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This work investigates the Magnitude Squared of Coherence (MSC) for detection of Event Related Potentials (ERPs) related to
left-hand index finger movement. Initially, ERP presence was examined in different brain areas. To accomplish that, 20 EEG
channels were used, positioned according to the 10–20 international system. The grand average, resulting from 10 normal subjects
showed, as expected, responses at frontal, central, and parietal areas, particularly evident at the central area (C3, C4, Cz). The
MSC, applied to movement imagination related EEG signals, detected a consistent response in frequencies around 0.3–1 Hz (delta
band), mainly at central area (C3, Cz, and C4). Ability differences in control imagination among subjects produced different
detection performance. Some subjects needed up to 45 events for a detectable response, while for some others only 10 events
proved sufficient. Some subjects also required two or three experimental sessions in order to achieve detectable responses. For one
subject, response detection was not possible at all. However, due to brain plasticity, it is plausible to expect that training sessions
(to practice movement imagination) improve signal-noise ratio and lead to better detection using MSC. Results are sufficiently
encouraging as to suggest further exploration of MSC for future BCI application.

Copyright © 2009 Sady Antônio Santos Filho et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

Millions of people suffer from severe impairments due to
physical, sensorial, or mental damage [1]. When neuromus-
cular channels that permit communication between brain
and environment are affected, partial or total muscle control
may be lost. A typical disease affecting these channels is
amyotrophic lateral sclerosis (ALS), characterized by motor
neurons degeneration and the consequent loss of voluntary
muscles control [2, 3].

A considerable amount of research has been devoted to
improving the quality of life of patients suffering from such
afflictions. The investigations have the purpose of providing
them with access to regular services and opportunities,
especially by means of the development and improvement of
systems that create new means of communication between
patients and their external environment.

Among these projects, Brain-Computer Interface (BCI)
has called attention to itself by its promising results. This
interface provides a direct pathway for control of the patient’s
external world without reliance on muscle control.

BCI can be defined as a technical system through which
a person or animal sends information from the brain to
a computer (microprocessor systems) that processes this
information and, thus, uses it for controlling an external
control device. The information, generated by brain activity,
can be registered by different techniques, such as electroen-
cephalography, magnetoencephalography, positron emission
tomography, functional magnetic resonance imaging, and
electrocorticography. Due to the relative low cost and ease of
usability, electroencephalography and electrocorticography
are some of the most widely used techniques. However, since
electrocorticography is invasive, there are some inherent risks
related to the surgical procedures required. BCIs utilizing
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Figure 1: Event protocol. The red LED suggests attention, and the
yellow LED suggests preparation for movement or preparation for
movement imagination. Subjects are instructed to initiate the task
when both LEDs are turned off (t = 0 second).

this technique have been mostly confined to animals [4–
6]. Nonetheless, there have already been some experiments
using electrocorticography on humans [7–11].

With regards to electroencephalography, the electric
potential, generated by large neuron groups, with dendrite
trees perpendicular to the skull is registered in different
scalp areas [12]. The signals obtained, using this method,
are referred to as an electroencephalogram (EEG). This type
of signal has high temporal resolution but poor spatial
localization due to the spread of electrical brain activity,
because of the volume conductor between the brain sources
and scalp. Furthermore, the number of recording electrodes
is limited. In electrocorticography, in which outcoming
signals are referred to as an electrocorticogram (ECoG),
microelectrodes are implanted inside the cortex to record
the action potential of an individual neuron or relatively
small neuron groups. Recording the signal directly from
cortex makes it less susceptible to artifacts and displays high
temporal and spatial resolution.

The goal of BCI techniques is to obtain the event-
related potential (ERP)—for instance, that related to visual
stimulation, movement, and movement imagination—and
use it to control an external device. The most important
challenge, therefore, is the identification of the ERP amidst
the “spontaneous” brain activity; whereas the ERP amplitude
is usually of some microvolts, spontaneous activity can reach
hundreds of microvolts.

Various techniques have been proposed to detect ERPs
in spontaneous EEG, both in time and frequency domain.
Among them are Fast-Fourier Transform [13], Wavelet
Transform [10, 14–16], parametric modeling [12, 17–19],
neural networks [4, 12, 20], event-synchronized epochs
(EEG segments synchronized with events) averaging [7, 21],
event-related desynchronization and synchronization [22–
24], linear discriminant analysis [14], principal components
and independent components [25–28], and other kinds of
filters, such as spatial filters [13, 14, 29].

