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subchannel gains are maximum, as long as the summation of these gains is constant. Furthermore, we derive the optimum power
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1. INTRODUCTION

An effective way of approaching the promised capacity of
multiple-input multiple-output (MIMO) systems is proved
to be through space-time coding, which is a powerful
technique for achieving both diversity and coding gains over
MIMO fading channels [1]. Orthogonal space-time block
codes (O-STBCs) that can extract the spatial diversity gains
are specially attractive since they drastically simplify max-
imum likelihood (ML) decoding by decoupling the vector
detection problem into simpler scalar detection problems
[2, 3], thus yielding a process that can be viewed as an
orthogonalization of the MIMO channel [4, 5].

The use of the MIMO technology along with STBCs is
becoming increasingly popular in different wireless systems
and networks. Specifically, in sensor and ad hoc networks
where nodes are generally limited in terms of the number of
antenna elements that can be implemented at the equipment,
benefiting from the MIMO technology calls for cooperation

between nodes so as to form MIMO antenna arrays in a
distributed fashion, and yield the sought for gains of MIMO
under space-time block coding.

Recently, there has been increasing interest in distributed
space-time coded transmissions which employ STBCs in a
cooperative fashion. Indeed, space-time coded cooperative
diversity provides an effective way for relaying signals to
the end user by multiple disjoint wireless terminals [6].
Cooperative transmit diversity is of particular advantage
in sensor networks, where multiple transmit nodes collect
information of the same kind and individually transmit the
corresponding signals to a given destination, for example,
multiple thermal sensors can measure temperature and
transmit this information to a device that controls the desired
temperature in the space where it operates. These nodes
can be deployed to employ distributed STBCs (D-STBCs)
in order to cooperatively achieve transmit diversity gains.
This is particularly attractive when the links between the
transmitting nodes and the receiver (referred to here as
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subchannels) are of different quality, for instance, when a
subset of transmitters are required to be positioned at specific
locations, for example, sensors measuring the humidity of
the soil in a dense environment, wherein not all transmitting
nodes can have line-of-sight (LOS) with the receiver.

Performance of D-STBCs with unequal subchannel gains
has been investigated in [7] in terms of the outage probabil-
ity. On the other hand, a memoryless precoder for D-STBCs
in MIMO channels with joint transmit-receive correlation is
provided in [8]. However, the analyses in [7, 8] rely on the
availability of perfect state knowledge of all subchannels; an
assumption which is hard to obtain in practice, whether the
multiple-antenna configuration provides a MIMO link or is
created in a distributed way.

In addressing the effect of imperfect channel knowl-
edge in single-input single-output (SISO) and MIMO con-
figurations, recent information-theoretical studies assume
different channel state information (CSI) uncertainties at
the receiver. For instance, lower and upper bounds on
the capacity of SISO channels under imperfect CSI at the
receiver, with and without feedback to the transmitter, are
provided in [9]. In [10], the capacity in the presence of
channel estimation error at the receiver is evaluated when a
fixed modified nearest neighbor decoding rule is employed.
The same approach has been taken in [11, 12] for MIMO
systems with independent and identically distributed (i.i.d.)
Rayleigh fading channels. In particular, it has been proven
that spatio-temporal water-filling is the optimal power
allocation strategy that achieves the capacity lower bound
[11]. In addition, the performance of space-time coding in
the presence of channel estimation error is studied in [13–
15]. In particular, closed-form expressions for the pairwise
error probability (PEP) of space-time codes in Rayleigh flat-
fading channels have been obtained in [15].

In this paper, we address the effects of channel estimation
error at the receiver on the performance of D-STBCs.
In particular, we derive lower and upper bounds on the
mutual information for Gaussian input signals, and present
a limiting value that upper bounds the gap between these
bounds at any input transmit powers. We further show that
the gap between the mutual information bounds increases
as the disparity between the subchannel estimation error
variances increases. In addition, assuming that the summa-
tion of the subchannel gains remains constant, we provide
the information for positioning the receiving node so as
to maximize the mutual information bounds of D-STBCs.
Furthermore, we provide the power allocation scheme that
achieves the outage capacity lower bound of D-STBCs, and
derive closed-form expressions for this capacity metric and
its associated power allocation.

