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1. Introduction

A common routine test in any detection system is to compare
the received signal level with a predefined threshold value. If
the threshold is crossed, the presence of the signal of interest
is declared. In modern radar detection, the decision on target
presence or absence is often performed automatically, that
is, without the visual intervention of the radar operator.
When the threshold is a fixed value, the false alarm rate will
increase intolerably (i.e., beyond a level that the computer of
an automatic detector can handle) as the interference power
varies. In this situation, a constant false alarm rate (CFAR)
algorithm with an adaptive threshold is required to keep the
false alarm rate constant.

In a radar receiver, after amplitude detection, the
backscattered signal is sampled in range and/or Doppler and
a one- or two-dimensional reference window is formed. The
detection in radar means existence or nonexistence of a target
in the middle cell of a reference window or a cell under
test (CUT). The noise and clutter background is estimated
by processing the output from neighbouring cells. A well-

known group for noise estimation is mean-level detectors
such as cell averaging CFAR (CA) [1]. Unfortunately because
of differences in environmental conditions such as change
in clutter edge, multiple targets, or jamming the target
detection will be corrupted. As solutions for these problems,
various CFAR schemes are proposed. A few examples are
the greatest of CFAR (GO-CFAR), the smallest of CFAR
(SO-CFAR), order statistics CFAR (OS-CFAR), the excision
cell-averaging CFAR (EXCA-CFAR), and the excision of
the greatest of CFAR (EXGO-CFAR) [2, 3]. Each of these
schemes has advantages and disadvantages but none of
them shows considerably good performance in all types of
environments. However, the processors which use ordering
have better performance than mean levels.

Following up on the results in [4, 5] we focus on a new
type of switching processor which we call Switching Ordered
Statistic CFAR type I (SOS CFAR I). SOS I can be used
in many instances, especially in nonhomogeneous environ-
ments, and in this paper its performance will be analysed
in comparison with conventional CFAR processors in the
presence of clutter edge and multiple targets. The suggested
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detector is based on comparing cells with scaled CUT to set
the cells with the same statistical specifications in two groups.
By counting the number of cells in each group and finding
the group with more cells, estimation of background noise
will be performed [4]. In this paper after describing the SOS
CFAR I algorithm in Section 2, mathematical and related
probabilities of detection and false alarms are presented in
Section 3. In Section 4 the performance and simulation of
the SOS I processor in homogeneous and nonhomogeneous
environments will be analysed, and in the last section the
results are presented.

2. Description of SOS CFAR IMethod

In this paper, it is assumed that the CFAR processor’s
inputs are range samples (range cells) which are received
from the square law detector and are saved into a tapped
delay line of length 2N + 1. The 2N samples correspond
to reference cells Xi surrounding the test cell X0. The SOS
I detector block diagram is provided in Figure 1. Here,
single pulse detection and a Rayleigh fading model are
assumed for fluctuating targets corresponding to Swerling I
in single pulse processing. For a homogeneous noise pulse
clutter level, the in-phase I and quadrature Q input signals
are assumed independent and identically distributed (iid)
Gaussian random variables with zero mean. Consequently,
the output samples of the square law detector are also iid
R.V.s with an exponential distribution [6, 7]. Thus, the
probability density function (PDF) of the ith cell is

fXi

(
xi
) = 1

λ
e−xi/λ, xi ≥ 0, λ ≥ 0, 1 ≤ i ≤ 2N , (1)

in which Xis are 2N window samples (excluding the CUT),
and λ is the total background clutter-plus-thermal noise
power. If a cell contains thermal noise then λ = λ0 = 2η,
and if it consists of clutter then λ = λc = 2η(1 + σc). If
a cell consists of multiple (not primary) targets then in (2)
λ = λI = 2η(1 + σI). Also σc is the ratio of clutter’s power to
the noise power, and σI is the ratio of multiple targets’ power
to the noise.

Target detection in CUT is carried out by estimating the
2N reference window cells that surround it. The PDF of CUT
is the same as (1) in the case of thermal noise with λ = λ0 =
2η, and in the case of primary (main) target it will be in the
form of (2) with λ = λs = 2η(1 + σs) while σs is the ratio of
the signal power to the noise power:

fX0

(
x0
) = 1

λ
e−x0/λ, x0 ≥ 0, λ ≥ 0. (2)

In Figure 1 the SOS I detector first divides reference samples
into two S1 and S0 groups by comparing them with scaled
X0 with α < 1. This is a criterion for finding samples
with the same specification. In other words, it implies
collecting samples with the same amplitude in one group.
Next, estimation of the background noise will be done based
on S0 group or 2N samples of reference window. The manner
of selection is based on comparing the number of S0 group
samples (n0) with an integer threshold NT . If n0 is more
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· · ·
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Figure 1: Block diagram of SOS CFAR I.

than NT , background noise will be estimated only with the
S0 samples, but if n0 is less than NT , similar to SCFAR
[8, 9], all the samples of the reference window are selected.
In both cases, background noise estimation is obtained from
one of the ordered samples of S0 or the whole reference
window. The range samples in both groups are first ordered
according to their magnitudes, and the estimation is taken
to be the kth largest sample. Also, NT is selected based
on detector requirements and environment conditions. This
process gives the detector an ability to suppress the masking
effect caused by interfering targets and clutter edge. Thus, the
algorithm will be carried out in the following two steps.