Although some of these techniques present good out-
comes with invasive BCIs (ECoG), noninvasive (EEG)
application still requires elevated processing times and a
great number of EEG epochs [18, 30]. In order to improve

ERP detection, different techniques have been enhanced and
combined [11, 14].

The statistical detection technique magnitude-squared
coherence (MSC) has been applied to the identification of
event-related synchronization responses (time and phase).
MSC has been proven very effective in the detection of
somatosensory [31], auditory [32], and visual evoked poten-
tials [33, 34], reducing the number of epochs necessary for
response detection. A reason for this is detector’s robustness,
since its firing threshold is relatively independent of response
shape [35]. This work investigates the MSC use for ERP
detection, both due to left-hand index finger movement and
movement imagination. Our main goal is to determine those
ERPs frequency bands as well as to identify brain areas where
this detection is more consistent and useful for future BCI
applications.

2. Materials andMethods

Ten neurologically healthy volunteers (6 males, 21–46 years)
participated in the study. Subjects were not under the
influence of any medication that could interfere with EEG.
During data recording, subjects remained comfortably seated
in an armchair, with head, shoulders, and arms resting on the
backrest. Light was adjusted to avoid signal interference, and
room temperature was kept at 27 ± 1.7◦C. The experiment
was run at Biomedical Engineering Laboratory and approved
by the local Ethics Committee. All participants read and
signed an informed consent form.

The EEG was recorded from 20 scalp electrodes (Ag/AgCl
and diameter of 10 mm), placed according to International
10–20 System (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1, Oz, and O2) with reference
at earlobes (A1 and A2 electrodes). Signals were recorded
using a 36-channel BrainNet BNT-36 (EMSA) biological
amplifier, band-pass filtered (0.1–100 Hz) and digitized at
600 Hz.

During EEG recording, two Light Emitter Diodes
(LEDs), one yellow and one red, were used to prompt
the events related to movement or movement imagination
as shown in Figure 1. Both LEDs were displayed on a
rectangular (30 × 20 cm) black panel, placed in the subjects
eye line angle of vision, at 80 cm distance.

EEG recording was made during four separate sessions
with all subjects: (1) spontaneous activity with no LED
light, (2) spontaneous activity with LEDs turned on, (3)
movement of the left index finger, and (4) same finger
movement imagination. Each session was conducted once
with the subject with the exception of the imagination
session, which was conducted twice. For two subjects it was
necessary to conduct an additional imagination session.

The movement and movement imagination sessions
lasted for 20 minutes, while spontaneous EEG sessions
were 15 minutes long. Recording was performed on two
nonconsecutive days for each subject. During the first day,
the sessions of movement and spontaneous EEG with LEDs
turned on were realized, and on the second day, movement
imagination and spontaneous EEG with LEDs turn off were
realized.
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For movement-EEG synchronization, an integrated
Microelectro Mechanical System (iMEMS) accelerometer,
(Analog Devices—ADXL 213), with full-scale range of
±1.2 g, was positioned on distal phalanx of the left index
finger. Signals from accelerometer and the yellow LED
triggers were recorded by the BrainNET-36. The data were
processed off-line, with the software MATLAB (MathWorks).

For the movement session, the subject was asked to
move his (her) left index finger up and down. For the
movement imagination session, the procedure was the same,
but subjects were to only imagine the movement instead of
actually performing it. Each subject made 85 repetitions of
movement or movement imagination in the course of each
20 minute session.

Throughout spontaneous EEG recording, subjects were
oriented to look at the LEDs, avoiding movement and
movement imagination.

2.1. Data Preprocessing. Signals were filtered through a
Butterworth digital filter of the 2nd order, high-pass cut-
off frequency at 0.1 Hz and low-pass cutoff frequency at
100 Hz. After filtering, mean value of each epoch (EEG
segment between −0.7 second and 2 seconds—Figure 1) was
removed. After that the algorithm for automatic rejection
of epochs showing strong artifacts was applied [31]. For
this, a 15-second EEG segment (artifact free) was selected as
reference for signal levels and for signal standard deviation
(σ) estimation. A threshold value of 3σ was then defined and
applied to the epochs of the EEG signal. Epochs in which a
continuous segment of more than 5% of the samples, or a
total of 10% of samples exceeded the threshold, were rejected
as containing artifact. With the recording of spontaneous
EEG for unlighted and light LEDs (15 minutes) 60 epochs
were obtained, and with the recording of movement and
imagination sessions (20 minutes) 85 epochs were obtained.
After artifact rejection, the number of epochs was greater
than 45, except with frontal channels (mean of 20 epochs).
Thus, in this work 45 epochs were randomly selected.

