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Face recognition based on spatial features has been widely used for personal identity verification for security-related applications.
Recently, near-infrared spectral reflectance properties of local facial regions have been shown to be sufficient discriminants for
accurate face recognition. In this paper, we compare the performance of the spectral method with face recognition using the
eigenface method on single-band images extracted from the same hyperspectral image set. We also consider methods that use
multiple original and PCA-transformed bands. Lastly, an innovative spectral eigenface method which uses both spatial and spectral
features is proposed to improve the quality of the spectral features and to reduce the expense of the computation. The algorithms

are compared using a consistent framework.
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1. Introduction

Automatic personal identity authentication is an important
problem in security and surveillance applications, where
physical or logical access to locations, documents, and
services must be restricted to authorized persons. Passwords
or personal identification numbers (PINs) are often assigned
to individuals for authentication. However, the password
or PIN is vulnerable to unauthorized exploitation and can
be forgotten. Biometrics, on the other hand, use personal
intrinsic characteristics which are harder to compromise and
more convenient to use. Consequently, the use of biometrics
has been gaining acceptance for various applications. Many
different sensing modalities have been developed to verify
personal identities. Fingerprints are a widely used biometric.
Iris recognition is an emerging technique for personal
identification which is an active area of research. There are
also studies to use voice and gait as primary or auxiliary
means to verify personal identities.

Face recognition has been studied for many years for
human identification and personal identity authentication
and is increasingly used for its convenience and noncontact
measurements. Most modern face recognition systems are
based on the geometric characteristics of human faces in

an image [1-4]. Accurate verification and identification
performance has been demonstrated for these algorithms
based on mug shot type photographic databases of thou-
sands of human subjects under controlled environments
[5, 6]. Various 3D face models [7, 8] and illumination
models [9, 10] have been studied for pose and illumination-
invariant face recognition. In addition to methods based on
gray-scale and color face images over the visible spectrum,
thermal infrared face images [11, 12] and hyperspectral
face images [13] have also been used for face recognition
experiments. An evaluation of different face recognition
algorithms using a common dataset has been of general
interest. This approach provides a solid basis to draw con-
clusions on the performance of different methods. The Face
Recognition Technology (FERET) program [5] and the Face
Recognition Vendor Test (FRVT) [6] are two programs which
provided independent government evaluations for various
face recognition algorithms and commercially available face
recognition systems.

Most biometric methods, including face recognition
methods, are subject to possible false acceptance or rejection.
Although biometric information is difficult to duplicate,
these methods are not immune to forgery, or so-called
spoofing. This is a concern for automatic personal identity



authentication since intruders can use artificial materials
or objects to gain unauthorized access. There are reports
showing that fingerprint sensor devices have been deceived
by Gummi fingers in Japan [14] and fake latex fingerprints
in Germany [15]. Face and iris recognition systems can
also be compromised since they use external observables
[16]. To counter this vulnerability, many biometric systems
employ a liveness detection function to foil attempts at
biometric forgery [17, 18]. To improve system accuracy,
there is strong interest in research to combine multiple
biometric characteristics for multimodal personal identity
authentication [19, 20]. Since hyperspectral sensors capture
spectral and spatial information they provide the potential
for improved personal identity verification.

Methods that have been developed consider the use of
representations for visible wavelength color images for face
recognition [21, 22] as well as the combination of color and
3D information [23]. In this work, we examine the use of
combined spectral/spatial information for face recognition
over the near-infrared (NIR) spectral range. We show that
the use of spatial information can be used to improve on the
performance of spectral-only methods [13]. We also use a
large NIR hyperspectral dataset to show that the choice of
spectral band over the NIR does not have a significant effect
on the performance of single-band eigenface methods. On
the other hand, we show that band selection does have a
significant effect on the performance of multiband methods.
In this paper we develop a new representation called the
spectral-face which preserves both high-spectral and high-
spatial resolution. We show that the spectral eigenface
representation outperforms single-band eigenface methods
and has performance that is comparable to multiband
eigenface methods but at a lower computational cost.