(i) 2N cells in the reference window will be compared
with the scaled CUT by α (α < 1). If a cell value is less than
αX0 it will be saved in group S0, otherwise it will be saved in
S1 as in

Xi

S1≥
<
S0

αX0, i = 1, 2, . . . , 2N. (3)

(ii) If the number of samples saved in group S0 is n0,
then the target will exist in CUT according to the following
conditions:

If X0 > β0X(k0) = β0Z0, when n0 > NT , (4)

or

If X0 > β1X(k1) = β1Z1, when n0 ≤ NT , (5)

where β0 and β1 are constants for achieving the desired false
alarm probability, andNT is the threshold integer. Also, in (4)
and (5) k0 and k1 are rounded (g0 × n0) and (g1 × 2N) where
g0 and g1 are parameters between 0 and 1. By adjusting g0 and
g1, the order of each selected group is achieved.

Inequalities (4) and (5) mean that SOS CFAR I switches
between the sample set S0 and whole reference, depending on
the value of n0. For example, if the number of samples which
have a value lower than the scaled CUT (and are saved in S0)
is more than the preset threshold NT , noise level estimation
is carried out by ordering the homogeneous saved samples in
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S0 and selecting k0th of them; but if the number of samples
which have a value lower than the scaled CUT is less than
the considered threshold, the noise level estimation is carried
out by ordering homogeneous saved samples in the whole
reference window and selecting k1th of them. This type of
processing by the SOS CFAR I processor means selecting
an optimized threshold of detection in homogeneous and
nonhomogeneous environments.

3. Mathematical Analysis of SOS CFAR I

Switching Ordered Statistics type I CFAR detector incor-
porates a switching method to estimate the total noise
power. Such a detector is specifically tailored to provide good
estimates of the noise power with an exponential PDF. In
this section we analyse the performance of the SOS CFAR I
processor in a homogeneous background as well as in regions
of clutter transitions and in multiple target environments.
We obtain closed-form performance expressions in each
case.

3.1. Homogeneous Environment. Considering the algorithm
described in Section 2 and considering the existence of n0

samples in S0 and 2N − n0 samples in S1, and by referring
to (4) and (5), the detection probability of SOS CFAR I is

Pd = Pd0 + Pd1 , (6)

in which Pd0 is the probability of detection when S0 is
selected, and Pd1 is the probability of detection when the
whole reference window is selected. If we assume presence
of a target, H1, we have

Pd=P
(
when S0 is selected | H1

)

+P
(
when the whole reference window is selected | H1

)
,

(7)

which is equal to

Pd

= Probability of saving
(
NT + 1 ≤ n0 ≤ 2N

)
samples in S0

× Probability that X0 is more than
(
β0Z0

)

+ Probability of saving
(
0 ≤ n0 ≤ NT

)
samples in S0

× Probability that X0 is more than
(
β1Z1

)
.

(8)

Therefore, the probability of detection when the whole
reference window is selected is

Pd1 =
NT∑

n0=0

Ps × P
(
X0 > β1Z1 | H1

)
, (9)

where Ps is the probability that there are (based on (8))
exactly n0 noise samples in S0 and is equal to

PS = EX0

⎧
⎨

⎩

⎛

⎝
2N

n0

⎞

⎠Pn0
0

(
x0
)(

1− P0
(
x0
))2N−n0

⎫
⎬

⎭. (10)

P0(x0) is the probability that a noise sample belongs to S0,
which is computed as

P0
(
x0
) = P

(
Xi < αX0

)

=
∫ αx0

xi=0
fXi

(
xi
)
dxi

=
∫ αx0

xi=0

1
λ
e−xi/λdxi

= 1− e−(α/λ)x0 .

(11)

In (11), it is assumed that the samples are independent,
the window samples contain thermal noise and the CUT
contains signal [10]. By using (A.1) in Appendix A, (10)
becomes

PS =
⎛

⎝
2N

n0

⎞

⎠
n0∑

i=0

⎛

⎝
n0

i

⎞

⎠ (−1)i

α
(
2N − n0 + i

)(
1 + σs

)
+ 1

. (12)

In (9), Z1 is the random variable obtained from the ordering
of 2N noise samples in the reference window and selecting
k1 of them as an estimation of noise in the case of n0 < NT .
Now, if as (5) we consider Z1 = X(k1), then the PDF of Z1 is
given by [11]

fK1 (z1) = K1

⎛

⎝
2N

K1

⎞

⎠
(
e−z1/λ

)2N−K1(
1− e−z1/λ

)K1−1 1
λ
e−z1/λ.