In detailing these contributions, the remainder of this
paper is organized as follows. In Section 2, the system and
channel models are introduced. Lower and upper bounds
on the mutual information under channel estimation error
for D-STBCs in Rayleigh fading channels are derived in
Section 3. The tightness of these bounds is also analyzed in
Section 3. Section 4 investigates the location of the receiver
that maximizes the mutual information bounds, when the
summation of the channel gains is constant. In Section 5,

closed-form expressions for the lower bound on the outage
capacity of D-STBCs are derived. Finally, sample numerical
results are presented in Section 6 followed by the paper’s
conclusion.

2. SYSTEMAND CHANNELMODELS

Throughout this paper, we use the upper-case boldface letters
for matrices and lower-case boldface letters for vectors.
AT, AH , |A|, and ‖A‖2

F indicate the transpose, Hermitian
transpose, determinant, and Frobenius norm of matrix A,
respectively. In stands for an n × n identity matrix, and the
matrix (pseudo) inverse is denoted by [ · ]−1. E[x] denotes
the expectation of the random variable x, abs(x) indicates
the absolute value of x, and x∗ its conjugate value.

We consider a wireless communication system employ-
ing nT transmitters, each equipped with a single antenna, and
a receiver equipped with nR receive antennas in a flat-fading
environment. A linear model relates the nR×1 received vector
y to the signals sent from the nT transmitting nodes, that is,
xi for i = 1, . . . ,nT, via

y =
nT∑

i=1

hixi + n, (1)

where the entries of n represent the zero-mean complex
Gaussian noise with independent real and imaginary parts
of equal power, and hi, i = 1, . . . ,nT, indicate the channel
transfer vector between the ith transmitter and the receiver.
The elements of the nR × 1 channel transfer vectors, hi,
i = 1, . . . , nT, are assumed to be independent zero-mean
circularly symmetric complex Gaussian (ZMCSCG) random
variables with variances γi, . . . ,γnT , referred to as channel
gains.

Furthermore, we assume that the receiver performs
minimum mean square error (MMSE) estimation of hi, i =
1, . . . ,nT, such that hi = ĥi + ei, where by the property of

MMSE estimation ĥi and ei are uncorrelated. The elements of
ei, i = 1, . . . ,nT, are independent ZMCSCG random variables
with variance σ2

i . Finally, the average transmit power from
each transmitter is constrained to P, and it is assumed that
the transmitters cooperate to provide a distributed space-
time block encoder, and that the channel coefficients remain
constant during the transmission of a space-time codeword.

3. MUTUAL INFORMATION BOUNDS

We start by deriving lower and upper bounds on the mutual
information of the distributed system employing Alamouti
codes [3], when the receiver is equipped with two antennas.
Generalization to a system with nT > 2 and nR > 2 follows.
We assume that the signals at the input of the subchannels are
independent Gaussian distributed, which is not necessarily
the capacity achieving distribution when CSI at the receiver
is not perfect [9].

The Alamouti scheme transmits symbols x1 and x2 from
the first and second transmitters, respectively, during the first
symbol period, while symbols −x∗2 and x∗1 are transmitted
from the first and second transmitters during the second
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symbol period, respectively. The channels between the
distributed transmitters and the receiver remain unchanged
during these two symbol periods. Let us define vectors y1

and y2 as the received vectors at the first and second time
periods. The receiver forms a rearranged signal vector y as
y = [y1 y∗2 ]T that can be expressed as

y = Ĥeff x + Eeff x + n, (2)

where n = [n1 n2 n∗3 n∗4 ]
T

is the vector of noise samples,

x = [ x1 x2 ]
T

, and the effective channel estimation and
error matrices are given by

Ĥeff =

⎛
⎜⎜⎜⎜⎜⎝

ĥ11 ĥ12

ĥ21 ĥ22

ĥ∗12 −ĥ∗11

ĥ∗22 −ĥ∗21

⎞
⎟⎟⎟⎟⎟⎠

, Eeff =

⎛
⎜⎜⎜⎜⎝

e11 e12

e21 e22

e∗12 −e∗11

e∗22 −e∗21

⎞
⎟⎟⎟⎟⎠
. (3)

Note that the effective channel estimation is an orthogonal
matrix. Then, the receiver multiplies the received vector y

with the Hermitian transpose of Ĥeff to obtain

z = ‖Ĥ‖2
F I2x + Ĥ

H

eff Eeffx + ñ, (4)

where the vector ñ = Ĥ
H

effn is zero-mean with covariance
matrix E[ññH ] = σ2

n‖H‖2
FI2.

