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This paper presents a complete iris identification system including three main stages: iris segmentation, signature extraction,
and signature comparison. An accurate and robust pupil and iris segmentation process, taking into account eyelid occlusions,
is first detailed and evaluated. Then, an original wavelet-packet-based signature extraction method and a novel identification
approach, based on the fusion of local distance measures, are proposed. Performance measurements validating the proposed iris
signature and demonstrating the benefit of our local-based signature comparison are provided. Moreover, an exhaustive evaluation
of robustness, with regards to the acquisition conditions, attests the high performances and the reliability of our system. Tests have
been conducted on two different databases, the well-known CASIA database (V3) and our ISEP database. Finally, a comparison of

the performances of our system with the published ones is given and discussed.

1. Introduction

Biometric systems provide reliable automatic recognition
(identification) of persons based on one or several biological
features. These systems are progressively replacing the con-
ventional identification methods, such as documents, login
passwords, or personal identification codes. There are several
benefits of using biometrics in combination with or instead
of traditional techniques. A first advantage is the ease of
use: to be identified, a person does not have to remember
a password or identification code and does not have to carry
a key, and thus the identification process can be very quick.
Second advantage, the protection of the identifier: a weak
spot in many traditional security systems is that the users
often write down their code or tend to choose a code which is
easy to remember and thus also easy to break. Keys and cards
can be stolen or copied. On the contrary, biometric systems
can be made quite safe against forgery. Last but not least, the
length of the code is a very important advantage: biometrics

makes possible the use of very long codes and thus the brute-
force hacking strategies are inefficient.

Different types of biometrics such as fingerprints, hand
geometry, facial appearance, voice, retina, and iris have been
used. Nowadays, the iris is considered as one of the most reli-
able traits for biometric identification because of its random
morphogenesis, great variability among different persons,
and stability over time. The performances of iris based
algorithms are better than those using other biometrics, as
for example, the face recognition algorithms. However, iris
recognition systems rely on good quality images and their
performances deteriorate in unconstrained environments.

Iris based recognition systems have been widely studied
for the last 20 years. It was in the early nineties that John
Daugman implemented and patented an automated ready-
to-use iris recognition system [1, 2]. Even though Daugman’s
system is the most successful and the most well known,
many other approaches have been proposed. Typically, such
recognition systems, in spite of their specificities, have the



same structure: the first stage consists in the iris segmenta-
tion, then the image is normalized and features are extracted
in order to generate a signature. Finally, this signature is
compared to reference signatures (i.e., gallery database) in
order to measure a numerical dissimilarity value to be used
in the decision process.

The segmentation part, consisting of the localization and
extraction of the iris, is crucial as the whole recognition
system depends on its accuracy. Therefore, much research
has been conducted on the segmentation, based essentially
on two main methods: an integro-differential algorithm
proposed by Daugman [2] and an algorithm based on
the circular Hough transform employed by Wildes [3].
Many other methods have been proposed, combining these
algorithms or employing some threshold-based methods [4]
and, more recently, algorithms using active contour models
[5]. An important part of the segmentation is the localization
of occlusions caused by eyelids and eyelashes, hiding, at least
partially, the iris texture. If they are not taken into account,
they are considered as a part of the iris structure and lead
to the deterioration of the performances. Methods used for
the eyelids localization are similar to those used for the
iris boundaries, mainly based on Daugman’s and Wildes’
method. The eyelashes segmentation methods are principally
based on thresholding.

The normalization step transforms the iris region so
that it has fixed dimensions, in order to allow comparisons.
The dimensional differences are mainly due to variations
in the pupil dimensions, varying imaging distance, rotation
of the camera, head tilt, and ocular motion. The majority
of systems use the transform proposed by Daugman [6]
which translates the segmented iris into a fixed length and
dimensionless polar coordinate system. Two other methods
are worth of noting, the Boles’ system [7] using virtual circles
and Wildes’ algorithm [3] employing an image registration
technique.

The aim of the feature (signature) extraction is to
provide the most discriminating information present in an
iris pattern. The analysis of the iris is accomplished either
globally on the whole iris or locally. The data (coefficients)
issued from this analysis are then encoded to form a
biometric signature. The feature representation approaches
could be roughly divided into three major categories: phase-
based methods (as proposed by Daugman in e.g. [1, 2]),
zero-crossing representation methods [7, 8], and various
texture-analysis-based methods [3, 9-12].

