
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 284525, 17 pages
doi:10.1155/2009/284525

Research Article

PrioritizedMultihypothesis Tracking by
a Robot with Limited Sensing

Paul E. Rybski andManuela M. Veloso

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Correspondence should be addressed to Paul E. Rybski, prybski@cs.cmu.edu

Received 1 August 2008; Accepted 1 December 2008

Recommended by Matthijs Spaan

To act intelligently in dynamic environments, mobile robots must estimate object positions using information obtained from a
variety of sources. We formally describe the problem of estimating the state of objects where a robot can only task its sensors to
view one object at a time. We contribute an object tracking method that generates and maintains multiple hypotheses consisting of
probabilistic state estimates that are generated by the individual information sources. These different hypotheses can be generated
by the robot’s own prediction model and by communicating robot team members. The multiple hypotheses are often spatially
disjoint and cannot simultaneously be verified by the robot’s limited sensors. Instead, the robot must decide towards which
hypothesis its sensors should be tasked by evaluating each hypothesis on its likelihood of containing the object. Our contributed
algorithm prioritizes the different hypotheses, according to rankings set by the expected uncertainty in the object’s motion model,
as well as the uncertainties in the sources of information used to track their positions. We describe the algorithm in detail and
show extensive empirical results in simulation as well as experiments on actual robots that demonstrate the effectiveness of our
approach.
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1. Introduction

Robot perception processing consists of a mapping from
sensory data to an estimate of the state of the elements
of the environment that are of relevance to the task under
execution. For example, a robot traversing a maze needs
to estimate the area and position of open space and walls
from its sensory data. Similarly in a team of soccer robots,
each robot has the potential to estimate the state of the
environment based on its own sensing and on the infor-
mation communicated by its teammates. The complexity of
state estimation greatly increases with the task, the dynamics
of the environment, and the sensing capabilities of the
robots.

In our work, we consider that robots have limited
sensing and operate in complex and dynamic environments
executing tasks that rely on multiple elements. We investigate
robot state estimation as a result of the integration of sensory
information obtained from a variety of sources, namely, the

robot’s own sensors and actions, models and communicated
information from teammate robots’ sensors and actuators, as
well as models of the dynamics of the environment.

Concretely, we investigate the problem when robots have
limited and narrow perceptual scope, such that they are
only capable of observing a single object (or a reduced set
of objects) at a time with their sensors. Thus, the relative
size of the robot’s sensor scope is small compared to the
environment, and while the state of a single object is being
updated by the sensors, the evolving state of all other
nonsensed objects must be predicted from communicated
information or from models learned from observations or
provided a priori.

In addition to the complexity of the problem, not all
sources of information about a single object can and should
be handled equally, as in the traditional sense of weighting
those estimates by their covariance. There are times when
empirical evidence has proven that some modalities must
be ignored as they are unreliable in certain circumstances.
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Additionally, nondeterministic effects of actuators can create
several distinctly different potential outcomes, each of which
must be tracked and reasoned about separately.

To address this challenge, we define a method for
reasoning over a disjoint hypothesis space whereby high-
level domain knowledge is used to impose a strict ordering
on estimates created by different sources of information.
By segmenting the sources of information used to reason
about the state of environmental quantities into different
classes, each with different state dynamics and expected effect
of robot actions, a prioritized hierarchy of state estimates
can be inferred. Additionally, when tracking multiple objects
simultaneously, the evolving states of those objects must be
considered carefully when deciding where to task the robot’s
sensors.

We describe a hybrid state estimation algorithm that
attempts to reduce the complexity of the generated probabil-
ity density functions over a quantity of interest by factoring
the problem into a series of small estimation problems that
are tied to the different sources of model world information
possessed by the robot. A high-level policy is used to
determine where to task the robot’s sensors to best track
the objects in the environment. Such policies for creating
hierarchies can be defined a priori, or they could potentially
be learned from data. Using this policy, the decision process
that governs each individual robot’s actions can easily select
the most informative state estimate to use as its input. The
priorities are set by the expected uncertainty in the object’s
motion model as well as the uncertainties in the sources of
information used to track their positions. Robot’s actions
directly affect its perception of the environment as well as
the environment itself, and the best estimate is often one
that will allow the robot to obtain more information about
its surroundings to further clarify its estimate of quantities
of interest. This, in turn, provides more information to the
robot that further updates the ordered hierarchy of possible
estimates.

This paper describes an active state estimation algorithm,
as applied to a real-time adversarial multirobot domain,
which combines action policies determined from high-
level domain knowledge with multimodal probabilistic state
estimators. In this work, we assume that each of the objects
that are detected and tracked have unique sensor signatures
whereby the additional complexity of the data association
problem can be avoided so that we instead focus on analyzing
the multiple hypothesis reasoning algorithms. Thus, we
contribute an algorithm to address the problem of tracking a
single object with multiple hypotheses. We have successfully
applied this approach to the RoboCup Four-Legged league
where a team of Sony AIBO robots autonomously play soccer
against another team of AIBO robots, as shown in Figure 1.

2. RelatedWork

We discuss some related work along the three main aspects
of our work: (i) probabilistic state estimation; (ii) object
tracking; and (iii) reasoning about multiple hypotheses from
multiple sensing sources.

Figure 1: Sony AIBO robots preparing to play robot soccer at a
RoboCup competition.

Most probabilistic estimation techniques follow a
Bayesian filtering approach [1] and have been successfully
applied to robot state estimation (e.g., [2]). Object tracking
using a Bayesian filter formalism relies on an a priori model
of the object’s motion that allows the algorithm to predict
the object motion given noisy observations. One of the most
widely used methods for state estimation is the Kalman filter
[3], in which the system model is assumed linear and the
noise is assumed Gaussian. When the linearity assumption
becomes a limitation, the dimension of the state vector can be
changed as the tracked object changes its perceived dynamics,
such as with a variable state dimension (VSD) filter [4]. We
also consider the object dynamics, but our approach changes
the number of hypotheses, while the specific dimensions
of those hypotheses’ estimates do not change. Furthermore,
we maintain multiple hypotheses independently as potential
object locations.

An approach to reasoning about a complex motion
model consists of maintaining multiple models. The inter-
acting multiple model (IMM) filter [5] uses a weighted
mixture of different process models. Our approach differs in
that it maintains a disjoint set of hypotheses which are not
merged or fused [6], but are prioritized and visited according
to a specific policy. Similar approaches maintain separate
estimations based on subjective sensing and other sources
(e.g., sensing from robot teammates [7, 8]).

A more general approach is the Switching Kalman
filter model [9], which represents multiple independent
system state dynamics models and switches between them
(or linearly combines them) to best fit the observed (or
predicted) nonlinear dynamics of the system being modeled.
Our approach creates multiple independent belief states (or
hypotheses) rather than a single state with multiple potential
models.

A multiple hypothesis tracking (MHT) [10, 11] approach
uses multiple independent state estimators to estimate a
multimodal probability density. This approach has been used
successfully for challenging mobile robot localization prob-
lems [12], where nonparametric distributions are estimated
through sampling techniques, such as the particle filtering
[13]. The number of particles used can be dynamically
adjusted as computational resources become available or are
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needed elsewhere [14]. Approaches that factor in a joint
state estimation have been used successfully for tracking an
object with a mobile robot [15], where the actions of the
robot change the process characteristics of the tracked object.
Our approach extends the MHT paradigm by reasoning
about the different hypotheses as a function of the source of
information that generated them.