The lower and upper bounds on the mutual information
can now be derived by adopting a similar approach as used
in [11] yielding

Clower

= 1
nR

E
[

log2

∣∣∣InR+P
(‖Ĥ‖2

F

)2[
σ2
n‖Ĥ‖2

FInR+cov
(
Ĥ

H

effEeffx
)]−1∣∣∣

]
,

Cupper

= 1
nR

E
[

log2

∣∣∣
[
P
(‖Ĥ‖2

F

)2
+ σ2

n‖Ĥ‖2
FInR + cov

(
Ĥ

H

effEeffx
)]

×
[
σ2
n‖Ĥ‖2

FInR +cov
(
Ĥ

H

effEeffx|x
)]−1

∣∣∣
]

,

(5)

where cov(Ĥ
H

eff Eeff x) indicates the covariance matrix of the

random vector Ĥ
H

eff Eeff x, and cov(Ĥ
H

eff Eeff x|x) denotes the

covariance matrix of the random vector Ĥ
H

eff Eeff x given x.
Then, inserting Eeff and Ĥeff (3) into (5), one can derive the
mutual information bounds and express them according to

Clower = E

[
log2

(
1 + P

‖Ĥ‖2
F

σ2
n + P

(
σ2

1 + σ2
2

)
)]

, (6)

Cupper = E

[
log2

(
P‖Ĥ‖2

F + σ2
n + P

(
σ2

1 + σ2
2

)

σ2
n + P

(
σ2

1X
2
1 + σ2

2X
2
2

)
)]

, (7)

where X2
i , i ∈ {1,2}, is a chi-squared random variable with

two degrees of freedom and E[X2
i ] = 1. Note that the term

P(σ2
1 +σ2

2 ), appearing in the mutual information lower bound

(6), can be seen as the variance of an additive white Gaussian
noise (AWGN).

Furthermore, by following similar steps as in (2) to
(7), one can find the mutual information lower and upper
bounds of D-STBCs with arbitrary numbers of transmit and
receive antennas such that

Clower = RE

[
log2

(
1 +

1
R

P‖Ĥ‖2
F

σ2
n + P

∑nT

i=1
σ2
i

)]
,

Cupper = RE

[
log2

(
1
R

P‖Ĥ‖2
F + R

(
σ2
n + P

∑nT

i=1
σ2
i

)

σ2
n + P

∑nT

i=1
σ2
i X

2
i

)]
,

(8)

where R denotes the communication rate of the STBC.
We now investigate the tightness of the obtained lower

and upper bounds on the mutual information to justify
that they represent a good estimate of the true Gaussian
mutual information. Define Δ as the gap between the mutual
information bounds:

Δ = RE

[
log2

(
σ2
n + P

∑nT

i=1
σ2
i

σ2
n + P

∑nT

i=1
σ2
i X

2
i

)]
, (9)

then an upper bound on Δ at high transmit powers can
be derived by adopting similar approach to that in [16] as
follows:

lim
P→∞
nT→∞

Δ ≤ R·min

{
ε

ln 2
,

1
2nT ln 2

+ log2

(
σ2

max

σ2
min

)}
, (10)

where σ2
min and σ2

max are the minimum and maximum values
of σ2

i for i = 1, . . . ,nT, respectively, and ε = 0.577216 is
the Euler-Mascheroni constant [17]. Furthermore, the gap
between the mutual information bounds is shown to increase
monotonically as a function of the input transmit power
[18]; hence, Δ does not exceed the right-hand side of (10), or
equivalently, the mutual information bounds are fairly close
at any input transmit powers.

We now assume that the receiver can estimate the
channels pertaining to different transmitters with the same
accuracy, that is, σ2

1 = · · · = σ2
nT

� σ2
e . In this case, the gap

between the mutual information bounds can be shown to
be upper bounded by limP→∞, nT→∞Δ ≤ R/(2nT ln 2), which
shows that the gap between the mutual information bounds
decreases as the number of transmitters increases.

Proceeding with our investigation about the gap between
the mutual information bounds, we now provide the follow-
ing lemma.

Lemma 1. The gap between the bounds on the mutual
information of distributed Alamouti codes with unequal
channel error variances increases monotonically as the disparity
between the error variances increases.