The identification step consists in the confrontation
of the tested signature to those stored in a reference
database (gallery). This comparison allows establishing their
similarity (or dissimilarity, depending on algorithms). Then,
a decision criterion has to be applied to classify correctly the
user as being authentic or imposter. To compare signatures,
different distance metrics are commonly applied. The Ham-
ming distance is the most frequently used [2, 6, 13, 14]. It
can be modified to limit the comparison only to coefficients
corresponding to nonoccluded part of the iris [6, 13, 14] or
weighted by local quality measures [15]. Other authors use
Euclidean [8] or weighted Euclidean distance [16]. Wildes in
[3] proposed a measure of normalized correlation between
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the acquired and the database signatures but used it only in
the verification task.

The decision criterion used for classification is generally a
simple threshold, obtained empirically on training databases.
Some authors proposed other types of classifiers such as
neural networks [12, 17].

In this paper, we propose a ready-to-use iris identifi-
cation solution. We developed a complete reliable system
with high performances that includes all steps of a clas-
sical iris identification scheme (Section2). As explained
in Sections 2.3, 2.4, and 2.5, we contributed to all these
stages, either by proposing new methods or improving the
existing approaches. We present a precise, accurate and
robust segmentation method that takes into account the
eyelid detection. An original method of signature extraction
and comparison, based on a wavelet packet decomposition,
is also presented. Section 3 describes a complete valida-
tion of the proposed method, realized on two different
databases: CASIA (infrared) and ISEP (visible domain).
We also evaluate the robustness of the algorithm with
regards to acquisition conditions, by simulating changes
in illumination, blurring, and optical axis deviation. The
performances of the whole system are presented in Section 4
and compared to those described in the literature. Section 5
concludes the presented system and further improvements
are suggested.

2. Iris Identification System

2.1. Iris Databases. The images used in this study were
acquired in the visible domain (ISEP database) or in the
near infrared domain (CASIA database). Both systems are
cooperative, that is, the iris images were captured at small
distances, under controlled lighting conditions and with
cooperating subjects.

To create the ISEP database, we used a dedicated iris
imaging equipment provided by Miles research lab [18]. It
is made up of a Nikon camera with 105 mm lens. The flash
illumination is precisely guided to the eye via fibre optics
light-guides, in order to provide uniformly illuminated eye
pictures with little light reflections (Figure 1(a)). Neverthe-
less, light spots are present in the pupil area and sometimes in
the iris texture itself, when the flash is not perfectly centred.
The images were resized to 600 x 400 pixels and transformed
from RGB colour format to grey-levels, each pixel being
coded on one byte.

The ISEP database contains 1572 images acquired from
the left and/or the right eye of 337 different individuals.
Most of them are European (87.23%) but the database
contains also images from African or Indian (10.1%) or
Asiatic (2.67%) people. The acquisition protocol included
two different acquisition conditions: in the first case, the
eye was preilluminated to contract the pupil; in the second
case, the picture was taken in indoor conditions, with
no preillumination, providing images with largely dilated
pupils. We have two images of both types for each of the 403
classes (i.e., eyes).
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FIGURE 1: Acquisition systems and iris images from (a) ISEP database and (b) CASIA database.

The CASIA-IrisV3-Interval is a public database provided
by the Center for Biometrics and Security Research (CBSR)
[19]. Iris images are 8 bit grey-level, 320 x 280 pixels,
collected under near infrared illumination (Figure 1(b)).
Almost all subjects are Chinese. Images extracted from
CASIA database serve generally as references for the compar-
ison of iris identification systems. In our study, we extracted
a subdatabase including 888 images of 222 classes, having
therefore 4 images per eye. The extraction process was
conducted as follows: exclusion of images with very large
occlusions (more than 50% of the iris texture) or inadequate
segmentation (as explained in Section 2.3.4), exclusion of
a class when less than four images are available under the
previous conditions, and random selection of four remaining
images per eye.