2.2. Data Processing. In order to identify brain areas that pre-
sented Event Related Potentials (ERPs) due to left-hand index
finger movement and movement imagination, an event-
synchronized epochs averaging technique [7, 21] was applied
to each EEG signal from each different channel. The grand
average (using artifact free segments), for each channel, was
determined for four different situations: spontaneous EEG
with lighted LEDs, spontaneous EEG without lighted LEDs,
actual movement, and movement imagination.

Objective response detection was obtained through
magnitude-squared coherence (MSC). This method is based
on a coherence function between two signals y(n) and x(n)
[31–36] that is defined by
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cross correlation between signals and indicates the linear
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This value is a real number. The κ( f ) function estimation for
ergodic signals can be the following [31–36]:
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where ∗ indicates the complex conjugate, Yi( f ) and Xi( f )
are the T-length Fourier Transform of the ith windowed
epochs, and M is the number of epochs used in the
estimation.

Taking y(n) as identical events in all epochs (e.g.,
sensorial stimulus, tasks) and x(n) the EEG signal from the
scalp, the estimation of κ( f ) can be simplified and denoted
as the magnitude square coherence, MSC( f ) [31–36]:
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In the absence of a consistent response to the event
(only spontaneous EEG), the numerator is low, and the MSC
approaches 0, while M tends toward infinity. On the other
hand, when a response is present, MSC tends to 1 while M
tends to infinity.

For M independent epochs of a random Gaussian signal
(i.e., no event response), the MSC can be considered to be
related to the F-distribution by [31–36]

MSC
(
f
) ∼ F2,2M−2

M − 1 + F2,2M−2
, (5)

where we can obtain the critical value for a significance level
of α, for the null-hypothesis of no-response by

MSCcrit = F2,2M−2α

M − 1 + F2,2M−2α
. (6)

For the desired significance level, the critical value constitutes
threshold bellow which coherence can be assumed not to be
significantly different to zero. According to [36], this critical
value is related to M by

MSCcrit = 1− α1/(M−1). (7)

In the presence of a event-related synchronization
response, in the f frequency, a positive detection (MSC( f ) >
MSCcrit) is expected. In the absence of a response or in the
no-event condition, a false positive rate of α is expected in all
frequencies. Equation (5) is not valid for the DC component
and the Nyquist frequency.
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Figure 2: Grand Average topographic distribution of ERPs from spontaneous EEG, with unlighted LEDs.
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Figure 3: Grand Average topographic distribution of ERPs from spontaneous EEG, with lighted LEDs.
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3. Results

Those epochs with artifacts within the threshold (below
3σ) were kept in the sample. All epochs containing “strong
artifacts” due to eye blinks were rejected. All ten volunteers
demonstrated eye blinking artifact. Some of these artifacts
occurred at the same time. This may be a tendency, as shown
in literature [37].

The grand average (mean of the ERP of all subjects)
resulting from spontaneous EEG without LED stimuli
(Figure 2), as expected, did not present significant compo-
nents in its morphology, except for Fp1 and Fp2 (due to
eye blinking). The grand average for EEG when LEDs were
turned on (Figure 3) showed a negative component between
t = −0.5 second and t = 0 second, with maximum amplitude
around −3 μV at the frontal channels (especially F3, Fz,
and F4). Besides that, positive components due to LEDs
flashing—between t = −1 second and t = −0.5 second
due to yellow LED lightening and between t = 0 second
and t = 0.5 second due to LEDs being turned off—with
amplitude around 3 μV can be perceived especially at frontal
(F3, Fz, and F4) and central (C3, Cz, and C4) areas.

The ERPs due to movement grand average (Figure 4) dis-
plays movement related potential, known as Bereitschaftspo-
tential (BP) [38–41], symmetrically distributed in both
hemispheres especially at frontal (F3, Fz, and F4), central
(C3, C4, and Cz) and parietal (P3, Pz, and P4) channels.
These BPs begin around 0.5 second before actual movement
and end with the movement’s outset. With the movement
onset (t = 0.25 second) the potential declines, followed by a
positive component at t = 0.7 second, lasting approximately
1 second. Some responses at the T3 and T4 electrodes,
although with smaller amplitude, are also identified. Among
those identified regions, the central (motor) region displays
ERPs with the largest amplitude, with Cz and C4 (contralat-
eral movement) showing the largest amplitude.