Proof. Consider that the channel error variances σ2
1 and

σ2
2 are respectively given by σ2

sum − αe and σ2
sum + αe. The
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gap between the mutual information bounds, Δ, can be
simplified to

Δ=RE

[
log2

(
σ2
n +Pσ2

sum

σ2
n +P

((
σ2

sum−αe
)
X2

1 +
(
σ2

sum +αe
)
X2

2

)
)]

.

(11)

We now find the first partial derivative of Δ with respect to αe
and prove that Δ is an increasing function of αe. We proceed
as follows:

∂Δ

∂αe
= R

ln 2
E

[
P
(
X2

1−X2
2

)

σ2
n +P

((
σ2

sum−αe
)
X2

1 +
(
σ2

sum +αe
)
X2

2

)
]
.

(12)

Then, by using the fact that X2
1 and X2

2 are i.i.d. random
variables, we can show that ∂Δ/∂αe|αe=0 = 0. Furthermore,
one can now derive the second partial derivative of Δ with
respect to αe which leads to ∂2Δ/∂α2

e ≥ 0. This implies that
∂Δ/∂αe is an increasing function of αe, hence, ∂Δ/∂αe ≥ 0 for
0 ≤ αe ≤ 1, which concludes the proof.

4. OPTIMUM POSITIONING

In the communication system under consideration, we now
assume that the transmitters are fixed in their position and
that the receiver can estimate the channel gains pertaining to
different transmitters with the same accuracy, and investigate
the best position for the receiving node. Our transmitters
can be sensor nodes placed, for example, at the corners of
a room, and we investigate the best location of the receiver
collecting data from these nodes, where we assume that
nodes cooperate to provide a distributed space-time block
coded transmission. In particular, we assume that when the
channel gains pertaining to a subset of transmitter-receiver
links improve, the gains of the rest of the subchannels
degrade such that the summation of all gains remains
constant, and provide the following lemma.

Lemma 2. The mutual information bounds of D-STBCs are
maximum when the channel gains pertaining to different
transmitter-receiver links are equal, as long as the summation
of these gains remains constant.

Proof. The proof for this lemma can be obtained by adopting
a similar approach as proposed in [19]. For completeness, we
provide here the proof for a system with nT = 3 transmitting
nodes and a single receive antenna.

We refer to the channel gains by γ1, γ2 , and γ3, and
define the constant 3β as the summation of these variances,
that is,

∑3
i=1γi = 3β. Since the channel gains are real positive

numbers, then at least one of them is bigger than or equal
to β. Without loss of generality, we assume that γ1 ≥ β
and define 0 ≤ α1 ≤ 1 such that γ1 = β(1 + 2α1). Hence,
summation of the two remaining channel gains, γ2 and γ3,
can be found as γ2 + γ3 = 2β(1 − α1). Furthermore, we

define 0 ≤ α2 ≤ 1 such that γ2 = β(1 − α1)(1 + α2) and
γ3 = β(1 − α1)(1 − α2). We can then simplify the mutual
information lower bound (8) as follows:

Clower=RE

[
log2

(
1+

P

R

γ1w1 + γ2w2 + γ3w3 − σ2
e

∑3

i=1
wi

σ2
n + 3Pσ2

e

)]

= RE
[
log2

(
1 + Q

)]
,

(13)

where Q = a((1 + 2α1)w1 + (1−α1)(1 +α2)w2 + (1−α1)(1−
α2)w3 − σ2

e /β
∑3

i=1wi), σ2
e represents the channel estimation

error variance, wi, i = 1, . . . , 3, are i.i.d. random variables
according to Rayleigh distribution with unit variances, and
a = Pβ/(R(σ2

n + 3Pσ2
e )). We need to prove that Clower is at its

maximum when α1 = 0 and α2 = 0. We start by deriving the
first and second partial derivatives of Clower with respect to
α2:

∂Clower

∂α2
= R

ln 2
E

[
a
(
1− α1

)(
w2 −w3

)

1 + Q

]
, (14)

∂2Clower

∂α2
2
= − R

ln 2
E

[
a
(
1− α1

)(
w2 −w3

)

1 + Q

]2

. (15)

Observe that the second derivative of Clower with respect to α2

(15) is nonpositive, therefore, the maximum on ∂Clower/∂α2

(14) occurs at α2 = 0, irrespective of α1. Furthermore,
by adopting similar steps as in [16], one can show that
∂Clower/∂α2|α2=0 = 0, which proves that the maximum on
the mutual information lower bound occurs at α2 = 0 for
any value of α1. Note that since abs(∂Clower/∂α2) increases
monotonically as a function of α2, then not only the mutual
information lower bound is at its maximum when α2 = 0,
but, its robustness to the variations of α2 is also maximum at
this point.