2. Face Recognition in Single-Band Images

A hyperspectral image provides spectral information, nor-
mally in radiance or reflectance, at each pixel. Thus, there
is a vector of values for each pixel corresponding to different
wavelengths within the sensor spectral range. The reflectance
spectrum of a material remains constant in different images
while different materials exhibit distinctive reflectance prop-
erties due to different absorbing and scattering characteris-
tics as a function of wavelength. In the spatial domain, there
are several gray-scale images that represent the hyperspectral
imager responses of all pixels for a single spectral band. In
a previous study [24], seven hyperspectral face images were
collected for each of 200 human subjects. These images have
a spatial resolution of 468 x 494 and 31 bands with band
centers separated by 0.01 ym over the near-infrared (0.7 ym-—
1.0 ym). Figure 1 shows calibrated hyperspectral face images
of two subjects at seven selected bands which are separated
by 0.06 yum over 0.7 yum—1.0 ym. We see that the ratios of
pixel values on skin or hair between different bands are
dissimilar for the two subjects. That is, they have unique
hyperspectral signatures for each tissue type. Based on these
spectral signatures, a Mahalanobis distance-based method
was applied for face recognition tests and accurate face
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FIGURE 1: Selected single-band images of two subjects.

F1Gure 2: Example of eigenfaces in one single-band.

recognition rates were achieved. However, the performance
was not compared with classic face recognition methods
using the same dataset.

The CSU Face Identification Evaluation System [25]
provides a standard set of well-known algorithms and estab-
lished experimental protocols for evaluating face recognition
algorithms. We selected the Principal Components Analysis
(PCA) Eigenfaces [26] algorithm and used cumulative
match scores as in the FERET study [5] for performance
comparisons. To prepare for the face recognition tests, a
gray-scale image was extracted for each of the 31 bands
from a hyperspectral image. The coordinates of both eyes
were manually positioned before processing by the CSU
evaluation programs. In the CSU evaluation system all
images were transformed and normalized so that they have
a fixed spatial resolution of 130 X 150 pixels and the eye
coordinates are the same. Masks were used to void nonfacial
features. Histogram equalization was also performed on all
images before the face recognition tests were conducted.
For each of the 200 human subjects, there are three front-
view images with the first two (fg and fa) having neutral
expression and the other (fb) having a smile. All 600
images were used to generate the eigenfaces. Figure 2 shows
one single-band image before and after the normalization,
and the first 10 eigenfaces for the dataset. The number
of eigenfaces used for face recognition was determined by
selecting the set of most significant eigenfaces which account
for 90% of the total energy.

Given the wth band of hyperspectral images U and V,
the Mahalanobis Cosine distance [27] is used to measure
the similarity of the two images. Let u,,; be the projection
of the wth band of U onto the ith eigenface and let gy,
be the standard deviation of the projections from all of the
wth band images onto the ith eigenface. The Mahalanobis
projection of Uy, is My, = (1,1, My2,. .., M,y 1) where m,,; =
Uy,i/0wi. Let Ny, be the similarly computed Mahalanobis
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Ficure 3: Cumulative match scores of single-band images at
different wavelengths.

projection of V,,. The Mahalanobis Cosine distance between
U and V for the wth band is defined by

M,, - N,,

D LA
0w W) = = TN

(1)
which is the negative of the cosine between the two vectors.
For the 200 subjects, the fg images were grouped in the
gallery set and the fa and fb images were used as probes
[5]. The experiments follow the closed universe model where
the subject in every image in the probe set is included
in the gallery. For each probe image, the Mahalanobis
Cosine distance between the probe and all gallery images
is computed. If the correct match is included in the group
of gallery images with the N smallest distances, we say that
the probe is correctly matched in the top N. The cumulative
match score for a given N is defined as the fraction of correct
matches in the top N from all probes. The cumulative match
score for N = 1 is called the recognition rate. Figure 3 plots
the cumulative match scores for N = 1,5, and 10 respectively.
Band 1 refers to the image acquired at 700 nm and band
31 refers to the image acquired at 1000 nm. We see that
all bands provide high recognition rates, with more than
96% of the probes correctly identified for N = 1 and over
99% for N = 10. It is important to consider the statistical
significance of the results. For this purpose, we model the
fraction of the probes that are correctly identified by a
binomial distribution with a mean given by the measured
identification rate p. The variance ¢ of p is given by
400p(1 — p) where 400 is the number of probes [28]. For an
identification rate of 0.97 we have ¢ = 3.4 which corresponds
to a standard deviation in the identification rate of 0.009 and
for an identification rate of 0.99 we have ¢ = 1.99 which
corresponds to a standard deviation in the identification rate
0f 0.005. Thus, for each of the three curves plotted in Figure 3
the variation in performance across bands is not statistically

T

O
Lk % k% e
mmmmmmmm

0.99 +
0.98
0.97
0.96
0.95

0.94

Cumulative match score

0.93 |

0.92

091

0.9 L— \ \ \ \ \ \ \ \
2 4 6 8 10 12 14 16 18 20

Rank

—— Single-band eigenface
—*— Spectral signature

FIGURE 4: Cumulative match scores of spectral signature method
and the best single-band eigenface method.

significant. Figure 4 compares the cumulative match scores
using the spectral signature method [13] and the single-band
eigenface method using the most effective band. We see that
the spectral signature method performs well but somewhat
worse than the best single-band method for matches with N
less than 8. For N = 1, a recognition rate of 0.92 corresponds
to a standard deviation in the recognition rate of 0.014
which indicates that the difference between the two methods
in Figure 4 is statistically significant. The advantage of the
spectral methods is pose invariance which was discussed in a
previous work [13] but which is not considered in this paper.