Movement imagination ERPs (grand average) topo-
graphic disposition (Figure 5) shows that these ERPs are
more consistent in the frontal, central, and parietal regions.
These potentials show a negative component that begin at
t = −0.5 second lasting approximately 1 second. After the
command to the imagination (t = 0 second) the potential
suffers a decline that can remain about 1 second. Responses
with smaller amplitudes were also observable at the temporal
T3 and T4 electrodes.

For the statistic detection of event response, by means
of MSC, EEG epochs were used, which began 0.7 second
before the order for the movement, actual or imaginary,
(t = 0 second) up to 2 seconds after the order. This
interval was chosen, so that the evoked potential due to
the visual stimulus (lighting of the red LED in t = −4
second and of the yellow LED in t = −1 second) does not
interfere with the results—the evoked potential goes up to
125 milliseconds after the stimulus [41]. The application
of MSC (with M = 45), in the channel Cz, for subject
#10’s, during the spontaneous EEG, with the LEDs both
unlighted (Figure 6(a)) and lighted (Figure 6(b)), shows an
absence of response, as was expected. Few harmonics (4.8%
of total samples; Figures 6(a) and 6(b)) exceeded the value

of MSCcritic = 0.0658, being within the false positives for
α = 5%. Similar results were obtained for all volunteers, as
shown in the histograms of Figures 8 and 9.

During movement, MSC identified a consistent response
at 0.3–2 Hz band (Figure 7(a)). The histogram in Figure 10
shows that the majority of subjects demonstrated detection
in this band in the frontal, central, and parietal regions. All
subjects showed some response at C4 (contralateral). There
was also some detection at temporal and occipital regions.

For movement imagination, MSC detected response at
0.3–1 Hz band (Figure 7(b)). Most subjects showed response
at the central region—nine out of ten at C4 (Figure 11). The
Wilcoxon test for paired data, between the MSC of move-
ment imagination and spontaneous EEG (unlighted LEDs),
corroborated the statistical difference with a significance
level of P < .02 for the band of 0.1 to 0.8 Hz. No other
frequency band, up to 100 Hz, presented this significant
difference.

4. Discussion

ERP estimation results by event-synchronized epochs averag-
ing agree, for the most part, with current literature [38–41].
Some differences are due, mostly, to the use of monopolar
channels, with reference to auricular electrodes (A1 and A2),
while a large proportion of current literature uses bipolar
channels, with reference to Fpz electrode.

ERP estimation for spontaneous EEG with lighted LEDs
presented an almost 1-second lasting potential, especially in
frontal and central channels after the yellow LED was turned
on (movement preparation). According to Grey Walter et
al. [42], repetitive sessions of movement suggested by a
particular stimulus lead to generation of a preparation
potential even when the movement is not actually executed.
Considering that spontaneous EEG sessions happened after
movement sessions, this potential can be related to move-
ment preparation.

Bereitschaftspotentials (BPs) identified in EEG during
movement seem similar to the ones identified during
movement imagination at all channels being symmetrically
distributed in both hemispheres, as predicted by Kalcher and
Pfurtscheller [41].

MSC application showed consistent low-frequency har-
monics (inferior to 4 Hz—delta band) detection, both
for movement and movement imagination, corroborating
recent results reported by Vuckovic and Sepulveda [28, 43],
whose also related this band with both movement and
movement imagination, using evidence from energy vari-
ation (synchronization and desynchronization—ERD/ERS),
in bipolar channels in central, frontal, and parietal regions.