We now prove that the maximum of Clower|α2=0 occurs at
α1 = 0. For this purpose, we define the function f (α1) =
Clower|α2=0 given by

f
(
α1
)
= RE

[
log2

(
1 + Q′

)]
, (16)

where Q′ = a((1 + 2α1)w1 + (1 − α1)w2 + (1 − α1)w3 −
σ2
e /β
∑3

i=1wi). Then, by obtaining the first and second
derivatives of f (α1) with respect to α1, one can show that
∂2 f (α1)/∂α2

1 ≤ 0 and ∂ f (α1)/∂α1|α1=0 = 0, hence, the
maximum of f (α1) occurs at α1 = 0. Therefore, the
maximum of Clower occurs at α1 = 0 and α2 = 0.

In addition, since the gap between the mutual infor-
mation bounds, Δ, does not depend on the variations of
channel gains, then the mutual information upper bound is
also maximum at α1 = 0 and α2 = 0; which concludes the
proof.

According to the above analysis, one can conclude that
the best position for the receiving node is the one that
provides the condition of having equal subchannel gains. For
instance, when the distributed transmit antennas are located
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in the corners of a room, the best position for the receiving
node is the center of the room, under the condition that the
summation of the subchannel gains remains constant.

5. OUTAGE CAPACITY

In the following, we assume that the transmitters, considered
to cooperate to provide a distributed STBCed transmission,
can adaptively change their input power according to the
channel variations. The transmitting nodes use the same
input power level, which can be calculated at the receiver that
has access to the state information of each subchannel. The
receiver then broadcasts the information about the required
transmit power level, and the transmitters adapt their input
power according to this information. Here, we investigate the
adaptive power allocation scheme that achieves the outage
capacity lower bound of the channel.

Outage capacity is the maximum constant-rate that can
be achieved with an outage probability less than a certain
threshold [20, 21]. In this case, the transmitters invert the
channel fading so as to maintain a constant power at the
receiver. Using channel inversion, the capacity of fading
channels and its closed-form expressions have previously
been derived in [22, 23], respectively. This metric corre-
sponds to the capacity that can be achieved in all fading states
while meeting the power constraint. However, in extreme
fading cases, for example, Rayleigh fading, this capacity is
zero as the transmitter has to spend a huge amount of
power for channel states in deep fade to achieve a constant
rate. To alleviate this problem, an adaptive transmission
technique, referred to as truncated channel inversion with
fixed rate (tifr), which can achieve nonzero constant rates,
was introduced in [22]. This technique maintains a con-
stant received-power for channel fades above a given cutoff
depth.

Recalling that channel inversion technique provides
a constant received power at the receiver such that
(1/R)(P‖Ĥ‖2

F/(σ
2
n + PΣnT

i=1σ
2
i )) = α, we can find the power

allocation for the system with D-STBCs and imperfect
channel estimation at the receiver according to

P =
[

αRσ2
n

‖Ĥ‖2
F − αR

∑nT

i=1
σ2
i

]+

, (17)

where the constant value for α is found such that the
transmit-power constraint is satisfied and [x]+ denotes
max{0, x}. We assume that the transmission is suspended
for channel gains below a cutoff threshold λ0 such that the
outage probability Pout is satisfied. Note that, at the same
time, the transmission is suspended for channel gains smaller
than ‖Ĥ‖2

F ≤ αR
∑nT

i=1σ
2
i ; hence, the acceptable value for α is

limited to α ≤ λ0/(R
∑nT

i=1σ
2
i ). Therefore, the lower bound on

the outage capacity can be obtained as

Cout = R log2

(
1 + min

(
α,

λ0

R
∑nT

i=1
σ2
i

))
Pr
{‖Ĥ‖2

F ≥ λ0
}

,

(18)

where Pr{‖Ĥ‖2
F ≥ λ0} = 1 − Pout indicates the probability

that the inequality ‖Ĥ‖2
F ≥ λ0 holds true. It is worth noting

that the expression derived in (18) does not represent the
true channel outage capacity. However, one can guarantee
that by using the power allocation scheme in (17), at least a
minimum constant-rate according to (18) can be achieved by
D-STBCs with imperfect CSI at the receiver. Also, recalling
that the mutual information bounds (8) are proved to be
tight at any input transmit powers, we conclude that (18)
represents a good estimate for the true channel outage
capacity. Hereafter, we use the parameter λ = ‖Ĥ‖2

F for the
ease of notation.