(13)

Therefore by referring to Appendix B,

P
(
X0 > β1Z1 | H1

)

= (2N)!
(
2N−k1

)
!

k1−1∑

m=0

(−1)m

m!
(
k1−m−1

)
!

1
2N − k1 + m + β1/

(
1 + σs

) .

(14)

For calculating the probability of detection when only the
samples in S0 are selected, similar to (9), one has

Pd0 =
2N∑

n0=NT+1

Ps × P
(
X0 > β0Z0 | H1

)
, (15)

where PS was calculated in (10). Therefore same as (14),

P
(
X0 > β0Z0 | H1

)

= n0!
(
n0 − k0

)
!

k0−1∑

m=0

(−1)m

m!
(
k0 −m− 1

)
!

1
n0 − k0 + m + β0/

(
1 + σs

) .

(16)
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Figure 2: Position of noise samples in nonhomogeneous environ-
ment.

By using (9) and (15), the result will be

PSOS I
d

(
NT ,α,β0,β1, g0, g1

)

=
NT∑

n0=0

⎛

⎝
2N

n0

⎞

⎠
n0∑

i=0

⎛

⎝
n0

i

⎞

⎠ (−1)i

α
(
2N−n0 +i

)(
1+σs

)
+1

(2N)!
(
2N−k1

)
!

×
k1−1∑

m=0

(−1)m

m!
(
k1−m−1

)
!

1
2N−k1 +m+β1/

(
1+σs

)

+
2N∑

n0=NT+1

⎛

⎝
2N

n0

⎞

⎠
n0∑

i=0

⎛

⎝
n0

i

⎞

⎠ (−1)i

α
(
2N−n0 +i

)(
1+σs

)
+1

n0!
(
n0−k0

)
!

×
k0−1∑

m=0

(−1)m

m!
(
k0−m−1

)
!

1
n0−k0 +m+β0/

(
1+σs

) .

(17)

Also, using (17) and setting σs equal to zero, the probability
of occurrence of a false alarm can be determined as

PSOS I
fs

(
NT ,α,β0,β1, g0, g1

)

=
NT∑

n0=0

⎛

⎝
2N

n0

⎞

⎠
n0∑

i=0

⎛

⎝
n0

i

⎞

⎠ (−1)i

α
(
2N − n0 + i

)
+ 1

(2N)!
(
2N − k1

)
!

×
k1−1∑

m=0

(−1)m

m!
(
k1 −m− 1

)
!

1
2N − k1 + m + β1

+
2N∑

n0=NT+1

⎛

⎝
2N

n0

⎞

⎠
n0∑

i=0

⎛

⎝
n0

i

⎞

⎠ (−1)i

α
(
2N−n0 +i

)
+1

n0!
(
n0−k0

)
!

×
k0−1∑

m=0

(−1)m

m!
(
k0−m−1

)
!

1
n0−k0 +m+β0

.

(18)

3.2. Nonhomogeneous Environment. Considering the algo-
rithm described in Section 2, it is assumed that in a reference
window with a size equal to 2N , there are M interfering
samples and 2N −M thermal noise samples, and S0 contains
m interfering samples and n0 − m thermal noise samples as
illustrated in Figure 2. Assuming that there are n0 samples in
S0 and 2N − n0 samples in S1 and by referring to (4) and (5),
the detection probability in SOS I will be as follows.

For M interfering samples that appear in the CFAR
window, the probability that exactly m of them are stored in
S0 is

q1s =
⎛

⎝
M

m

⎞

⎠
(
P′0
(
X0
))m(

1− P′0
(
X0
))M−m

. (19)

For 2N −M thermal noise samples that appear in the CFAR
window, the probability that exactly n0−m of them are stored
in S0 is [8]

q0s =
⎛

⎝
2N −M

n0 −m

⎞

⎠
(
P0
(
X0
))n0−m(1− P0

(
X0
))2N−M−(n0−m)

.

(20)

Therefore, the probability that there are exactly m interfering
samples and n0 −m thermal noise samples in S0 is

Qs = q0s × q1s

= EX0

{min(M,n0)∑

m=m1

⎛

⎝
2N −M

n0 −m

⎞

⎠

⎛

⎝
M

m

⎞

⎠
(
P0
(
X0
))n0−m

× (1− P0
(
X0
))2N−M−(n0−m)

× P′m0

(
X0
)(

1− P′0
(
X0
))M−m

}

.