2.2. Functional Scheme. The functional scheme of the pro-
posed system is depicted in Figure 2 and follows the typical
structure of majority of iris recognition systems. The image
is first segmented in order to extract the iris texture. Two
major steps are required: the localization of the inner
and outer iris boundaries (Sections 2.3.1 and 2.3.2) and
the detection of the eyelids (Section 2.3.3). Our system
provides a robust and accurate segmentation, which has been
demonstrated by comparing the automatic segmentations
with manual ones (Section 2.3.4). Then, the iris ring is
unwrapped to get a rectangular image of normalized size.
The information about the eyelid boundaries are used to
define a binary mask, where pixels corresponding to iris
texture are coded as 1’s (Section 2.3.5). We propose then an
original method for extracting signatures, based on a wavelet
packet decomposition (Section 2.4). The identification part
consists in the comparison between iris signatures. Two
different approaches are proposed: a global comparison and
anovel method based on a fusion of local distances calculated
on subregions of the iris (Section 2.5).

2.3. Segmentation and Normalisation. The segmentation step
aims at extracting the iris texture area from the eye image.
Major difficulties come from the weak contrast between the
pupil and the iris (dark eyes) or the iris and the sclera (pale
eyes), but also from the poor quality of the acquired pictures.
Images are indeed often defocused or occluded by eyelids or
light spots. Nevertheless, efficient iris localization is required,

since the whole recognition system depends on the accuracy
of this segmentation step.

The proposed method is based on three steps: rough
localization of the pupil, iris boundary detection, and eyelid
detection. This way, the pixels belonging to iris texture are
precisely determined. Further, the iris is unwrapped into
a rectangular image of fixed size, using Daugman’s polar
transform [6]. A binary mask is also deduced from the eyelid
segmentation results in order to distinguish precisely iris
pixels from eyelid pixels.

2.3.1. Rough Detection of the Pupil. This step can be, to a
certain extent, dependent on the illumination system used
for image acquisition. Nevertheless, the proposed method is
robust enough to process both CASIA (Figure 3(a)) and ISEP
databases. The bright spots are detected based on top-hat
morphological filters. They are then removed by a specific
filter which replaces every spot-pixel (i.e., pixels contained
within a bright spot) by an average of its nearby pixels,
starting from the spot periphery and progressing iteratively
towards the centre (Figure 3(b)). The average includes only
pixels that were not labelled as spot-pixels beforehand or
those which have been processed at a previous iteration. So,
the spots are filled with dark pixels without creating high
gradients.

In the following, we assume that the pupil is almost
centred in the image (cooperative acquisition system) and
define a region of interest (160 X 160 pixels) in order to
localize it roughly (Figure 3(b)). This area is represented in
a binary manner, for selecting the darkest pixels that are
likely to belong to the pupil (Figure 3(c)). The threshold
is dynamically adjusted through the histogram analysis, in
order to keep the 15% of darkest pixels. Morphological filters
are applied to improve the segmentation quality and the
region of largest area is kept as pupil region. The pupil centre
is estimated from the bounding box and the gravity centre of
the extracted region (Figure 3(d)).

2.3.2. Iris Boundary Localization. This second step consists
in the localization of the inner and outer iris boundaries,
considered either circular or elliptical. Two major methods
were proposed by Daugman and Wildes. Both are based on
the use of the first derivatives of the image and a circular
parametric model of the iris contours. The best parameters
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F1GUrE 3: Rough localization of the pupil. (a) Source image, (b) filtered image and definition of the zone of interest for the pupil detection,
(c) pupil detection by thresholding means, and (d) pupil localization (bounding box and centre estimation).

are obtained either by maximizing the output of an integro-
differential operator [2] or by using a Hough transform
applied on a binary edge map [3]. The second method is
probably less accurate than the first one since it depends
on a threshold to be chosen for the edge detection and,
thus sensitive to different types of images and illumination
conditions. Moreover, the results provided by the Hough
transform are often sensitive to the sampling of the space
parameters.