Finally, object tracking is a complex problem addressed
by different approaches that capture connected dynamics
of the multiple objects. We address the problem of object
tracking from a different perspective, namely, in terms
similar to that of sensor planning [16]. Sensor (or actuator)
planning generally requires that a policy be determined over
a state space which dictates the appropriate action to take
based on the state of the world and the robot. In [17],
the reinforcement learning is used to find the a policy that
avoids the problems of a state space explosion as well as
the problems associated with missing sensor information.
Our problem is defined over a continuous state space (e.g.,
the space of tracked object poses) whereby the effects of
various actions are difficult to quantize into a state space
on which a policy could be learned. In [18], a dynamic
programming algorithm is proposed by which a static policy
state over the entire field is determined, which dictates
when the robot should stop its body and localize itself. In
our model, the actions of the objects being tracked in the
world are highly dynamic and are unlikely to be captured
in a single policy over the entire space of poses. In [19,
20], the mechanisms for attention control are proposed
that use expected information gain and cost to acquire the
information as criteria to determine what the robot should
do and when. A decision tree is learned to represent the
policy of the robot. Our approach uses similar criteria to
determine what the robot should do and when though in this
work we do not discuss mechanisms for how the knowledge
is obtained (e.g., learned offline or hand-coded) but rather
focus on the utility of using such concepts and applying
them to probabilistic state estimators that operate over a
continuous state space.

We consider that the robot has a narrow sensor scope
incapable of capturing more than one object at a time.
Our algorithm includes a policy for directing the sen-
sor machinery toward multiple objects. Furthermore, we
consider different types of objects with different motion
models which are used to update the confidence on the state
estimation of each individual object.

3. Challenges of DynamicWorldModeling

We are interested in problems associated with having a robot
autonomously build and maintain accurate world models in
dynamic environments where the states of many objects must
be estimated simultaneously. A robot will be able to make
use of multiple sources of information that can describe the
motion of objects in the environment. In any environment
of reasonable complexity, a robot is incapable of viewing the
entire environment at a single time with its sensors. In the
extreme case, the robot can only track a single object at a time

Sensor
view

Robot

Teammate

Static object
Dynamic object

Figure 2: The general world modeling problem in a dynamic
environment includes requiring a robot to use a narrow-scope
sensor to track the positions of multiple (static and dynamic)
objects in an environment. Determining when and how to use
additional sources of information, such as from the effects of
actuation, and teammate sensor information is a nontrivial task.

with its sensors. Figure 2 illustrates the general class of world
modeling issues addressed in this work. We are primarily
concerned with the issues involved with object tracking rather
than issues involved with the complementary field of map
building which is not part of our discussion.

We consider the challenges of tracking multiple objects,
where each object has multiple sources of sensor and model
information that are available as a combined problem. In this
work, we do not address the additional complexity of the data
association problem where multiple objects have identical or
ambiguous sensor signatures. In order to keep track of the
positions of all objects in the environment, the robot must
continually retask its sensors to refresh the models with more
accurate position data. Deciding which object to track next is
dependent on the expected uncertainty in the motion model
for that object as well as the availability and quality of the
different sources of information that can provide estimates
for the expected position of the object.

To formally describe the problem, we define the following
concepts:

A: the set of all actions, a(t) ∈ A, including the null
action, that the robot is capable of performing at time
t;

O: the set of all objects in the environment where
Oj is the jth object of which the robot must keep
track, the set includes moving objects of which the
robot must maintain an accurate estimate as well
as stationary objects with which the robot must
maintain periodic contact (such as landmarks for
localization);

XOj (t): the estimated position of object Oj at time t;

LOj (t): a sensor observation of object Oj at time t
which can be null in the case that the robot does not
perceive object Oj ;
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MOj : the motion model as a function over objects and
robot actions, it defines the expected change in object
position over time regardless of whether the robot has
obtained a sensor observation:

MOj :
(
XOj (t), a(t)

) −→ XOj (t + 1); (1)

SrOj
: the sensor model of robot r as a function over

objects and sensor observations. Defines the updated
object position at the current time:

SrOj
:
(
XOj (t),LOj (t)

) −→ XOj (t + 1), (2)

note that in the case of no observations of object Oj

at time t, the output position is identical to the input
position:

SrOj
:
(
XOj (t), NULL

) = XOj (t); (3)

Erα
Oj

: a sensor observation from an external source,
such as another robot rα:

Erα
Oj
= SrOj

, (4)

where rα /= r.

For the problems in which we are interested, we identify
three different classes of objects that have distinct motion
model dynamics.

(1) Static: objects that do not move on their own, such
as goal markers and landmarks used for localization.
Even though these landmarks do not move, the
robot’s own position estimate with respect to these
objects can be uncertain.

(2) Quasidynamic: objects which do not move on their
own, but which move by being manipulated or
pushed by a robot. The motion model for this kind
of object encapsulates the actuation dynamics from
manipulation when the robot manipulates it, but also
must take into account that the object can move
unexpectedly when another robot makes contact
with it.

(3) Dynamic: objects, such as other robots, which can
move under their own power and control. The
internal state of these robots is unobservable and
their motion can be difficult to predict.

4. Object Tracking

For any environment of interest, the robot’s sensors will not
have the capability to view all aspects of an environment at
the same time. Thus, the robot must change the direction
that its sensors are pointing in order to continually update
its world model with new readings of the objects that it is
tracking. In the most difficult case, the robot can only track
a single object at a time and must predict the positions of
the other objects with their motion models. The longer an
object is not visible, the less accurate the robot’s model will be

due to noise and unmodeled dynamic changes in the object’s
motion. Deciding how and when to retask the robot’s sensors
depends highly on the objects being tracked as well as the
environment in which they exist.

Our solution is to define a policy over all objects that
describes when the robot should point its camera from one
object to the next. A formal description follows:

AL: a subset of actions A which cause the robot to
change the angle of its sensors in order to gather a
new observation of an object;

πob: a policy over the position of a set of objects
−→
X Oj

that decides which object the robot should track next:

πob :
(−→
X Oj

) −→ aj , (5)

πob takes as input the vector of all estimated object
positions XO and computes the best action aj ∈ AL

(possibly NULL if no best action exists) that moves
the robot’s sensors to track an object Oj .

Two functions for πob are considered in this work as
follows.

(1) Naı̈ve: takes no notion of object uncertainty into
account, and cycles robot’s sensor between all objects
equally.

(2) Greedy: selects the object with the greatest uncer-
tainty to track. Expected uncertainty is derived from
the motion models for the object.

The rest of this work describes the instantiation of
these concepts into a set of algorithms and analyzes their
performance in simulation and on real robots.