(21)

Here, the probability of existence of a sample with
thermal noise in the S0 group is determined by (11). Also, the
probability of existence of a sample with interference noise in
S0 group according to (3) is

P′0
(
X0
) = P

(
Xi < αX0

)

=
∫ αx0

xi=0
fXi

(
Xi
)
dxi

=
∫ αx0

xi=0

1
λ1
e−xi/λI dxi

= 1− e−(α/λI )x0 .

(22)

Therefore, with the help of (11) and (22) and referring to
Appendix C, (21) will be

Qs=
min(M,n0)∑

m=m1

⎛

⎝
2N −M

n0 −m

⎞

⎠

⎛

⎝
M

m

⎞

⎠

×
n0−m∑

t=0

m∑

q=0

(−1)t+q
( n0−m

t

)(m

q

)

1+N(1+σs)α+(M−m+q)
(
(1+σs)/(1+σI)

)
α

,

(23)

where N denotes (2N −M − (n0 −m) + t). In the equation
above,m1 is equal to max(0,n0−2N+M). Now, similar to (6),
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the probability of detection in the case of interfering targets
will be

PSOS I
d

(
NT ,α,β0,β1, g0, g1

)

=
NT∑

n0=0

Qs × P
(
X0 > β1Z1 | H1

)

+
2N∑

n0=NT+1

Qs × P
(
X0 > β0Z0 | H1

)
.

(24)

Referring to Appendix D, in the case of a nonhomogeneous
environment, one has

P
(
X0 > β1Z1 | H1

)

= β1(
1 + σs

)
2N∑

i=k1

p2∑

L=p1

⎛

⎝
2N −M

L

⎞

⎠

⎛

⎝
M

i− L

⎞

⎠

×
L∑

j1=0

i−L∑

j2=0

(
L
j1

)(
i−L
j2

)
(−1) j1+ j2

2N −M − L + β1/
(
1 + σs

)
+ j1 + Q/

(
1 + σI

) ,

(25)

whereQ denotes ( j2+M−i+L). And with the same procedure
in the S0 group,

P
(
X0 > β0Z0 | H1

)

= β0(
1 + σs

)
2N∑

i=k0

t2∑

L=t1

⎛

⎝
n0 −m

L

⎞

⎠

⎛

⎝
m

i− L

⎞

⎠

×
L∑

j1=0

i−L∑

j2=0

(
L
j1

)(
i−L
j2

)
(−1) j1+ j2

n0 −m− L + β0/
(
1 + σs

)
+ j1 + C/

(
1 + σI

) ,

(26)

where C denotes ( j2 + m − i + L) and t1 and t2 are equal to
max(0, i−m) and min(i,n0 −m).

Now we investigate the performance of the SOS I
processor when the reference window contains a clutter edge.
First, consider the special case where CUT is not from the
clutter region. Also similar to the multiple targets case, it is
assumed that in a reference window with a size equal to 2N ,
there are M samples from clutter and 2N −M thermal noise
samples, and S0 contains m samples from clutter and n0 −m
thermal noise samples. First, the probability of existence of a
sample with thermal noise in the S0 group according to (3)
was calculated in (11). Also, the probability of existence of a
sample with clutter noise in the S0 group according to (22) is

P′0
(
X0
) = P

(
Xi < αX0

)

=
∫ αx0

xi=0
fXi

(
xi
)
dxi

=
∫ αx0

xi=0

1
λC

e−xi/λCdxi

= 1− e−(α/λC)x0 .

(27)

Here with the help of (23), (24), (25), and (26) and

considering σs → 0 and σI → σC , the PSOS I
f a will be

PSOS I
f a

(
NT ,α,β0,β1, g0, g1

)

=
NT∑

n0=0

Qs × P
(
X0 > β1Z1 | H0

)

+
2N∑

n0=NT+1

Qs × P
(
X0 > β0Z0 | H0

)
,

(28)

where

P
(
X0 > β1Z1 | H0

)

= β1

2N∑

i=k1

p2∑

L=p1

(
2N −M

L

)(
M

i− L

)

×
L∑

j1=0

i−L∑

j2=0

(
L
j1

)(
i−L
j2

)
(−1) j1+ j2

2N −M − L + β1 + j1 + Q/
(
1 + σC

) ,

(29)

P
(
X0 > β0Z0 | H0

)

= β0

2N∑

i=k0

t2∑

L=t1

(
n0 −m

L

)(
m

i− L

)

×
L∑

j1=0

i−L∑

j2=0

(
L
j1

)(
i−L
j2

)
(−1) j1+ j2

n0 −m− L + β0 + j1 + C/
(
1 + σC

) ,

(30)

where

Qs =
min(M,n0)∑

m=m1

(
2N −M

n0 −m

)(
M

m

)

×
n0−m∑

t=0

m∑

q=0

(−1)t+q
(
n0−m

t

)(
m
q

)

1 + Nα + (M −m + q)
(
1/
(
1 + σC

))
α
.

