl)

∗(Sk−Sl) is fully diverse, then the codebook
obtained by removing columns will be fully diverse too (see,
e.g., [12] where this phenomenon has been considered in the
context of node failures). This will be further illustrated in
Section 5.

The coding problem consists of designing unitary matri-
ces Ai, i = 1, . . . ,R1, Bj , j = 1, . . . ,R2, such that S as given
in (61) is full rank, as explained in the previous section (see
Remark 4). We will show in this section how such matrices
can be obtained algebraically.

Recall that given a monic polynomial

p(x) = p0 + p1x + · · · + pn−1x
n−1 + xn ∈ C[x], (62)

its companion matrix is defined by

C(p) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −p0

1 0 0 −p1

0 1 0 −p2
...

. . .
. . . 0

...
0 0 1 −pn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (63)

Set Q(i) := {a + ib, a, b ∈ Q}, which is a subfield of the
complex numbers.

Proposition 3. Let p(x) be a monic irreducible polynomial of
degree n in Q(i)[x], and denote by θ one of its roots. Con-
sider the vector space K of degree n over Q(i) with basis
{1, θ, . . . , θn−1}.

(1) The matrixMs of multiplication by

s = s0 + s1θ + · · · + sn−1θ
n−1 ∈ K (64)

is of the form

Ms =
[
s,C(p)s, . . . ,C(p)n−1s

]
, (65)

where s = [s0, s1, . . . , sn−1]T andC(p) is the companion matrix
of p(x).

(2) Furthermore,

det
(
Ms
) = 0 ⇐⇒ s = 0. (66)

Proof. (1) By definition, Ms satisfies

(
1, θ, . . . , θn−1)Ms = s

(
1, θ, . . . , θn−1). (67)

Thus the first column of Ms is clearly s, since

(
1, θ, . . . , θn−1)s = s. (68)

Now, we have that

sθ = s0θ + s1θ
2 + · · · + sn−2θ

n−1 + sn−1θ
n

= −p0sn−1 + θ
(
s0 − p1sn−1

)
+ · · ·

+ θn−1(sn−2 − pn−1sn−1
)

(69)
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since θn = −p0 − p1θ − · · · − pn−1θ
n−1. Thus the second

column of Ms is clearly

⎛

⎜
⎜
⎜
⎜
⎝

−p0sn−1

s0 − p1sn−1
...

sn−2 − pn−1sn−1

⎞

⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −p0

1 0 0 −p1

0 1 0 −p2
...

. . .
. . . 0

...
0 0 1 −pn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

s0

s1
...

sn−1

⎞

⎟
⎟
⎟
⎟
⎠
.

(70)

We have thus shown that for any s ∈ K , sθ = C(p)s. By
iterating this processing, we have that

sθ2 = (sθ)θ = C(p)sθ = C(p)2s, (71)

and thus sθ j = C(p) js is the j+1 column ofMs, j = 1, . . . ,n−
1.

(2) Denote by θ1, . . . , θn the n roots of p. Let θ be any of
them. Denote by σ j the following Q(i)-linear map:

σ j(θ) = θ j , j = 1, . . . ,n. (72)

Now, it is clear, by definition of Ms, namely,

(
1, θ, . . . , θn−1)Ms = s

(
1, θ, . . . , θn−1), (73)

that s is an eigenvalue of Ms associated to the eigenvector
(1, θ, . . . , θn−1). By applying σ j to the above equation, we
have, by Q(i)-linearity, that

(
1, σ j(θ), . . . , σ j

(
θn−1))Ms = σ j(s)

(
1, σ j(θ), . . . , σ j

(
θn−1)).

(74)

Thus σ j(s) is an eigenvalue of Ms, j = 1, . . . ,n, and

det
(
Ms
) =

n∏

j=1

σ j(s), (75)

which concludes the proof.