5. PrioritizedMultihypothesis
Model Tracking

To effectively estimate the state of objects in the environment,
sensor observations SrOj

must be obtained which provide
some update as to the position of the object. In the absence of
good sensor readings, models MOj of the expected motion of
the objects must be used to predict the change in the object’s
state. In all but the most degenerate cases, such models will
not be able to completely describe the motion of the object.
Noise and unexpected changes in the dynamics of the object
will cause the robot’s estimate to rapidly diverge from the
object’s true position.

Multiple sources of information exist that a robot can
use to search for an object that is not visible in its sensors.
Each source represents a potential hypothesis on the location
of the object. For example, nondeterministic effects of
actuators can create several distinctly different potential
outcomes, each of which should be tracked and reasoned
about separately. Similarly, teammates may provide some
information about the state of an object, but the quality of
this information could be quite poor if the position estimate
of the teammates is erroneous due to localization errors.
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Our approach to the problem of object estimation,
where multiple sources of information about the objects are
available, is to define a policy over the set of objects which
prioritizes when and how the robot should task its sensors
based on the kinds of objects being tracked, information
returned from sensors about the object, and a priori models
of how the robot interacts with the object (such as with its
actuators):

hi: a hypothesis over the location of object Oj , each
hypothesis is defined as hi : P(XOj ), where P(XOj ) is
a probability distribution over XOj consisting of the
pose and uncertainty;

HOj : the set of hypotheses hi that represent the set of
possible locations for object Oj ;

π
j
mh: a policy for a particular object Oj which

describes a ranking of the different hypotheses hi that
could exist at any given time for it;

fmh: a function over the sources of information that
can be used to predict object Oj ’s location at time t:

fmh :
(
MOj , S

r
Oj

,
〈
Erα
Oj

, . . .
〉

,π
j
mh

) −→ X ′Oj
(t), (6)

where X ′Oj
(t) is the most highly ranked pose given

the set of available hypotheses, and 〈Erα
Oj

, . . .〉 is the
set of all available observations from teammates.
Algorithm 1 illustrates the hypothesis ranking func-
tion.

The following list illustrates how information returned
from the robot’s sensors, model information from actuators,
and teammate observations can be ranked as follows:

(1) robot’s own sensors,

(2) successful actuation,

(3) failed actuation,

(4) teammate observations.

In this case, the robot’s own sensors, such as a camera,
are trusted over all other sources of information. All other
sources of information are not sensed directly but are
instead obtained indirectly through models and teammate
information. Actuation is assumed to be done blindly
where the contact with the object is invisible to the robot’s
cameras. Actuator success is assumed over failure. Finally,
because of the possibility of poor self-localization, teammate
information is listed to only when no other sources of
information are available.

Because all hypotheses are represented as probability
distributions, their state can be estimated with appropriate
probabilistic tracking algorithms, such as the Kalman Filter,
Particle Filter, or other Bayesian filter-based approaches.

6. WorldModeling in aMultiagent Dynamic
Adversarial Domain

In the RoboCup Four-Legged league, two teams of four
Sony AIBO robots autonomously play soccer against one

another. While robots on the same team use 802.11b wireless
Ethernet to communicate with each other, no additional off-
board computation is allowed. A deployed team becomes
a distributed sensor processing network. Several sources of
information are available to each robot that allow it to
build a model of its environment, including its sensors,
kinematic models of its own body and actuators, as well
as information communicated to it from its teammates.
Additionally, each team possesses an a priori map of the
field which gives the locations of the markers, goals, and
field lines in a global reference frame. Some details of how
the robot visually segments the world using its camera
to detect and track objects, how the robot localizes its
position in the world based on visually-identified landmarks,
and the details of some of the control algorithms that
determine the robot’s general behavior are described here
[21, 22]. Visual observations of fixed environmental features
are used to localize the robot on the field using a particle
filter localization called sensor resetting localization (SRL)
[23]. All sensing, world modeling, and behavior selection
is performed at 30Hz which is the frame rate of the
robot’s camera. Our robots are programmed to operate
as a team where each member has a different role that
dictates its behavior [24]. For the experiments in this
paper, the robot takes on the role of an “attacker” whose
job is to head straight for the ball, intercept it, and
then dribble/kick it up field toward the opposing goal.
Please see our prior work for details on the behavior
strategy.

In the RoboCup domain, knowing the location of the
ball at all times is critical for successful play. The problem of
knowing the ball’s position is a challenging combination of
active search and tracking. A number of specific factors serve
to confound the modeling problem. Each of these factors
contributes a quantity of error that introduces noise that
must be contended with. Unfortunately, the full extent of
some of the noise factors is extremely difficult to model.
These factors include the following:

– Inaccurate Sensing: each robot is equipped with a
color digital camera, located in the front of its
head that it uses to perceive the world. Because the
robot is very low to the ground, its view can very
easily and quickly be occluded by opponents and/or
teammates. When the robot is actively tracking the
ball, it is typically unable to localize as often, which
contributes to pose uncertainty error.

– Interactions between the Robot and Target: the four-
legged chassis of the AIBO gives it a wide variety
of motions that it can use to manipulate objects
such as the ball. However, due to slippage of the
joints and variability of the initial starting positions
of robot and ball, the effects of these actions can
vary considerably. Specifically, the effect of an action
can have a single successful mode and multiple
independent failure modes, each of which has its own
dynamic characteristics.



6 EURASIP Journal on Advances in Signal Processing

• Given:
1. H = list of hypotheses Hi (from last invocation)
2. H ′ = [ ] (empty list of hypotheses)

• Execute:
– Generate hypotheses h′k from MOj , S

r
Oj

, 〈Erα
Oj

, . . .〉, and add to H ′

– for each h′k in H ′ do
∗ if h′k matches some hi in H

Update hi with data from h′k
∗ else

Add h′k to H

– Rank and sort hypotheses in H based on policy π
j
mh

– Prune all hn from H if uncertainty over threshold
– If H is empty return NULL
– return h1 (first ranked hypothesis)

Algorithm 1: Definition of hypothesis ranking function.

– Interactions between the Robot and environment: the
four-legged chassis is also a large source of odometric
noise as the complex physics of how the robots limbs
strike the ground coupled with the fact that the robot
is typically jostled heavily during game play means
that the robot’s confidence in its own position can
very quickly become erroneous even if it had very
recently correctly localized itself.

– Erroneous Information from Teammates: using their
wireless Ethernet, the robots can share local observa-
tions made about the environment with their team-
mates. Because the robots do not have a centralized
server, they do not have a method of synchronizing
their internal clocks. The lack of accurate timestamps
on observations makes fusion of the sensor data
much more challenging. Because of the positional
uncertainty, global positions of objects reported by
teammates can very easily be erroneous if the robot’s
position or (more importantly) its heading are esti-
mated badly. This source of information is very likely
the most problematic as a teammate can broadcast
a very tight and accurate covariance estimate even
though it has become very poorly localized due to an
undetected collision with an opponent. These errors
are highly nonlinear as errors in robot orientation
contribute greatly to errors in reported ball pose.

Attempting to reason effectively about each of these
sources of error directly can be very challenging and difficult
to do precisely. Because the robot’s actions directly affect its
position in the environment and the position of the ball, as
well as the amount of information that the robot can obtain
from its sensors, the algorithm for selecting the correct action
to perform at a given time is extremely important.