(31)

Now if CUT is from the clutter region, after substituting σI =
σs, β0, β1, and α by σC , β0/(1 + σc), β1/(1 + σc), and α(1 + σc)
in (23), (24), (25), (26), and also

P
(
X0 > β1Z1 | H0

)

= β1

1 + σC

2N∑

i=k1

p2∑

L=p1

⎛

⎝
2N −M

L

⎞

⎠

⎛

⎝
M

i− L

⎞

⎠

×
L∑

j1=0

i−L∑

j2=0

(
L
j1

)(
i−L
j2

)
(−1) j1+ j2

2N −M − L + β1/
(
1 + σC

)
+ j1 + Q/

(
1 + σC

) .

(32)

P
(
X0 > β0Z0 | H0

)

= β0

1 + σC

2N∑

i=k0

t2∑

L=t1

⎛

⎝
n0 −m

L

⎞

⎠

⎛

⎝
m

i− L

⎞

⎠

×
L∑

j1=0

i−L∑

j2=0

(
L
j1

)(
i−L
j2

)
(−1) j1+ j2

n0 −m− L + β0/
(
1 + σC

)
+ j1 + C/

(
1 + σC

) ,

(33)
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Figure 3: False alarm probability of the CA, GO, SO, OS (k = N = 9
and k = 17), and SOS CFAR I processors for 2N = 18.
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4. Studying SOS CFAR I in Different Conditions

The performance of the Switching Ordered Statistic CFAR
I processor algorithm, according to (11), is a function of
β0, β1, NT , α, g0, and g1. These parameters should be tuned
such that the SOS CFAR I processor has minimum CFAR loss
when operating in a homogeneous environment. Provided
that there are only noise samples within the CFAR window,
almost all reference samples will be stored to S0 if the test
cell contains a target return signal with substantial SNR.
The SOS CFAR I processor then tends to switch to S0, and
the threshold multiplier β0 and g0 are employed with high
probability. In order to minimise the CFAR loss in this
situation, g0 (k0) should be set as close as possible to the order
of OS CFAR (corresponding to the false alarm probability of
interest). If the test cell contains no target signal, far fewer
reference samples are sorted to S0. The whole CFAR window
and ordering g1 (k1) are then employed with high probability.
In order to maintain the false alarm rate as that of the OS-
CFAR, g1 (k1) should also be set as close as possible to k
of the OS. Therefore, a reasonable choice is g0 = g1. Also,
for preventing complexity, β0 = β1 is considered, although
different values for β0 and β1 could be considered for the
future. The setting of the SOS CFAR I parameters for the case
g0 = g1 and β0 = β1 are briefly discussed in this section [8].

In order to detect targets near a clutter edge, the threshold
integer should be approximately equal to or smaller than
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Figure 4: False alarm probability of the SOS CFAR I processor for
different β0 = β1 in terms of α.

the half window size, that is, NT ≤ N . An SOS CFAR I
processor with a smaller NT can tolerate a greater number
of interference samples, but in a homogeneous environment
it suffers from more CFAR loss compared to the CA-
CFAR. Here CFAR loss, based on [12, 13], is defined as
the additional SNR the CFAR processor requires in order to
achieve the same detection probability at a given false alarm
rate.

The curves in Figure 3 are the false alarm probabilities
(Pf a) for a reference window with the size 2N = 18 for SOS I,
with NT = N = 9, β0 = β1, g0 = g1 = 0.9, α = 0.1, and α =
0.9, CA, GO, SO, and OS (with k = N = 9 and k = 17) in a
homogeneous environment. It is seen that in a homogeneous
environment, only Pf a of OS with k = N = 9 is worse than
SOS I. For verifying the theoretical results, the performance
of SOS I with NT = N = 9, β0 = β1, g0 = g1 = 0.9, and
α = 0.1 has been simulated by the Monte Carlo method for
about 20 000 data for each point. As it is shown, this curve is
compatible with the analytical curve.

In Figure 4, Pf a of the performance of SOS I processor
in a homogeneous environment with 2N = 18, NT = N ,
and g0 = g1 = 0.9 have been plotted for α and different
values of β0 = β1. It is clear that by increasing β0 =
β1, Pf a is decreasing. Also, it is seen that in all cases with α
larger than 0.4 and with β0 = β1, Pf a is increasing. Also in
Figure 4 the curve for β = 6 has been simulated with the
Monte Carlo method for about 38000 data for each point
which is compatible with the analytical curve with the same
parameters.

In Figure 5, Pf a of the SOS I processor in a homogeneous
environment with 2N = 18, β0 = β1 = 9, and α = 0.5 and
for different NT values have been plotted for g0 = g1. It is
clear that by increasing NT , Pf a is decreasing.