To obtain a closed-form expression for the outage
capacity, we start by deriving a closed-form expression for
Pr{λ ≥ λ0}. We proceed by defining ui as the number
of transmitters with equal γi − σ2

i and choose g such that∑g
i=1ui = nT. Without loss of generality, we assume that

γl − σ2
l /= γk − σ2

k for l = 1, . . . , g and k = 1, . . . , g, having
k /= l. The probability density function (PDF) of λ, fλ(λ), can
now be found by following similar steps as in [7] according
to

fλ(λ) =
g∑

i=1

ui∑

j=1

Ki, j
λ j−1

Γ( j)
(
γi − σ2

i

) j e
−λ/(γi−σ2

i ), (19)

where Γ(·) is the Gamma function [24], and the coefficients
Ki, j are given by

Ki, j = 1
(
ui − j

)
!
(− γi + σ2

i

)ui− j

× ∂ui− j

∂sui− j

[ g∏

k=1,k /=i

(
1− (γk − σ2

k

)
s
)−uk

]

s=1/(γi−σ2
i )

.

(20)

We can then obtain a closed-form solution for the probability
Pr{λ ≥ λ0} =

∫∞
λ0
fλ(λ)dλ as follows:

Pr
{
λ ≥ λ0

} =
g∑

i=1

ui∑

j=1

j−1∑

k=0

Ki, j e−λ0/(γi−σ2
i )λk0

(
γi − σ2

i

)k
Γ(k + 1)

. (21)

On the other hand, given that the transmission is
suspended for the channel gains below the cutoff threshold,
λ0, we can find a closed-form expression for α by expanding
the input power constraint as

P =
∫∞

λ0

αRσ2
n

λ− αR
∑nT

i=1
σ2
i

fλ(λ)dλ

=
g∑

i=1

ui∑

j=1

αRσ2
nKi, j

Γ( j)m
j
i

∫∞

λ0

λj−1

(λ− n)
e−λ/midλ,

(22)
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where mi = γi − σ2
i and n = αR

∑nT
i=1σ

2
i . The integration in

(22) can be expanded by using the equalities λj−1 − nj−1 =
(λ− n)

∑ j−2
k=0n

kλj−2−k,
∫
x je−x/midx = −mie−x/mi

∑ j
l=0( j!/( j −

l)!)ml
ix

j−l, and
∫

(nj−1/(x − n)) e−x/midx = nj−1e−n/miEi((n−
x)/mi) such that

P = α
g∑

i=1

ui∑

j=1

Rσ2
nKi, j

Γ( j)m
j
i

×
( j−2∑

k=0

min
ke−λ0/mi

j−2−k∑

l=0

Γ( j − k − 1)
Γ( j − k − l − 1)

ml
iλ

j−k−l−2
0

− nj−1e−n/miEi
(
n− λ0

mi

))
,

(23)

which leads to a closed-form expression for α.

6. NUMERICAL RESULTS

In this section, we provide some numerical results in order
to illustrate our theoretical analysis. For our simulations,
we consider distributed Alamouti codes in Rayleigh fading
channels and assume that SNR = P/σ2

n and σ2
n = 1; hence,

a high SNR implies a high transmit power in the presented
results.

We start by comparing the mutual information bounds,
Clower and Cupper, of D-STBCs with the same subchannel
estimation error variances, σ2

1 = σ2
2 = σ2

e , and with a
single receive antenna for different values of σ2

e . In Figure 1,
the channel gains from the two transmitters are assumed
to be γ1 = 1.5 and γ2 = 0.5. The steady and dashed
lines correspond to the mutual information lower and upper
bounds, respectively. Figure 1 shows that not only are the
bounds fairly close at high SNRs, but also that the gap
between the two bounds is small for low SNRs. We observe
that at low SNRs, the capacity increases logarithmically as
a function of SNR, but with smaller slope as compared
to a system with perfect CSI at the receiver, that is, when
σ2
e = 0. Figure 1 also indicates that at high SNRs, the

mutual information bounds saturate and do not increase
logarithmically as a function of SNR.