6.1. Prioritized Multiple Hypothesis Object Tracking. In our
group’s long experience with the RoboCup legged league,
we have observed many effects of noise on our robots that
are caused by such a dynamic environment. In particular,
we have identified a number of places where more abstract

knowledge about the high-level domain can be helpful when
estimating the position of the ball on the field.

(1) Occlusions occur enough that the ball can often be
in the robot’s visual field even though it is behind another
robot. Persistence in searching for the ball in an area last
believed to be its location is preferable to immediately giving
up the search and looking elsewhere on the field. Thus, the
actions performed by the robot are highly dependent upon
the source of information used to generate the hypothesis
being tracked.

(2) Ball estimates returned from teammates are never as
accurate as the robot’s own estimates. Our team uses a dual
world model [8] where the robot’s own perceptions build a
model which is kept independent of the model built from its
teammate’s perceptions.

Our approach tags the contribution of each source of
information to the state estimate. This allows additional
information, such as the utility of the source of data on
the estimate, to play a factor in the decision processes
that the robot makes when solving its task. Concretely,
the state vector to be estimated is segmented into a set
of parallel and independent hypotheses, each of which
represents a probability distribution over the state vector.
These individual estimates are maintained in parallel and an
external decision process chooses which ones to ignore and
which one (or ones) to use.

6.2. RoboCup Hypothesis Selection Policy. In order to incor-
porate domain-specific data into the estimation algorithm
that can be used in hypothesis ranking and persistence,
we define a specific policy for reasoning about the specific
sources of information. In the RoboCup Four-Legged league,
there are multiple sources of information that must be
accounted for when tracking the ball. The individual sources
of information are used to generate a disjoint hypothesis
space which is filtered for the most relevant information. The
different sources include the following:

– Vision: the robot’s own camera is the most reliable
source of information that allows the robot to
compute the ball’s position by itself.
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– Game Manager: when the ball goes out of bounds, it
is immediately replaced in a fixed location depending
on the offending team and the quadrant of the field
where the ball went out. When the game manager
reports a throw-in, the robot can be sure that the ball
has jumped to a new location, as the referee will have
moved it.

– Actuation: kicks are performed blindly as the ball
is usually under the robot’s camera. A large library
of predefined kicking motions is available to each
robot on the team. The robot is typically unable to
visually track the ball during a kick because the ball
is under the chin and behind the camera when the
kick is initiated. Models of the predicted position
of the ball after the kick are learned empirically in
the lab [25] and used by the estimator to reacquire
the ball after a kick has been performed. Because
kicks are not always successful due to noise in the
interaction between the robot, ball, and the rest of
the environment, we distinguish between two effects
of actuation, namely: kick success and kick failure.

– Teammate: teammate ball information is typically
the worst source because, while their tracked local
information is accurate with respect to their local
reference frame, the global position can be erroneous
if they are mis-localized.

The different sources of information are ranked in order
of expected quality and are used to guide the behaviors to
search for the ball and track it when found. The hypothesis
database encodes all of the relevant domain knowledge that
is necessary for segmenting the hypothesis space into the
relevant subsets so that the robot can use this information
to act effectively. The specific policy defined for our AIBO
team for deciding which source of information to use in the
hypotheses returned from the estimator is summarized in
Algorithm 2.

7. Empirical Evaluation

Estimating the state of quantities in an environment is
typically done through the generation of a complex prob-
ability density function. In typical real-world problems of
interest, the density functions are typically highly mul-
timodal and can rapidly diverge from the true estimate
due to noise. Our hybrid approach to state estimation
factors the complete probability density function into
smaller subproblems based on the a priori policy func-
tion over the problem. We have applied this approach
to the challenge of robot soccer in the RoboCup Four-
Legged league by first making use of a robust probabilis-
tic algorithm for solving the underlying state estimation
problem of simultaneous self-localization and tracking of
the ball. Our hypothesis selection algorithm then maintains
multiple independent state estimators which are created,
updated, or deleted as the robot interacts with its environ-
ment and gains information from its sensors and team-
mates.

7.1. 1D Simulation Study. To analyze the prioritized mul-
tihypothesis object tracking algorithm described in this
paper in a statistically significant fashion, a simple one-
dimensional version of the tracking problem is implemented
in simulation. The simulation contains the following ele-
ments:

A robot capable of self-locomotion, manipulation
(pushing) of object, and tracking different objects
one at a time. The robot uses a Kalman Filter for
tracking the multiple objects.

Several objects that exhibit stochastic motion models
that can be classified as static, quasidynamic, and
dynamic. The class of motion to which each object
belongs is known to the robot. All object motion is
described by a noisy linear dynamical system.

One or more “teammate” robots that can provide
their own observations of objects to the primary
robot. These teammates do not manipulate any
objects or affect the environment in any way. Because
of localization errors, the reported objects positions
may be erroneous.

The task for the robot is to track the positions of all of the
objects as closely as possible.

7.1.1. Object Tracking. Before introducing the concept of
tracking multiple hypotheses per object, the utility of the
described approach for deciding when to track a specific
object is evaluated. In this experiment, three different objects
with increasingly dynamic motion models are simulated. The
robot’s task is to maintain a good estimate of each of the three
even though it is able to observe only a single object at a time.
The robot is not to manipulate any objects and no teammates
are present to assist the robot in the tracking problem. As
before, it is assumed that each object is uniquely identifiable
from the robot’s sensors so that there is no data association
problem.

The performance of the naı̈ve tracking policy is com-
pared against the greedy tracking policy. In the naı̈ve case,
the robot gives equal time to tracking each object regardless
of that object’s motion model and associated uncertainty.
Uncertainty in this work is the covariance associated with
the error in the estimated position of the object. For as
long as the object is unobserved, the uncertainty of that
object’s covariance will increase. As the greedy case, the
robot tracks the object with the greatest uncertainty at the
time.

The simulation is run for 500 trials of 500 timesteps
each. The sums of the errors between estimated position
and ground truth across all three objects are computed.
The average error across all trials for the greedy policy
(μ = 19.617, σ = 1.584) is less than the average error
across all trials for the naı̈ve policy (μ = 22.300, σ =
2.141). This result is statistically significant (one-tailed, two-
sample t-test). Figure 3 illustrates an example run of the
simulation with three objects being tracked using the greedy
policy.
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• Given:
1. Set of hypotheses based on the game manager: Hg

2. Set of hypotheses based on the robot’s own sensors: Hr

3. Set of hypotheses based on teammate sensors: Ht

• Select game manager, self, or teammate information
– If Hg not empty
∗ Select game-hypothesis

– else if Hr not empty and Ht not empty
∗ If vision data actively supports a hypothesis in Hr then select self-hypothesis
∗ else If time since ball viewed < threshold then select self-hypothesis
∗ else select teammate-hypothesis

– else if Hr not empty then select self-hypothesis
– else if Ht not empty then select teammate-hypothesis
– else return

• Track hypothesis classes
– If game-hypothesis
∗ Track hypothesis Hg created by game manager

– else if self-hypothesis
∗ If ball is actively in view of the camera, filter self estimates with source vision and

actively track the most likely one
∗ else If ball is in possession, track possession estimates
∗ else If ball was kicked, track the kick estimates starting with the Kick Success estimate

and switching to the Kick Failure estimate when the former is pruned
∗ else Track any estimates based on older vision information

– else If teammate-hypothesis
∗ Rank the teammate estimates based on current self-role
∗ Track best ranked estimate based on teammate role and position

Algorithm 2: Hypothesis selection policy for ball tracking in AIBO Robot Soccer.