3. Face Recognition in Multiband Images

We have shown that both spatial and spectral features in
hyperspectral face images provide useful discriminants for
recognition. Thus, we can consider the extent of performance
improvements when both features are utilized. We define a
distance between images U and V using

w
Dyy = |> (1+Dyv(w)), (2)
w=1

where the index w takes values over a group of W-selected
bands that are not necessarily contiguous. Note that the
additive 1 is to ensure a nonnegative value before the square.

Redundancy in a hyperspectral image can be reduced
by a Principal Component Transformation (PCT) [29]. For
a hyperspectral image U = (U, U,,...,Uw), the PCT
generates U = (U}, Us,...,Uy,), where U; = > € Uj.
The principal components Uj, Us,..., Uy, are orthogonal
to each other and sorted in order of decreasing modeled
variance. Figure 5 shows a single-band image at 700 nm and
the first five principal components that are extracted from
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FIGURE 6: Recognition rate of multiband eigenface methods.

the corresponding hyperspectral image. We see that the first
principal component image resembles the single-band image
while the second and third component images highlight
features of the lips and eyes. We also see that there are few
visible features remaining in the fourth and fifth principal
components.

Figure 6 plots the recognition rates for different multi-
band eigenface methods. First we selected the bands in order
of increasing center wavelength and performed eigenface
recognition tests for the first one band, two bands and up
to 31 bands, respectively. We also sorted all 31 bands in
descending order of recognition rate and performed the same
procedure for the face recognition tests. From Figure 6 we
see that both methods reach a maximum recognition rate
of 98% when using multiple bands. However, when the
number of bands is less than 16, the multiband method
performs better if the bands are sorted in advance from
the highest recognition rate to the lowest. We also used the
leading principal components for multiband recognition. We
see in Figure 6 that over 99% of the probes were correctly
recognized when using the first three principal bands.
Increasing the number of principal bands beyond 3 causes
performance degradation. The original-order algorithm in
Figure 6 achieves a recognition rate of approximately 0.965
for less than ten bands which corresponds to a standard
deviation in recognition rate of 0.009. Thus, the performance
difference between this method and the PCT-based method
is significant between 3 and 9 bands. Note that the PCT was
performed on each hyperspectral image individually with
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FIGURrE 7: Cumulative match scores of multiband eigenface meth-
ods.

different sets of ¢;;. The PCT can also be implemented using
the same coefficients for faster computation.

Figure 7 also compares the recognition performance of
the three multiband methods discussed in the previous
paragraph where each algorithm uses only the first three
bands. It is interesting that sorting the bands according to
performance improves the recognition rate for N = 1 but
worsens the performance somewhat for larger values of N. In
either case, the multiband method based on the PCT has the
best performance for N < 7 and is equivalent to the original-
order method for larger values of N.

4. Face Recognition Using Spectral Eigenfaces

We showed in Section 3 that multiband eigenface methods
can improve face recognition rates. In these algorithms, the
multiple bands are processed independently. A more general
approach is to consider the full spectral/spatial structure
of the data. One way to do this is to apply the eigenface
method to large composite images that are generated by
concatenating the 31 single-band images. This approach,
however, will significantly increase the computational cost
of the process. An alternative is to subsample each band of
the hyperspectral image before concatenation into the large
composite image. For example, Figure 8 shows a 31-band
image after subsampling so that the total number of pixels is
equivalent to the number of pixels in a 130 x 150 pixel single-
band image. We see that significant spatial detail is lost due
to the subsampling.