The gap between the mutual information bounds, Δ, for
D-STBCs with two receive antennas and a constant measure
for σ2

1 + σ2
2 , namely, σ2

1 + σ2
2 = 0.2, are plotted versus SNR

in Figure 2. The plots show that when the SNR increases, Δ
increases monotonically. The figure also illustrates that the
gap between the mutual information bounds increases when
the ratio between the subchannel estimation error variances,
that is, σ2

1 /σ
2
2 , increases.

In Figure 3, we further plot the gap between the mutual
information bounds for D-STBCs, SIMO subchannels, and
distributed MIMO channel with two receive antennas, versus
the channel estimation error variance of the first subchannel,
that is, σ2

1 , at SNR = 20 dB. The channel estimation error
variance of the second subchannel relates to σ2

1 through σ2
1 +

σ2
2 = 0.1. The figure shows that the gap between the mutual

information bounds of D-STBCs is relatively small compared
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to that of the SIMO and distributed MIMO channels. We
also observe that the gap for D-STBCs changes slowly as the
subchannel estimation error variances change, while Δ in
SIMO subchannels increases significantly when the channel
estimation error variance increases.

The mutual information lower bound of D-STBCs with
a single receive antenna and with γ1 = 1 + αγ and γ2 =
1 − αγ is plotted in Figure 4 for SNR = 15 dB. Variations
of the bounds as a function of αγ are illustrated for various
channel estimation error variances showing that the mutual
information lower bound is at its maximum when αγ = 0, or
equivalently, when γ1 = γ2; hence confirming the results of
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Section 4. The figure also illustrates that the variations of the
mutual information lower bound as a function of αγ is small
around αγ = 0.

In Figure 5, the outage capacity lower bound of D-STBCs
with γ1 = 1.5 and γ2 = 0.5 and with a single receive antenna
is plotted versus SNR for different values of Pout. The plots
show that the outage capacity suffers a significant loss as a
result of estimation errors at the receiver. Indeed, it can be
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seen that the outage capacity of D-STBCs with σ2
1 = σ2

2 = 0.1
starts to saturate at SNR values as small as 5 dB.

Finally in Figure 6, the lower bound on the outage
capacity of D-STBCs with outage probability Pout = 1% and
with subchannel gains γ1 = 1 + αγ and γ2 = 1− αγ is plotted
versus αγ at SNR = 15 dB for various channel estimation
error variances. The figure shows that a capacity gain of
0.9 nats/s/Hz can be achieved by positioning the receiver such
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that it provides γ1 = γ2. Furthermore, comparing Figures 4
and 6 reveals that by optimum positioning, the increase in
the capacity of a system with channel inversion technique
is higher than that of a system with constant input power
transmission.

7. CONCLUSION

We have addressed the effect of channel knowledge uncer-
tainty at the receiver on the mutual information of dis-
tributed space-time block coded transmission in Rayleigh
fading channels. Specifically, we studied upper and lower
bounds on the mutual information of the system when
knowledge of the variance of the channel estimation error is
available at the receiver and the transmitters. We provided
a limiting value that upper bounds the gap between the
mutual information bounds at any input transmit powers
so as to justify that they represent a good estimate of the
true channel mutual information for Gaussian input signals.
We also showed that the tightness between the bounds
increases when the number of transmitters increases as
long as the receiver can estimate the channels pertaining to
different transmitters with the same accuracy. In addition, we
showed that when the disparity between the estimation error
variances increases, the gap between the bounds increases.
Also, assuming that the summation of the channel gains is
constant, we determined the receiver’s position at which the
mutual information lower and upper bounds of D-STBCs
and their robustness to the variations of the subchannel gains
are maximum. We further determined a lower bound for
the outage capacity of D-STBCs with arbitrary numbers of
transmit and receive antennas, and also obtained closed-
form expressions for this capacity metric and its associated
power allocation scheme. Numerical results showed that
the capacity increase, achieved by optimum positioning of
the receiver, is higher in systems with channel inversion
transmission technique as compared to constant input power
transmission, and that the outage capacity suffers significant
loss as a result of channel estimation errors at the receiver.
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