7.1.2. Multihypothesis Object Tracking. In this simulation,
the robot’s task is again to track three objects, but addi-
tionally, it must also move up to a quasistatic object and
manipulate (push) it. After manipulation, the robot must
reacquire sensor contact with that object. Several hypotheses
are generated after each manipulation: one which reflects
a successful manipulation of the object, a second which
reflects a failed manipulation, and a third which is the
teammate estimate. The simulation is set up such that
the actuation succeeds 90% of the time but fails 10%
of the time. The physical modeling of the actuation is
also corrupted by random noise. The teammate’s local-
ization estimate is corrupted by random noise as well
as an offset bias which is randomized between trials to
reflect the uncertainty in a teammate’s localization. Because
of the localization error, the positions reported by the
teammate are nearly always worse than the robot’s own
estimates.

Several different multihypothesis tracking policies
(shown in Table 1), which describe the order in which the
hypotheses are visited by the robot’s sensors, are evaluated
as part of this experiment. Once again, the naı̈ve and
greedy object tracking policies are evaluated as part of this
experiment. Figure 4 illustrates a sample run of the robot
chasing the object it must actuate (for clarity, the other two
objects are not shown). The simulation is run for 10,000
trials of 500 timesteps each. The sums of the errors between
the estimated position and ground truth for all three objects

Table 1: Six multihypothesis tracking policies tested in simulation.
Policies 4–6 only ever track a single hypothesis.

Policy 1st hypothesis 2nd hypothesis 3rd hypothesis

1 successful push failed push teammate

2 failed push successful push teammate

3 teammate successful push failed push

4 successful push N/A N/A

5 failed push N/A N/A

6 teammate N/A N/A

are compared. Table 2 illustrates the results for all twelve
policy configurations.

As expected, the policy configuration that performs the
best over all other policy configurations is the greedy object
tracking policy with hypothesis policy 1 (see Table 1 for
an explanation). These results are statically significant over
all other policy configurations (one-tailed, two-sample t-
test).

The best hypothesis selection policy is the one which
most closely matches the physics of the true environment.
However, if the robot were to possess a damaged actuator
which caused the actuation effect to fail more often, or if
the teammate could be assured to be well localized (such as
a stationary teammate), policies 2 or 3 (respectively) would
most likely be the superior choices. Thus, the selection of
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Figure 3: Tracking objects with the greedy policy. Example run
of the one-dimensional simulation showing the positions of three
objects being tracked with the greedy policy. Only 100 timesteps
out of 500 are shown for clarity. For each object, “x” marks the
target’s estimated position. The most dynamic object (bottom in
red) is tracked 52% of the time, the second most dynamic (middle
in green) is tracked 33% of the time, and the least dynamic (top in
blue) is tracked 15% of the time.

Table 2: Mean error and std dev for all 12 cases evaluated over
10,000 trials in simulation. The policy combinations are sorted
with the least error on top and the largest error on bottom. The
first column represents the hypothesis selection policy, as described
in Table 1, and the second column represents the target tracking
policy.

Hypothesis policy Target policy μ σ

1 Greedy 1.667 1.644

1 Naı̈ve 1.819 1.844

2 Greedy 1.891 1.731

6 Naı̈ve 2.028 2.226

3 Greedy 2.054 2.170

3 Naı̈ve 2.067 2.240

2 Naı̈ve 2.086 2.098

6 Greedy 2.105 2.160

4 Naı̈ve 2.122 2.400

4 Greedy 2.164 2.360

5 Naı̈ve 2.574 2.912

5 Greedy 2.648 2.764

the specific hypothesis policy must be done with care after
the robot’s performance in its chosen environment has been
observed and carefully measured.

7.2. 2D Simulation Study. For initial testing of our algorithm,
we have developed a robust simulation environment for
running our algorithms in test soccer matches. Our simulator
incorporates a basic dynamics engine allowing us to simulate
the forces and accelerations applied to rigid bodies moving
about (and colliding within) the environment. Actuation and
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Figure 4: Example run of the one-dimensional simulation showing
the robot chasing and actuating an object. After actuating the
object, the robot maintains three separate hypotheses: one for
actuation success, one for actuation failure, and one for the noisy
external teammate observation. Actuation succeeds at times 21, 125,
300, and 341. Actuation fails at time 205. The object is moved by
an external force at time 307 and the robot must use the teammate
observation to relocalize it. Not shown are the other two objects that
the robot is tracking.
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Figure 5: Simulation package used for evaluation of robot soccer
algorithms. The robots are represented as red and blue circles.

sensor noise is also simulated with models measured from
our real-world robots. Figure 5 shows a typical view from the
simulator.

To systematically evaluate the effectiveness of the use
of a high-level hypothesis policy to factor a probabilistic
state estimation problem into a more tractable form, several
hundred robotic runs were performed with our simulation
package. The underlying estimation algorithm used in this
study was a Rao-Blackwellized particle filter (RBPF), similar
to the algorithms reported in [15, 26], where the state of
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Table 3: The multihypothesis tracking policies tested in 2D
simulation.

Policy 1st hypothesis 2nd hypothesis 3rd hypothesis

1 successful kick failed kick teammate

2 failed kick successful kick teammate

3 teammate successful kick failed kick

the ball as well as motion model of the ball is stochastically
sampled based on the expected activities of the robot and its
sensor information.

In these experiments, single robot kicks the ball between
several different waypoints on the field. The robot’s sensor
readings as well as the actuation models are stochastically
corrupted with noise. We compared the performance of the
RBPF which estimated the full state of the ball and motion
model against our hybrid approach where each motion
model is given its own independent state estimate (also using
a RBPF for each) and the robot chooses which model to track
based on its actions and expected performances therein.

The ground truth of the ball’s position on the field
was recorded and compared to the robot’s current estimate.
After several hundred experiments, we found that the hybrid
policy estimator outperformed the single estimator in a
statistically significant fashion (0.732 m error on average for
the single RBPF versus 0.592 m on average for the policy
selection algorithm). We note that the parameters for all of
the RBPFs were kept the same for both experiments. Figure 6
illustrates an example estimate from both approaches. Note
in Figure 6(b) how the density from the policy selection
algorithm is focused mainly around the areas from the
expected outcomes of the actions where the density of the
particles in Figure 6(a) is more spread out.

A series of simulation experiments were performed to
evaluate the effectiveness of the policy selection algorithm
on a variety of different environment. In this study, a single
robot was required to find the soccer ball on the field, and
manipulate it with its kicking mechanism through a series
of waypoints. As with the 1D simulation study, a number of
different policies were evaluated for where the robot should
task its sensors in order to find the ball when it was not
in view of the robot’s sensors. Table 3 illustrates the list of
different policies.

In the simulation study, four different environmental
cases were studied. These included several different environ-
mental cases that we have observed in real RoboCup soccer
matches as follows.