A new representation, called spectral-face, is proposed to
preserve both spectral and spatial properties. The spectral-
face has the same spatial resolution as a single-band image
so the spatial features are largely preserved. In the spectral
domain, the pixel values in the spectral-face are extracted
sequentially from band 1 to band 31 then from band 1
again. For example, the value of pixel i in spectral-face equals
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FiGUure 8: A sample image composed from 31 bands with low-
spatial resolution.

the value of pixel i in band w where w is the remainder
of i divided by 31. Figure 9 shows an original single-band
image together with the normalized spectral-face image in
the left column. Spectral-face has improved spatial detail as
compared with Figure 8. The pattern on the face in Figure 9
demonstrates the variation in the spectral domain. With
the spectral-face images, the same eigenface technique is
applied for face recognition. The first 10 spectral eigenfaces
are shown on the right side of Figure 9. It is interesting to
observe that the eighth spectral eigenface highlights the teeth
feature in smiling faces.

The spectral eigenface method was applied to the same
dataset as the single-band and multiband methods. The
cumulative match scores for N = 1 to 20 are shown in
Figure 10. The best of the single-band methods, which cor-
responds to band 19 (880 nm), is included for performance
comparison with the spectral eigenface method. We see
that the spectral eigenface method has better performance
for all ranks. The best of the multiband methods, which
combines the first three principal bands, is also considered.
The multiband method performs better than the spectral
eigenface method for small values of the rank, but performs
worse for larger values of the rank. For this case, an iden-
tification rate of 0.99 corresponds to a standard deviation
in identification rate of 0.005. Thus, the two multiple-band
methods have a statistically significant advantage over the
single-band eigenface method for ranks between 3 and 10.
Note that the multiple principal band method requires more
computation than the spectral eigenface method.

5. Conclusion

Multimodal personal identity authentication systems have
gained popularity. Hyperspectral imaging systems capture
both spectral and spatial information. The previous work
[24] has shown that spectral signatures are powerful discrim-
inants for face recognition in hyperspectral images. In this
work, various methods that utilize spectral and/or spatial
features were evaluated using a hyperspectral face image
dataset. The single-band eigenface method uses spatial fea-
tures exclusively and performed better than the pure spectral

FIGURE 9: One sample spectral-face and the first 10 spectral
eigenfaces.
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Figure 10: Comparison of spectral eigenface method with single-
band and multiband methods.

method. However, the computational requirements increase
significantly for eigenface generation and projection. The
recognition rate was further improved by using multiband
eigenface methods which require more computation. The
best performance was achieved with the highest compu-
tational complexity by using principal component bands.
The spectral eigenface method transforms a multiband
hyperspectral image to a spectral-face image which samples
from all of the bands while preserving spatial resolution. We
showed that this method performs as well as the PCT-based
multiband method but with a much lower computational
requirement.

Acknowledgments

This work was conducted when the author was with the
Computer Vision Laboratory at the University of Cali-
fornia, Irvine, USA. This work has been supported by
the DARPA Human Identification at a Distance Program
through AFOSR Grant F49620-01-1-0058. This work has
also been supported by the Laser Microbeam and Medical
Program (LAMMP) and NIH Grant RR01192. The data was
acquired at the Beckman Laser Institute on the UC Irvine



campus. The authors would like to thank J. Stuart Nelson
and Montana Compton for their valuable assistance in the
process of IRB approval and human subject recruitment.

References

(1]

(11]

R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and
machine recognition of faces: a survey,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 705-740, 1995.

K. Etemad and R. Chellappa, “Discriminant analysis for
recognition of human face images,” Journal of the Optical
Society of America A, vol. 14, no. 8, pp. 1724-1733, 1997.

B. Moghaddam and A. Pentland, “Probabilistic visual learning
for object representation,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 19, no. 7, pp. 696-710, 1997.
L. Wiskott, J.-M. Fellous, N. Kriiger, and C. von der Malsburg,
“Face recognition by elastic bunch graph matching,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
19, no. 7, pp. 775-779, 1997.

P.J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET
evaluation methodology for face-recognition algorithms,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 10, pp. 1090-1104, 2000.

P. J. Phillips, P. Grother, R. Micheals, D. M. Blackburn, E.
Tabassi, and M. Bone, “Face recognition vendor test 2002:
overview and summary,” Tech. Rep., Defense Advanced Re-
search Projects Agency, Arlington, Va, USA, March 2003.

V. Blanz and T. Vetter, “Face recognition based on fitting a 3D
morphable model,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 25, no. 9, pp. 1063—1074, 2003.

K. I. Chang, K. W. Bowyer, and P. J. Flynn, “An evaluation
of multimodal 2D+3D face biometrics,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp.
619-624, 2005.

Y. Adini, Y. Moses, and S. Ullman, “Face recognition: the prob-
lem of compensating for changes in illumination direction,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 7, pp. 721-732, 1997.