The probability of the occurrence of a false alarm by the
SOS I detector in a homogeneous environment based on
different NT and α values have been plotted for g0 = g1 in
Figure 6; here β0 = β1 = 9. It is seen that by decreasing NT
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and increasing α, Pf a is decreasing. Also it is clear that by
increasing bothNT and α parameters, Pf a is again decreasing.

Now, in Figure 7, the detection probability of the SOS
I detector in a homogeneous environment in comparison
with the optimum detector, CA, GO, SO, and OS (with
k = N = 9 and k = 17) and for Pf a = 10−5, has
been drawn. The optimum detector sets a fixed threshold
to determine the presence of a target under the assumption
that the total homogeneous noise power is known a priori
[10]. Considering the loss detection, it is seen that the SOS
I processor with NT = N , α = 0.1, β0 = β1 = 9, and
g0 = g1 = 0.9 has inherent detection loss in the homogeneous
environment which is more than CA and GO but is less than
SO and OS (k = N = 9). Also, this figure shows that by
increasing the order of OS to k = 17, its detection loss will be
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less than the SOS I detector with the mentioned parameters.
In fact, with the help of Figure 3, increasing k in OS causes
less detection loss but a higher probability of false alarm. For
better comparison, the Pd of SOS I is achieved by the Monte
Carlo simulation with 20000 data for each point. As Figure 7
shows, the result of the Monte Carlo simulation is the same
as the analysis result of Section 3.

In Figure 8 the detection probability of the SOS I detector
in a homogeneous environment with different values of
NT , g0 = g1 and for Pf a = 10−5, β0 = β1 = 9, and α = 0.5
has been plotted. The result shows that with greater NT and
smaller g0 = g1, it has less detection loss.

Next, the performance of the SOS I in presence of clutter
edge is analysed. The result in Figure 9 is achieved in the
presence of clutter edge with clutter to noise ratio (CNR)
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equal to 10 dB, Pf a = 10−5, and 2N = 18. It is known
that in the presence of clutter edge, the GO processor has
the lowest probability of false alarm and is followed by CA,
S with NT = N , α = 0.1, OS (k = 17), and SOS I with
NT = N , α = 0.1, and g0 = g1 = 0.9. It is clear from Figure 9
that OS (k = N = 9) and SO are after it, and also GO has
the best performance among all the CFAR processors in the
presence of clutter.

The presence of multiple targets is another case in
studying the SOS I processor. In Figure 10 one interfering
target with interference to noise ratio (INR) equal to SNR
and the size of reference window 2N = 18 for CA, GO,
SO, OS (k = N = 9 and k = 17), and SOS I processors
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with considered parameter in this figure and for Pf a = 10−5

are considered. As the result shows, SOS I has the best
performance. By increasing the order of OS, its performance
will become constant and will be equal to SO which have less
Pd in terms of SOS I with considered parameters. The result
of the Monte Carlo simulation for 10000 data for each point
is also confirmed by the result of theoretical analysis. It is
noticeable that if data numbers for each point increase, the
Monte Carlo simulation will have better compatibility with
theoretical results.

If there is more than one multiple target, for example, 3
targets with INR = 2SNR, Figure 11 can be considered. The
other conditions of this figure are the same as the previous
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figure. The results show that SOS I has the best performance
and following it, there is the SO detector and then OS with
k = N = 9. If k increases (e.g., k = 15 and k = 17
are considered), its performance decreases and even will be
worse than the CA detector. Also, Figure 11 shows that the
Pd of S with NT = N and α = 0.1 in the case of three
multiple targets and INR = 2SNR will be reduced, and its
performance is less than SOS I and SO with on SNR of more
than 16 dB.

In Figure 12, Pd for the case of five and seven multiple
targets and different INR values is shown. The results show
that Pd of this detector for I = 5 and INR = 3SNR is the
highest. If in this case INR decreases, then Pd for an SNR
higher than 16 dB will decrease. I = 7 and INR = 5SNR have
the lowest Pd. In this figure, 2N = 18, NT = N , α = 0.5, β0 =
β1 = 9, g0 = g1 = 0.9, and Pf a = 10−5.

The detection threshold simulation is carried out using
Matlab software in the presence of clutter and multiple
targets. In Figures 13(a)-13(b), there are 8 targets in ranges
4, 13, 18, 24, 30, 36, 42, and 48 with the SNR values
mentioned in the figure. Considering the cases with the
reference window’s sizes equal to 2N = 18 and Pf a = 10−5

and from Figure 13(a), the CA processor can only detect the
first target while GO can detect the 1st, 4th, and 6th targets
and SO can detect the 1st, 4th, 6th, and 8th targets. From
Figure 13(b), OS (k = N = 9) can detect all the targets, OS
(k = 17) detects only the 1st, and SOS with the mentioned
parameters detects all the targets except the 7th target.