Case A: high probability of kick success with bad
teammate localization.

Case B: low probability kick success with bad team-
mate loc localization.

Case C: high probability kick success with good
teammate loc localization.

Case D: low probability kick success with good
teammate localization.

The kick success is directly affected by the state of the
environment whereby the texture, friction, and dampening
of the soccer field will directly affect how well the kicking
action works. The effects of teammate localization are
also heavily dependent on the state of the lighting in the
environment.

Each trial of the simulation consisted of the robot
approaching, grabbing, and kicking the ball such that it could
manipulate it through a series of waypoints on the field
continuously for 10 minutes. A stationary teammate robot
tracked the ball and relayed its observations when the ball
was in view. The results were evaluated on how well the
kicking robot’s state estimate matched the global ground
truth of the world and by how much time the robot actually
had the ball in its view. The results are summarized in Table 4
for the error in the robot’s ball estimates and Table 5 for the
amount of time that the robot had the ball in view of its
sensors.

In general, the appropriate policies performed well in the
environmental conditions where they were placed. We did
not expect that the outcomes of the different policies would
have the same ranking in performance for both the average
error in the estimated ball position as well as the average time
that the ball was visible in the robot’s sensors. However, when
looking at the results, it can be seen that the rankings of the
3 policies are the same for both metrics.

In cases A and B, the teammate robot was unable to
localize itself very well, and as a result, the policy that made
use of that information first performed the most poorly in
those cases. However, in cases C and D, the opposite was
true. The challenge must be faced by any team of robots
is to decide when to trust the information returned by
their teammates. Teammate information, particularly in the
RoboCup environment where individual robots are crowded
and jostled by opponents, can very easily be corrupted
without the teammate being aware of it until it attempted to
relocalize itself. When the teammate’s position is corrupted
with error, any information about tracked objects that are
converted from the robot’s egocentric coordinate systems to
a global coordinate system will also be corrupted. This is
a very serious problem because in addition to translational
error, any error in the orientation will generate a significant
additional error in the global pose of the object.

The only results that were not statistically significant were
the times that the ball was visible in case B for policies 1 and
3. Case B was probably the hardest for the robot because its
kicking actions were the most likely to fail and the teammate’s
reported ball position was very error-prone. Thus, if the
robot did not first look to the kick failure hypothesis first,
it would spend a lot of time chasing phantoms in either of
those two cases.

7.3. Real-World Study. We have implemented our hybrid
policy selection algorithm on our AIBO RoboCup team
where the robots and algorithm have performed (and won)
in competition. In the AIBO implementation, the underlying
probabilistic state estimation algorithm for tracking the ball
is a simplified multihypothesis tracker using an extended



EURASIP Journal on Advances in Signal Processing 11

Robot position

True ball position Estimated ball position

(a)

Robot position

True ball position Estimated ball position

(b)

Figure 6: Example illustration of the simulated world where the robot has just kicked the ball. The vanilla RBPF estimator tracking the ball
(a). The hybrid bank of RBPF estimators tracking the ball in (b). In (b), the three different hypotheses are represented as different shaped
particles (vision: circle, kicksuccess: cross, kickfailure: square).

Table 4: Results of the 2D-simulated soccer simulation experiment showing a list of the policies ordered from best (top) to worse (bottom)
based on the estimator error for the four different experimental cases. Every result is statistically significant (based on t-test).

Case A Error in meters Case B Error in meters Case C Error in meters Case D Error in meters

Policy μ σ Policy μ σ Policy μ σ Policy μ σ

1 0.58 0.12 2 1.06 0.08 3 0.28 0.05 3 0.16 0.04

2 0.85 0.07 1 1.17 0.01 1 0.48 0.14 2 0.59 0.03

3 1.79 0.05 3 1.73 0.05 2 0.74 0.06 1 0.75 0.03

Kalman filter. The deciding factor for the choice of this
estimator was the need for computational efficiency on a very
limited CPU budget. Other algorithms, such as the computer
vision and self-localization, require a large percentage of
the available computation as well. Our hybrid hypothesis
selection algorithm was implemented as described in the
previous section. Each hypothesis estimate is allowed one
or two Kalman filters (merging or splitting as needed). An
example of the hypothesis selection policy, as implemented
on our AIBO robots, is illustrated on a simple example in
Figure 7.

The Kalman filter [3] is a Bayesian filtering algorithm
which estimates the state of a system by modeling the
process and sensor noise with zero-mean univariate Gaus-
sian distributions. The Kalman filter estimates a quantity
with a propagation step whereby the predicted state of
the system is computed according to a dynamics model,
and a sensor update step, where a (noisy) sensor reading
model corrects the predicted state. In both steps, the state
estimate and the uncertainty associated with the state are
updated. However, a shortcoming of the basic Kalman
filter algorithm is that it assumes that all of the noise
models can be estimated using white Gaussian noise. Addi-
tionally, the final state and uncertainty estimate are also
represented as a single Gaussian distribution. Thus, our
approach uses a variation on the multiple hypothesis tracker
(MHT) [10] Kalman filter algorithm where a multimodal
probability density is estimated by a bank of Kalman
filters.

Interestingly enough, the deterministic approximation to
the state estimation problem solved by the MHT paradigm
can be considered analogous to approximate inference
methods for performing stochastic inference in switching
Kalman filter models via a Rao-Blackwellized particle filter
[27]. At this time, it is not clear whether one approach is
superior to the other. For efficiency purposes, the AIBOs use
the Kalman filter to generate a probabilistic estimate for the
position of the ball. Particle filters typically require greater
computational power due to the large number of samples
that must be maintained and updated. While significant for
a robot its size, the AIBO’s onboard computer, a 600 MHz
MIPS processor, must handle a great deal of additional
processing, such as vision, localization (already using a
particle filter), and kinematics. Computational issues of the
robot aside, we assert that our proposed hypothesis selection
algorithm is independent of the particular representation
used for the state estimates. Instead of Kalman filters for each
estimate, independent sets of particle filters could be used to
represent the different hypothesis classes. By keeping them
disjoint, the robot can select the appropriate hypothesis to
explore using the proposed algorithm.

Each element of the disjoint state estimate is represented
using a bank of L Kalman filters. In this way, a multimodal
estimate generated by multiple potentially conflicting or
ambiguous sensor readings can be maintained until addi-
tional sensor information removes one or more hypotheses
that are inconsistent with new sensor data. When new
sensor data arrives, a gating function is used to determine
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Table 5: Results of the 2D-simulated soccer simulation experiment showing a list of the policies ordered from best (top) to worse (bottom)
based on the time the ball is in view for the four different experimental cases. Time is measured in frames of video where the ball is visible
(frame rate is 33 Hz). Every result is statistically significant (based on t-test), except for the times of policies 1 and 3 in case B.