K.-C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear
subspaces for face recognition under variable lighting,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
27, no. 5, pp. 684-698, 2005.

D. A. Socolinsky, A. Selinger, and J. D. Neuheisel, “Face recog-
nition with visible and thermal infrared imagery,” Computer
Vision and Image Understanding, vol. 91, no. 1-2, pp. 72-114,
2003.

J. Wilder, P. J. Phillips, C. Jiang, and S. Wiener, “Comparison
of visible and infra-red imagery for face recognition,” in
Proceedings of the 2nd International Conference on Automatic
Face and Gesture Recognition (AFGR ’96), pp. 182-187,
Killington, Vt, USA, October 1996.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face
recognition in hyperspectral images,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp.
1552-1560, 2003.

J. Leyden, “Gummi bears defeat fingerprint sensors,” The
Register, May 2002.

A. Harrison, “Hackers claim new fingerprint biometric
attack,” Security Focus, August 2003.

M. Lewis and P. Statham, “CESG biometric security capabil-
ities programme: method, results and research challenges,”
in Biometric Consortium Conference, Crystal City, Va, USA,
September 2004.

(17]

(21]

(22]

(28]

[29]

EURASIP Journal on Advances in Signal Processing

J. Bigun, H. Fronthaler, and K. Kollreider, “Assuring liveness in
biometric identity authentication by real-time face tracking,”
in Proceedings of IEEE International Conference on Computa-
tional Intelligence for Homeland Security and Personal Safety
(CIHSPS ’04), pp. 104-111, Venice, Italy, July 2004.

T. Tan and L. Ma, “Iris recognition: recent progress and
remaining challenges,” in Biometric Technology for Human
Identification, vol. 5404 of Proceedings of SPIE, pp. 183—194,
Orlando, Fla, USA, April 2004.

J. Kittler, J. Matas, K. Jonsson, and M. U. Ramos Sanchez,
“Combining evidence in personal identity verification sys-
tems,” Pattern Recognition Letters, vol. 18, no. 9, pp. 845-852,
1997.

J. Kittler and K. Messer, “Fusion of multiple experts in
multimodal biometric personal identity verification systems,”
in Proceedings of the 12th IEEE Workshop on Neural Networks
for Signal Processing, pp. 3—12, Kauai, Hawaii, USA, December
2002.

J. Yang, D. Zhang, Y. Xu, and J.-Y. Yang, “Recognize color
face images using complex eigenfaces,” in Proceedings of
International Conference on Advances in Biometrics (ICB ’06),
vol. 3832 of Lecture Notes in Computer Science, pp. 64—68,
Hong Kong, January 2006.

S. Yoo, R.-H. Park, and D.-G. Sim, “Investigation of color
spaces for face recognition,” in Proceedings of IAPR Conference
on Machine Vision Applications (MVA °07), pp. 106-109,
Tokyo, Japan, May 2007.

F. Tsalakanidou, D. Tzovaras, and M. G. Strintzis, “Use of
depth and colour eigenfaces for face recognition,” Pattern
Recognition Letters, vol. 24, no. 9-10, pp. 1427-1435, 2003.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face
recognition in hyperspectral images,” in Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’03), vol. 1, pp. 334-339, Institute of
Electrical and Electronics Engineers, Madison, Wis, USA, June
2003.

D. Bolme, J. R. Beveridge, M. Teixeira, and B. A. Draper,
“The CSU face identification evaluation system: its purpose,
features and structure,” in Proceedings of the 3rd International
Conference Computer Vision Systems (ICVS ’03), vol. 2626 of
Lecture Notes in Computer Science, pp. 304—313, Graz, Austria,
April 2003.

M. A. Turk and A. P. Pentland, “Face recogntion using eigen-
faces,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 91), pp. 586—
591, Maui, Hawaii, USA, June 1991.

J. R. Beveridge, D. S. Bolme, M. Teixeira, and B. Draper, “The
CSU face identification evaluation system user’s guide: version
5.0, Tech. Rep., Computer Science Department, Colorado
State University, Fort Collins, Colo, USA, May 2003.

A. Papoulis, Probability and Statistics, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1990.

P. J. Ready and P. A. Wintz, “Information extraction,
SNR improvement, and data compression in multispectral
imagery,” IEEE Transactions on Communications, vol. 21, no.
10, pp. 1123-1131, 1973.



	1. Introduction
	2. Face Recognition in Single-Band Images
	3. Face Recognition inMultiband Images
	4. Face Recognition Using Spectral Eigenfaces
	5. Conclusion
	Acknowledgments
	References