MSC technique was able to consistently detect movement
imagination related response, using 45 epochs (M = 45),
with signal-noise ration (SNR) appropriate to delta band
detection in the subject group. However, 3 subjects had to
go over data collection sessions up to three times, before
responses could be reliably detected in their data. This
variation can be explained by the fact that response SNR
is closely linked to imagination abilities of each individual
subject [44]. For instance, subject #1’s maximum MSC
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Figure 4: Grand Average topographic distribution of ERPs related to left index finger movement.
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Figure 5: Grand Average topographic distribution of ERPs related to left index finger movement imagination.
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Figure 6: MSC (M = 45) for subject #10’s spontaneous EEG at
Cz channel with (a) unlighted LEDs and (b) lighted LEDs. The
critical value (MSCcritic = 0.0658, for α = 5%) is represented by
the horizontal line. Similar behavior found frequencies higher than
30 Hz.

for movement imagination was 0.452 (Figure 12(a)), being
superior to subject #10’s (maximum MSC = 0.248), as
depicted by Figure 7(b). The coherence value reached by
MSC for subject #1 makes ERP detection possible with
considerably fewer epochs (M = 10, Figure 12(b)).

ERPs related to LEDs flashing (yellow LED lightening
and both LEDs turning off) did not exhibit any influence
on movement imagination detection by MSC. Those ERPs
presented the highest MSC values, around 3 Hz that are
higher than those of movement imagination MSC band
(around 1 Hz), as shown in Figure 13. Eye blinking potentials
can also influence response detection, particularly at Fp1 and
Fp2 channels. Even with artifact rejection algorithm appli-
cation and event-synchronized epochs averaging technique,
some synchronous activity during eye blinking was still
observable in the moment subjects were instructed to initiate
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Figure 7: MSC (M = 45) for subject #10’s at Cz channel. (a) During
left index finger movement. (b) During left index finger movement
imagination. The critical value (MSCcritic = 0.0658) is represented
by the horizontal line. For frequencies higher than 30 Hz there was
no response detection.

the task (LEDs turned off) in different sessions (except
during unlighted LEDs session). Recent studies have shown
that eye blinking bears a clear relation to cognitive tasks
[37]. Nonetheless, when it comes to BCI applications related
to movement imagination, those channels are normally not
taken into consideration.

Considering brain plasticity when exposed to repetitive
action [45] is plausible to expect that if subjects engage in
training sessions (to practice movement imagination), it is
possible to improve signal-noise ratio (SNR) and therefore
to reduce the amount of epochs necessary for ERP detection
using MSC.

Another possible way to increment the probability detec-
tion of ERP is the application of Multiple Squared Magnitude
Coherence (MSMC) proposed by [46, 47]. This technique
uses signals from more than one channel (electrode) to
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Figure 8: Histogram (bin width 1 Hz) topographic distribution displaying the number of subjects with response after MSC application
higher than the critical value (significance level 5%) for spontaneous EEG’s ERPs, with unlighted LEDs, harmonics from 0 to 30 Hz.
Frequencies higher than 30 Hz did not show significant responses.
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Figure 10: Histogram (bin width 1 Hz) topographic distribution displaying the number of subjects with response after MSC application
higher than the critical value (significance level 5%) for ERPs during left index finger movement, harmonics from 0 to 30 Hz. Frequencies
higher than 30 Hz did not show significant responses.
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Figure 11: Histogram (bin width 1 Hz) topographic distribution displaying the number of subjects with response after MSC application
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Figure 12: ERP statistical detection (Cz channel) related to movement imagination, for subject #1, using the MSC (a) M = 45; (b) M = 10.
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Figure 13: MSC for ERP due to (a) turned off LEDs, (b) yellow LED turned on, (c) actual movement, and (d) movement imagination for
subject #2. The critical value (MSCcritic = 0.0658) is represented by the horizontal line.

determine brain response coherence to events. In the present
investigation, the results indicate that the most suitable
channels for movement imagination detection, using MSMC
in 0.3 to 1 Hz band, are in frontal and central areas.

BCIs are usually based on single-trial methods. Thus,
the MMSC with single-trial, associated with tools used
for SNR improvement—techniques like Wavelet transform,
principal component analyses, and independent component
analysis—could be a good alternative for BCI application.

5. Conclusion

The present paper compared movement imagination ERPs to
spontaneous EEG’s ERPs (with unlighted and lighted LEDs)
and to movement ERPs, demonstrating that the obtained
responses were reliably related to movement imagination.

The MSC application in previously identified areas,
by event-synchronized epochs averaging, proved to be an
effective tool in movement imagination ERP detection.
Although these detection results have been reached for 45

EEG epochs, comparable detection level was obtained with
as little as 10 epochs for some subjects. We believe that
with proper subject training and through multiple squared
magnitude coherence alongside with noise removal tools can
lead to superior detection levels. Therefore, MSC use for
movement imagination ERP detection seems to be a valuable
pathway for BCI development.
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