Case A Frames visible Case B Frames visible Case C Frames visible Case D Frames visible

Policy μ σ Policy μ σ Policy μ σ Policy μ σ

1 1087 48.08 2 568 50.80 3 1248 19.30 3 965 51.96

2 925 27.26 1 477 68.50 1 1167 47.42 2 714 30.99

3 866 59.19 3 442 43.98 2 981 40.84 1 633 29.9

(a) Case (1a): Robot tracks and
approaches the ball for a kick

(b) Case (1b): Robot performs an open-
loop grab motion and kick which suc-
ceeds

(c) Case (1c): The robot looks to the
location of the kick success hypothesis
for the ball

(d) Case (2a): In a different kick, the
open-loop grab and kick fails

(e) Case (2b): The robot looks to the
location of the kick success hypothesis
for the ball but doesn’t find it

(f) Case (2c): The kick success hypothe-
sis is pruned and the robot looks to the
kick failure hypothesis

(g) Case (3a): The robot attempts to
kick, but the ball is stolen by external
forces

(h) Case (3b): A nearby teammate is
shown the ball. Both the kick success and
kick failure hypotheses are evaluated

(i) Case (3c): All of the kick hypotheses
expire and the robot tracks the team-
mate’s reported hypothesis (the ball is
hidden from the first robot’s view)

Figure 7: An illustrative example of the prioritized multiple hypothesis algorithm for reasoning about possible locations for the ball.

which filter should be updated with the new information.
If no hypothesis matches the data, a new hypothesis will
be initialized. All hypotheses have an uncertainty model
which is represented as a covariance matrix P. As per the
propagation algorithm, the uncertainty of the covariance
matrix will continuously grow if there is no sensor data.
Eventually, a check is performed to determine whether the
covariance of the estimate has grown too large to be practical.

In this case, a particular filter is no longer informative
(essentially a uniform density distribution) and is removed
from consideration.

The sources of information that feed into this estimator
can have distinctly different process models which describe
how quickly the uncertainty grows in the model. Our
approach makes use of this in order to exploit both positive
and negative information returned from the sensors to adapt
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Table 6: Description of terms used in the multiple hypothesis Kalman filter algorithm.

X̂t/t Estimated state at time t with accumulated sensor readings from time t

X̂t/t+1
Estimated state at time t + 1 with accumulated sensor readings from time t. This occurs when the system dynamics are propagated
but no sensor reading has yet been obtained at time t + 1

F State transition Jacobian matrix

B Control matrix

ut Control input at time t

Pt/t Covariance matrix at time t with accumulated sensor readings from time t

Pt/t+1 Covariance matrix at time t + 1 with accumulated sensor readings from time t. See definition of X̂t/t+1 above.

G Process noise Jacobian matrix

Qt Process noise covariance matrix at time t

zt Sensor reading at time t

ẑt Estimated value of sensor reading at time t

H Sensor Jacobian matrix

rt Residual between expected and actual sensor readings

R Sensor noise covariance

St Computed covariance of sensor reading at time t

Kt Kalman gain at time t

the process noise of the estimates. When the tracked object is
observed by the sensors, the process noise is set to a model
which best describes the dynamics of that object. Specific
estimate process noise is based on the following states and
is ranked from lowest (1) to highest (5) as folows:

(1) Visible. The estimate is being actively observed and
tracked with the camera.

(2) Possession. The estimate is not seen, but the robot
believes that the object is under its chin and can be
manipulated.

(3) Not in camera view. The estimate is not within the
expected field of view of the camera as the robot’s
sensors have been directed elsewhere.

(4) In camera view but occluded. The estimate is expected
to be visible in the calculated camera view but
currently is not. However, occluding objects (such as
other robots) are also present in the image, so the
object could still be present.

(5) In camera view but not visible. The estimate is
expected to be visible in the calculated camera view
but it is not. No additional occluding objects are
present.

As the process noise increases, the estimate uncertainty
will increase and decrease the likelihood that it will be
selected as the next hypothesis to explore by the robot. Thus,
when the sensors view an area where the tracked object
is expected, but no readings are found, the process noise
increases drastically to reflect the notion that the object has
moved.

The specific notation for these algorithms is described in
Table 6. The propagation algorithm for our disjoint multiple

hypothesis tracker is shown in Algorithm 3, and the sensor
update algorithm is shown in Algorithm 4.

Directly evaluating this algorithm on real robots is
much more difficult due to the challenge of obtaining the
ground truth of the ball and the robot in the environment.
However, we have conducted controlled experiments where
we have measured the time that it takes for the robot
to maintain visual contact with the ball with the policy
algorithm versus a straight estimator with a naı̈ve search.
The mean times for visually reacquiring the ball after
losing track of it are statistically significant on the order
of several seconds. This time to reacquire the ball is even
more significant when dealing with reported teammate
estimates. Due to the difficulty of localizing the robot in the
dynamic RoboCup environment, teammates can potentially
broadcast very inaccurate information. In actual competition
games where the teammate information was given higher
priority, the robots tended to be more lost than in games
when they used their own models first before listening to
teammates.

Figure 8 illustrates how the multiple disjoint hypothesis
tracking algorithm step through the different hypothesis
classes in an attempt to drive the robot towards the correct
estimated ball position. In this example, two AIBOs are
tracking two different balls on the field. The AIBO in the
center is actively attempting to score a goal with its ball. The
stationary AIBO in the upper right corner of the field tracks a
ball that is occluded from the first AIBO. The moving AIBO
continuously receives a global position estimate for the ball
from the stationary one.

In Figure 8(a), an AIBO observes the ball on and moves
toward it in an attempt to kick it into the goal. In Figure 8(b),
the robot performs a side kick that uses its head and the
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• Given:
1. A list of Kalman filters L
2. Sensor poses and expected fields of view

• Propagate
– For each filter l (with state estimate X̂t/t and covariance matrix Pt/t) do
∗ Propagate the state and covariance matrix from time t − 1 to time t

X̂t+1/t = FX̂t/t + But
Pt+1/t = FPt/tFT + GQtGT

∗ Update the process noise matrix Q of the filter based on the expected
readings of the sensor

∗ If likelihood of Pt+1/t is less than a threshold, delete filter l from the list

Algorithm 3: Multiple hypothesis state estimation propagation algorithm.

• Given:
1. A list of Kalman filters L
2. Reading from a sensorz

• Update
– If Kalman filter list L is empty, initialize a new filter based on the sensor reading and exit
– else For each Kalman filter l do
∗ Compute the Mahalanobis distance for the filter l and the sensor reading

ẑt+1 = HX̂t+1/t

rt+1 = zt+1 − ẑt+1

St+1 = HPt+1/tHT + R
M = rt+1S

−1
t+1r

T
t+1

– Select the Kalman filter li with the smallest Mahalanobis distance Mi

– If Mi <= thresh, apply the sensor estimate to that filter
Kt+1 = Pt+1/tHTS−1

t+1

X̂t+1/t+1 = X̂t+1/t + Kt+1rt+1

Pt+1/t+1 = Pt+1/t − Pt+1/tH
T
t+1S

−1
t+1Ht+1Pt+1/t

– else Initialize a new filter based on the sensor reading and add it to the list.