The matrix Ms, as described in the above proposition, is
a natural candidate to design a distributed space-time code,
since it has the right structure, and is proven to be fully di-
verse. However, in this setting, C(p) and its powers corre-
spond to products of AiBj , which are unitary. Thus, C(p) has
to be unitary. A straightforward computation shows the fol-
lowing.

Lemma 4. One has that C(p) is unitary if and only if

p1 = · · · = pn−1 = 0,
∣
∣p0
∣
∣2 = 1. (76)

The family of codes proposed in [10] is a particular case,
when p0 is a root of unity.

The distributed space-time code design can be summa-
rized as follow.

(1) Choose p(x) such that |p0|2 = 1 and p(x) is irre-
ducible over Q(i).

(2) Define

Ai = C(p)i−1, i = 1, . . . ,R1,

Bj = C(p)R1( j−1), j = 1, . . . ,R2.
(77)

Example 5 (R1 = R2 = 2). We need a monic polynomial of
degree 4 of the form

p(x) = x4 − p0,
∣∣p0
∣∣2 = 1. (78)

For example, one can take

p(x) = x4 − i + 2
i− 2

, (79)

which are irreducible over Q(i). Its companion matrix is
given by

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0
i + 2
i− 2

1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠
. (80)

The matrices A1, A2, B1, B2 are given explicitly in next sec-
tion.

Example 6 (R1 = R2 = 3). We need now a monic polynomial
of degree 9. For example,

p(x) = x9 − i + 2
i− 2

, (81)

is irreducible over Q(i), with companion matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
i + 2
i− 2

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (82)

5. SIMULATION RESULTS

In this section, we present simulation results for different sce-
narios. For all plots, the x-axis represents the power (in dB)
of the whole network, and the y-axis gives the block error
rate (BLER).

Diversity discussion

In order to evaluate the simulation results, we refer to
Theorem 1. Since the diversity is interpreted both as the slope
of the error probability in log-log scale as well as the expo-
nent of P in the upper bound on the pairwise error proba-
bility, one intuitively expects the slope to behave as the min-
imum between R1 and R2.
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Tx

A1

A2

B1

B2

Rx Tx

A1

A2

Rx

Figure 1: On the left, a two-hop network with two nodes at each
hop. On the right, a one-hop network with two nodes.

We first consider a simple network with two hops and
two nodes at each hop, as shown in the left of Figure 1. The
coding strategy (see Example 5) is given by

A1 = I4, A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
i + 2
i− 2

1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

B1 = I4, B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0
i + 2
i− 2

0

0 0 0
i + 2
i− 2

1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(83)

We have simulated the BLER of the transmitter sending a
signal to the receiver through the two hops. The results are
shown in Figure 2, given by the dashed curve. Following the
above discussion, we expect a diversity of two. In order to
have a comparison, we also plot the BLER of sending a mes-
sage through a one-hop network with also two relay nodes,
as shown on the right of Figure 1. This plot comes from [10],
where it has been shown that with one hop and two relays,
the diversity is two. The two slopes are clearly parallel, show-
ing that the two-hop network with two relay nodes at each
hop has indeed diversity of two. There is no interpretation
in the coding gain here, since in the one-hop relay case, the
power allocated at the relays is more important (half of the
total power, while one third only in the two-hop case), and
the noise forwarded is much bigger in the two-hop case. Fur-
thermore, the coding strategies are different.

We also emphasize the importance of performing coding
at the relays. Still on Figure 1, we show the performance of
doing coding either only at the first hop, or only at the second
hop. It is clear that this yields no diversity.

We now consider more in details a two-hop network with
three relay nodes at each hop, as show in Figure 3. Transmit-
ter and receiver for a two-hop communication are indicated
and are plotted as boxes, while the second hop also contains
a box, indicating that this relay is also able to be a transmit-
ter/receiver. We will thus consider both cases, when it is either
a relay node or a receiver node. Nodes that serve as relays are
all endowed with a unitary matrix, denoted by eitherAi at the
first hop, or Bj for the second hop, as explained in Section 4.