Our method is similar to Daugman’s one, but with a
circular model of the pupil boundary and an elliptical model
of the outer contour of the iris. The centre of the pupil
and the centre of the iris are supposed to be close to one
another. From the first estimation of the pupil location
(Figure 3(d)), we deduce a grid of possible coordinates for
the pupil centre. Then, we find the centre and the radius of
the circle that maximize the mean gradient in the orthogonal
direction of the circular curve (Figure 4(a)). The gradient
is estimated by a correlation with the 1D kernel [-1 -
1 0 +1 +1], representing an ideal step. This process
is applied on the preprocessed image to avoid high gradients
due to illumination spots. A similar algorithm is used for
determining the ellipse, the possible centres being restricted
in the neighbourhood of the pupil centre. However in this
case, the gradient maximization is limited to the left and
right subparts of the ellipse in order to avoid possible eyelid
or eyelash occlusions (Figure 4(b)). This algorithm provides
very good results (Figure 4(c)), even in case of very low
contrast, because of the average effect, and because there is no
need of parameter tuning as we use a maximization criterion.

2.3.3. Eyelids Localization. The detection of eyelid occlusions
is crucial to achieve good identification rates. Most proposed
methods are based on the analysis of the gradient image,
assuming a high gradient at the frontier between the eyelid
and the iris. But the selection of relevant contours is a very
difficult task since eyelashes often hide eyelid boundaries
and highly textured iris also provides high gradients. That
is why a priori knowledge about the shape of the searched
contour is again required. Therefore most authors model
eyelids as parabolic [3, 6, 15] or circular arcs, and apply
again an integro-differential operator [6] or a Hough
transform [3] to select the best parameters of the parametric
representation. Additional criteria are sometimes added to
shortlist admissible contours: eyelashes detection, since they
are supposed to be at the border of the eyelid [20], which
requires an additional difficult step; selection of the longest
edge [15], but the searched contours are often cut by
eyelashes; denoising based on a statistical model that need
to be learnt beforehand [21].

To improve the robustness of the process, we propose
an algorithm [22] based on three steps: preprocessing,
preselection of edge candidates to eyelids including first
approximation and, finally, a decision by optimization of
the mean gradient. In the preprocessing stage, a nonlinear
diffusion filter is applied to smooth the iris texture, while
sufficiently preserving the eyelid boundaries (Figure 5(a)).
The second step consists in applying a Canny-edge detector
in order to obtain a map of edge candidates. A priori
knowledge about the position of the eyelids, with respect to
the iris boundaries, is used to perform a first selection of
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(a)

FIGURE 4: Iris boundary localization. (a) Estimation of the pupil contour by a circle (in yellow, the grid of the tested centres), (b) estimation

of the outer iris contour by an ellipse, and (c) obtained result.

F1GURrE 5: Occlusion localization. (a) Preprocessed image, (b) selected edges to be fitted by a parabola,(c) final candidate selection, and (d)

edge detection after optimization.

the relevant edges. Therefore, we restrict the analysis area
to the inner iris. Afterwards, we remove the left and the
right parts of the iris in order to avoid connections between
the eyelids/iris and the iris/sclera boundaries. We thus keep
the edges that are the most likely to belong to the eyelid
border (Figure 5(b)), so that the speed and the robustness
of the algorithm are improved. The remaining edges, whose
by length is greater than the mean, are fitted by a parabolic
curve. More side-knowledge is introduced by eliminating the
parabolas which have inaccurate orientation. At this stage,
only 2 to 30 edge candidates still remain (Figure 5(c)). In
the third step, the analysis is refined: the mean gradient
along each candidate is calculated for different values of the
parabola parameters around the first estimation, on a larger
area (twice the size of the iris in the horizontal direction). The
mean gradient is estimated on the result of the horizontal
Sobel kernel filtering of the original image, in order to
focus on the horizontal edges. A global maximisation is
then performed to select the parabola approximating the
eyelid/iris frontier (Figure 5(d)).