Algorithm 4: Multiple hypothesis state estimation sensor update algorithm.

current hypothesis changes to the class of kicks and is split
into two cases. The first case is the success case, which models
the kinematics of the kick and predicts the motion. The
second case is a failure case which models the situation where
the AIBO failed to kick the ball. The kick success case is
initially higher priority, and so the robot attempts to track
its position. The kick success hypothesis estimates the ball’s
new position at each timestep by modeling the velocity of the
ball after the kick, as shown in Figure 8(c). Because the robot
missed the ball, the successful kick hypothesis is not valid and
when the robot aims its camera toward it, no ball is observed.
This negative information greatly increases the process noise
of the kick success model and the uncertainty grows quickly,
as shown in Figure 8(d). The success hypothesis quickly
expires and the robot brings its attention to the kick failure
hypothesis. As shown in Figure 8(e), once again, because
the ball is not there, the negative information causes the
uncertainty of that hypothesis to grow until it expires as well.
In Figure 8(f), the kick failure hypothesis also expires and
the robot finally uses the teammate observations to direct its
motion to the upper corner of the field.

We have conducted controlled experiments on the real
robots where we have measured the time that it takes for
the robot to maintain visual contact with the ball with our
proposed search policy algorithm versus a standard MHT-
EKF state estimator coupled with a naı̈ve search. We have
run a set of experiments to compare the performance of
the two different estimators. The naı̈ve search is considered
to be a policy where the robot always tracks the estimated
position of the ball assuming a successful kick. In both cases,
after the tracked hypothesis expires due to exceeding an
uncertainty threshold, the robot will revert back to a more
expensive generic ball search which constitutes spinning in
place while scanning its camera to exhaustively search at
different distances. In a real game situation, minimizing the
time to find the ball is critical as the longer the robots search
for the ball, the greater the chance that the other team will
find and control the ball.

In these experiments, similar to the simulation experi-
ments, the robots were required to locate the ball and kick
it to a specific position on the field. This emulates normal
game behavior where the robots will attempt to move the
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Figure 8: A top-down view of the multihypothesis algorithm running on the robot which demonstrates how the algorithm directs the robot’s
actions. The field of view of the robot’s camera is shown with white lines while the circles represent the uncertainty in the tracked object
position.

Table 7: Mean times (in seconds) and standard deviations to find
the ball after successful and unsuccessful kicks. Finding the ball after
a successful kick was statistically the same time while finding the
ball after an unsuccessful kick was statistically much faster with the
PMHWM approach.

PMHWM EKF Simple EKF

Successful kick
μ = 0.98, μ = 0.97,

σ = 0.01 σ = 0.01

Failed kick
μ = 3.07, μ = 5.00,

σ = 0.42 σ = 0.52

ball up the field (and potentially near teammates). The time
between when each kick was performed and the ball was
reacquired by the vision system was recorded. The time to
relocate the ball in the AIBO’s camera image is used as the
performance metric rather than the position difference in
the robot’s estimate and the real-world estimate for several
reasons. First, the soccer ball used by the Four-legged league
is a hollow plastic ball which, due to nonuniformities in its
casting, will often roll in a very nonlinear fashion at low
speeds. In our prior work with kick modeling, we observed
that immediately after a successful kick, the ball will travel
along a straight line until it slows down due to friction.
At a certain speed, the ball will often curve away from the
expected linear position.

We found that if the ball is successfully kicked, it will
travel far enough from the robot that even if its trajectory

moves in a curve, the ball will still be visible in the robot’s
field of view. This is because when the robot aims its camera
toward a specific hypothesis for analysis, the camera is cast
along the entire area of the uncertainty in the estimated
position. In contrast, if a kick fails, the ball will often times
roll to the side of the robot or sometimes behind it. In
order to reacquire it, the robot will have to perform a search
behavior which requires that it spins in place and casts its
camera around the local area. Thus, rather than using the
estimated position as a metric, we feel that a more practical
metric is the amount of time required for the robot to
actually reacquire the ball in its camera. Once this has been
accomplished, the robot can move straight for the ball as well
as tell its teammates where the ball can be found.

A set of ten experiments was performed where the times
to find the ball after the first ten successful kicks as well as
the first ten failed kicks were recorded. Kicks can fail due to
misalignment of the ball to the robot’s head and legs. In a
game situation, this happens very frequently due to the robot
being jostled by opponent robots. The results are illustrated
in Table 7.

On an empty field, the kicks fail approximately 10% of
the time. However, as mentioned previously, when jostled in
a real game situation, this kick failure can be in excess of 50%
and is often much higher in crowded situations. Thus, it is
very important that the robots reason effectively about the
potential outcomes of their actions at a high level in order to
more rapidly reacquire the target.
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This time to reacquire the ball can be even more
significant when dealing with reported teammate estimates.
Due to the difficulty of localizing the robot in the dynamic
RoboCup environment, teammates can potentially broadcast
very inaccurate information. In actual competition games
where the teammate information was given higher priority,
the robots tended to be more lost than in games when they
used their own models first before listening to teammates.
Because the robots have no sense of touch, if they are
knocked off course due to a collision, they do not know that
their localization estimate has become inaccurate until they
attempt to relocalize themselves based on the nearly markers.
However, as all robot are attempting to track the position
of the ball as much as possible, teammates can potentially
transmit very poor ball information for long periods of
time.

8. Summary and Conclusions

In this paper, we describe an approach for multihypothesis
state estimation in a dynamic environment where a robot
must contend with uncertain sensor readings and incomplete
models of objects. We formally describe the problem of
tracking objects with multiple hypotheses based on mod-
els and other information sources. Specifically, we have
addressed the problem of tracking an object (or objects) that
is (are) uniquely identifiable by a robot’s sensors. For any
environment of reasonable complexity, a robot is incapable
of simultaneously tracking all objects of interest with its
sensors as the scope of the robot’s sensor field is simply too
narrow (or otherwise limited) compared to the size of the
environment.

Probabilistic state estimates are powerful mechanisms
for representing the uncertainty in a robot’s state estimate.
However, due to the multimodal nature and potentially high
dimensionality of these estimates, estimating the complete
density function can be exceedingly challenging, particularly
when the noise models are not known exactly. More
importantly, in many applications, maintaining an accurate
estimating of the density is not as important as choosing an
action quickly in a dynamic environment. We believe that the
fusion of a high-level policy-based approach with effective
probabilistic state estimation algorithms will allow robots
to maintain better estimates of their world by combining
effective action selection with robust state estimation.

We describe a mechanism by which the robot can
intelligently decide how best to aim its sensors to maintain
an accurate estimate of the state of all objects. When an
object is not in view, its position must be predicted from
analyzing multiple sources of model information that can
include models for the success or failure of actuation as
well as external observations from teammates. We describe
a formal policy mechanism by which the robot can select
appropriately among multiple hypotheses based on domain
information in order to augment a traditional state esti-
mation algorithm to allow the robot quickly reacquire the
object. Deciding on the correct policy for the robot can be
done a priori and can rapidly be changed if the situation

warrants. Our approach was developed for and successfully
applied to several real multirobot systems. We have validated
it through an extensive empirical simulation study and have
used it successfully in competition on our real robots. Our
current work is to analyze how we can learn these policies
in real time on the robots as they perform their tasks rather
than having to rely on a priori-defined policies. Future
work will relax the assumption that the objects are uniquely
identifiable and address the important complexity of how to
address the data association problem in the context of this
research.
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