In Figure 14 the effect of changing SOS I parameters on
its detection threshold has been analysed. As seen, SOS I with
β0 = β1 = 149 has the worst detection level and misses
many targets. In general, as Figure 14 shows, if α decreases,
the processor has a better estimation level.
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Considering the result of this section, we see that select-
ing larger β0 = β1 and g0 = g1 versus smaller α and NT = N
causes less Pf a in a homogeneous environment and better
performance for Pd in homogeneous and nonhomogeneous
environments, but results in worse Pf a in the presence of
clutter edge. Therefore, to have the best performance in var-
ious radar environments, suitable parameters, as discussed,
should be selected to achieve optimal performance. Also, as
the results above and equations in Section 3 show, increasing
NT causes the performance of SOS I to become similar to
OS; since, based on (17) and (18), in this case all the samples
in the reference window are chosen for background noise
estimation (which is based on an Ordered Statistic process),
therefore its performance will be near to OS.

5. Conclusions

Considering the results of Section 4 and the comparison
with other mean-level processors, the SOS CFAR I processor
has a better performance in different radar environments.
Also these results show that the SOS CFAR I processor has
a good performance with less detection loss not only in
homogeneous environments but also in nonhomogeneous
ones such as multiple targets and especially in clutter edge.
In addition, simulation results confirm that the acquired
detection threshold of SOS CFAR I will be optimised if the
number of interfering targets is less than the size of the
reference window, and it will be a processor which can detect
all the targets. However, implementation of the SOS CFAR I
is complex compared to conventional processors. Also, these
results show that by adjusting the SOS CFAR I parameters,
it has better performance than OS in the presence of clutter
region and multiple targets and better performance than S-
CFAR in the presence of multiple targets with INR more
than SNR. It means with using ordered statistic method in
S-CFAR, SOS CFAR I will have better performance in the
presence of multiple targets environment.
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Appendices

A.

By using (11), PS in (10) can be calculated as follows:

PS = EX0

{(
2N
n0

)

Pn0
0

(
x0
)(

1− P0
(
x0
))2N−n0

}

=
∫∞

x0=0

(
2N
n0

)

Pn0
0

(
x0
)(

1− P0
(
x0
))2N−n0 fX0

(
x0
)
dx0

=
∫∞

x0=0

(
2N
n0

)
(
1−e−(α/λ)x0

)n0(
e−(α/λ)x0

)2N−n0 1
λS
e−x0/λSdx0

= 1
λS

(
2N
n0

)∫∞

x0=0
e−((α/λ)(2N−n0)+1/λS)x0

×
n0∑

i=0

(
n0

i

)
(− e−(α/λ)x0

)i
dx0

= 1
λS

(
2N
n0

) n0∑

i=0

(
n0

i

)

(−1)i
∫∞

x0=0
e−((α/λ)(2N−n0+i)+1/λS)x0dx0

= 1
λS

(
2N
n0

) n0∑

i=0

(
n0

i

)

(−1)i
1

(α/λ)
(
2N − n0 + i

)
+ 1/λS

=
(

2N
n0

) n0∑

i=0

(
n0

i

)
(−1)i

α
(
2N − n0 + i

)(
1 + σs

)
+ 1

.

(A.1)

B.

By employing (12), for calculating P(X0 > β1Z1 | H1), one
has [8]
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where MZ1 (u) is the moment generating function of Z1 and
gives
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Therefore by setting u = β1/λ(1 + σs) in (B.2),
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C.

Referring to (11) and (22), QS in (21) can be calculated in the
following manner:

Qs=EX0

{min(M,n0)∑

m=m1

(
2N −M
n0 −m

)(
M
m

)
(
P0
(
X0
))n0−m

× (1− P0
(
X0
))2N−M−(n0−m)

× (P′0
(
X0
))n0−m(1− P′0

(
X0
))M−m

}

=
∫∞

X0=0

min(M,n0)∑

m=m1

(
2N −M
n0 −m

)(
M
m

)
(
P0
(
X0
))n0−m

× (1− P0
(
X0
))2N−M−(n0−m)

× (P′0
(
X0
))m(

1−P′0
(
X0
))M−m

fX0

(
x0
)
dx0

=
min(M,n0)∑

m=m1

(
2N −M
n0 −m

)(
M
m

)

×
∫∞

x0=0

(
1−e−(α/λ)x0

)n0−m(
e−(α/λ)x0

)2N−M−(n0−m)

×(1−ve−(α/λI )x0
)m(

e−(α/λI )x0
)M−m 1

λS
e−x0/λSdx0



EURASIP Journal on Advances in Signal Processing 11

=
min(M,n0)∑

m=m1

(
2N −M
n0 −m

)(
M
m

)

×
∫∞

x0=0

1
λS
e−(((2N−M−(n0−m))/λ)α+((M−m)/λI )α+1/λS)x0

×
n0−m∑

t=0

(
n0 −m

t

)