B
L

E
R

10−3

10−2

10−1

100

16 18 20 22 24 26 28 30

P (dB)

2 nodes

2-2 nodes

2-2 (no) nodes

2 (no)-2 nodes

Figure 2: Comparison between a one-hop network with two relay
nodes and a two-hop network with two relay nodes at each hop,
“(no)” means that no coding has been done either at the first or
second hop.

Tx

A1

A2

A3

B1

B2

B3

Rx

Figure 3: A two-hop network with three nodes at each hop. Nodes
able to be transmitter/receiver are shown as boxes.

For the upcoming simulations, we have used the following
coding strategy (see Example 6). Set

Γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
i + 2
i− 2

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A1 = I9, A2 = Γ, A3 = Γ2,

B1 = I9, B2 = Γ3, B3 = Γ6.

(84)

In Figure 4, the BLER of communicating through the two-
hop network is shown. The diversity is expected to be three.
In order to get a comparison, we reproduce here the perfor-
mance of the two-hop network with two relay nodes already
shown in the previous figure. There is a clear gain in diversity



F. Oggier and B. Hassibi 11
B

L
E

R

10−3

10−2

10−1

100

16 18 20 22 24 26 28 30

P (dB)

2-2 nodes
2-3 nodes

3-2 nodes
3-3 nodes

Figure 4: Comparison among different uses of either two or three
nodes at, respectively, the first and second hops.
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Figure 5: One hop in a one-hop network versus one hop in a two-
hop network.

obtained by increasing the number of relay nodes. We now
illustrate that the diversity actually depends on min{R1,R2},
that is, the minimum number relays between the first and the
second hops. We assume now that one node in the first hop
is not communicating (it may be down, or too far away). We
keep the same coding strategy, and thus simulate communi-
cation with a first hop that has two relay nodes, and a second
hop that has three relay nodes. We see that the diversity im-
mediately drops to the one of a network with two nodes at
each hop. There is no gain in having a third relay participat-
ing in the second hop. This is true vice versa, if the first hop
uses three relays while the second hop uses only two. Though
the performance is better, the diversity is two.

Finally, we would like to mention that the scheme pro-
posed does not restrict to the case where communication
requires exactly two hops. In order to do so, we assume
that one node among those at the second hop can actually
be a receiver itself (see Figure 3). We keep the coding strat-
egy described above and simulate a one-hop communication
between the transmitter and this new receiver. The perfor-
mance is shown in Figure 5, where it is compared with a one-
hop network (as in [10]). Both strategies have now noise for-
warded from only one hop. However, the difference of cod-
ing gain is easily explained by the fact that we did not change
the power allocation, and thus the best curve corresponds
to having half of the power at the first hop relays, while the
second curve corresponds to a use of only one third of the
power. Diversity is of course similar. The main point here is
to notice that the coding strategy does not need to change.
Thus the unitary matrices can be allotted before the start of
communication, and used for either one or two hops com-
munication.

Decoding issues

All the simulations presented in this paper have been done
using a standard sphere decoder algorithm [22, 23].

6. CONCLUSION

In this paper, we considered a wireless relay network with
multihops. We first showed that when considering dis-
tributed space-time coding, the diversity of such channels is
determined by the hop whose number of relays is minimal.
We then provided a technique to design systematically dis-
tributed space-time codes that are fully diverse for that sce-
nario. Simulation results confirmed the use of doing coding
at the relays, in order to get cooperative diversity. Further
work now involves studying the power allocation. In order
to get diversity results, power is considered in an asymptotic
regime. In doing distributed space-time coding for multihop,
one drawback is that noise is forwarded from one hop to the
other. This will not influence the diversity behavior since the
power can grow to infinity. However, for more realistic sce-
narios where the power is limited, it does matter. In this case,
one may need a more elaborated power allocation than just
sharing equally the power among the transmitter and relays
at all hops.
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