(−1)te−((α/λ)t)x0

×
m∑

q=0

(
m
q

)

(−1)qe−((α/λI )q)x0dx0

=
min(M,n0)∑

m=m1

(
2N −M
n0 −m

)(
M
m

)

× 1
λS

n0−m∑

t=0

m∑

q=0

(
n0 −m

t

)(
m
q

)

(−1)t+q

×
∫∞

x0=0
e−(((2N−M−(n0−m))/λ)α+((M−m)/λI )α+1/λS+(t/λ)α+(q/λI )α)x0dx0

=
min(M,n0)∑

m=m1

(
2N −M
n0 −m

)(
M
m

)

×
n0−m∑

t=0

m∑

q=0

(−1)t+q
(
n0−m

t

)(
m
q

)

1+N(1+σs)α+(M−m+q)((1+σs)/(1+σI))α
.

(C.1)

D.

For calculating P(X0 > β1Z1 | H1), one has
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Here, Fk1(z1) is the CDF of fk1(z1) in the case ofM interfering
samples in the reference window and is equal to [10]
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Therefore, (D.1) will be

P
(
X0 > β1Z1 | H1

)

= β1(
1 + σs

)
2N∑

i=k1

p2∑

L=p1

(
2N −M

L

)(
M

i− L

)

×
L∑

j1=0

i−L∑

j2=0

( L

j1

)( i−L
j2

)
(−1) j1+ j2

2N −M − L + β1/
(
1 + σs

)
+ j1 + Q/

(
1 + σI

) ,

(D.3)

where p1 and p2 are max(0, i−M) and min(i, 2N −M).

References

[1] H. Rohling, “Some radar topics: waveform design, range
CFAR and target recognition,” in Advances in Sensing with
Security Applications, vol. 2 of NATO Security through Science
Series, pp. 293–322, Springer, Amsterdam, The Netherlands,
2006.

[2] Y. I. Han and T. Kim, “Performance of excision GO-CFAR
detectors in nonhomogeneous environments,” IEE Proceed-
ings: Radar, Sonar and Navigation, vol. 143, no. 2, pp. 105–111,
1996.

[3] H. Goldman, “Performance of the excision CFAR detector in
the presence of interferers,” IEE Proceedings, Part F: Radar and
Signal Processing, vol. 137, no. 3, pp. 163–171, 1990.

[4] S. Erfanian and V. T. Vakili, “Analysis of improved switching
CFAR in the presence of clutter and multiple targets,” in
Proceedings of the 50th International Symposium ELMAR-2008,
vol. 1, pp. 257–260, Zadar, Croatia, September 2008.

[5] S. Erfanian and V. T. Vakili, “Optimum detection of multiple
targets by improved switching CFAR processor,” in Proceed-
ings of the 14th Asia-Pacific Conference on Communications
(APCC ’08), pp. 1–5, Tokyo, Japan, October 2008.

[6] M. Barkat, Signal Detection and Estimation, Artech House,
Boston, Mass, USA, 2005.

[7] S. Erfanian and S. Faramarzi, “Performance of excision
switching-CFAR in K distributed sea clutter,” in Proceed-
ings of the 14th Asia-Pacific Conference on Communications
(APCC ’08), pp. 1–4, Tokyo, Japan, October 2008.

[8] T.-T. Van Cao, “A CFAR thresholding approach based on
test cell statistics,” in Proceedings of IEEE National Radar
Conference, pp. 349–354, Philadelphia, Pa, USA, April 2004.

[9] T.-T. Van Cao, “A CFAR algorithm for radar detection under
severe interference,” in Proceedings of the Intelligent Sensors,
Sensor Networks and Information Processing Conference (ISS-
NIP ’04), pp. 167–172, Melbourne, Canada, December 2004.

[10] P. P. Gandhi and S. A. Kassam, “Analysis of CFAR processors
in homogeneous background,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 24, no. 4, pp. 427–445, 1988.

[11] R. Peihong, D. Qingfen, and C. Yuanhen, “The research on
the detection performance of OS-CFAR and its modified
methods,” in Proceedings of CIE International Conference of
Radar (ICR ’96), pp. 422–425, Beijing, China, October 1996.

[12] H. Rohling, “Radar CFAR thresholding in clutter and multiple
target situations,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 19, no. 4, pp. 608–621, 1983.

[13] V. G. Hansen and J. H. Sawyers, “Detectability loss due
to “greatest of” selection in a cell-averaging CFAR,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 16, no.
1, pp. 115–118, 1980.


	1. Introduction
	2. Description of SOS CFAR I Method
	3.Mathematical Analysis of SOS CFAR I
	3.1. Homogeneous Environment
	3.2. Nonhomogeneous Environment

	4. Studying SOS CFAR I in Different Conditions
	5. Conclusions
	Appendices 
	A.
	B.
	C.
	D.

	References