2.3.4. Performance Evaluation of the Segmentation Process.
The automatic segmentations were compared with seg-
mentations realized manually on images from CASIA V3-
Interval database (2655 images) and ISEP database (1572
images), in order to provide a quantitative evaluation of the

segmentation process. Let us denote by (x;,A), yéA)) and ) the

centre and radius of the pupil obtained with the proposed

method, and by (xéM) , yéM)) and )" the parameters obtained
manually, serving as reference. We compute the relative error
made on the pupil centre estimation by

Vs =) ()

Epupil_centre = (M) (1>
p
and on the radius estimation by
(4) (M)
rp - Tp ‘
Epupil_radius = M) . (2)
Tp

The relative errors commited on the outer iris boundary
localization are calculated in the same way, replacing rj,w by
the horizontal axis of the ellipse in (1), and by the horizontal
or vertical axis of the ellipse in (2). Table 1 indicates the
percentage of images with a relative error of less than 5%
and 10%, respectively. The correspondence between the
percentage and the number of pixels (in average), is also
provided.

As expected, the presented results demonstrate better
performances for the detection of the pupil on images
illuminated with near-infrared light (CASIA database) rather
than images illuminated with visible light (ISEP database),
since the iris/pupil contrast is higher in the first case. On
the opposite, the determination of the iris centre and of the
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TasLE 1: Evaluation of the accuracy of the segmentation process.
ISEP CASIA
<5% <10% % pixels <5% <10% %< pixels
Pupil Centre (Epupil_centre) 77.4% 94.8% 1%+0.53 px 92.8% 95.1% 1%+0.42 px
Radius (Epupil.radius) 86.1% 95.6% 1%+<0.53 px 95% 96% 1%+0.42 px
Centre 92.5% 99.2% 1%+ 1.4 px 81.9% 94.2% 1%<+1.1px
Iris Horizontal axis 95% 99.6% 1%+ 1.4 px 92.2% 97.8% 1%<1.1px
Vertical axis 57.3% 95.2% 1%<1.4 px 64.1% 92.4% 1%<1 px
horizontal axis parameter of the ellipse is more accurate for Segmentation performance
the ISEP database than for the CASIA database. Nevertheless, 100
the vertical axis parameters are less accurate than the =
horizontal ones, for both databases. Indeed, the detection is < sor
disturbed by the presence of eyelids and eyelashes. %
It should be noticed that the real position of the pupil E sor
centre was out of the grid of possible centres, determined S
through the rough location of the pupil (Section 2.3.1 and éo or
Figure 4(a)), for only 0.4% of the ISEP images and 0.97% of 8
the CASIA images. This demonstrates the robustness of this g 2
first segmentation step. However, the overall segmentation 0 . . . .
performances might still be improved by enlarging the grid. 0 20 40 60 80 100
These results are however difficult to compare with the Error (%)
ones given in the literature, since the databases are different
(CASIA V1 in the literature) and no quantitative criterion 7 gfgm

has ever been expressed, to our knowledge.

A complete evaluation of the eyelid detection was also
realized on the whole CASIA-IrisV3-Interval database (2655
images) [22]. The automatic segmentations were compared
with manual segmentations. We defined the global error as
the percentage of subsegmentation or oversegmentation. For
the lower eyelids, we obtain 97.6% of localizations with less
than 10% of global error. For the upper eyelids, 87.5% of
localizations have less than 10% of global error. We also
noticed that the system is very robust to oversegmentation.
As stated above, these performance rates cannot be compared
to those given in the literature, since the authors provided
only qualitative assessment and on a different database
(CASIA V1).

Figure 6 summarizes the segmentation performances
obtained on all available images, including those presenting
erroneous detection of iris borders. This graphic represents
the proportion of images whose global error is lower than a
given value, where the global error is computed as

Errorgiopal

number of sub or oversegmented pixels (3)

=1
00 number of nonoccluded iris pixels

Approximately 90% of the images have a global error
less than 10% for both databases, which demonstrates the
reliability of the segmentation process. However, it should
be pointed out that the different sources of inaccuracy do
not have the same influence on the system identification
rates. As underlined in [23], the pupil centre position is
the most critical parameter, since it serves as origin of
the normalization process (Section 2.3.5), while recognition
systems are more tolerant to inaccuracies related to the

FiGUure 6: Global segmentation performance for the considered
databases.

iris/sclera border. Moreover, imprecision on the eyelids
detection are much less critical, since it has no influence
on the normalization process. This fact was clearly demon-
strated by experiments conducted on the CASIA database
[24]. Indeed, the identification error rates are zero on the
manually segmented CASIA database, when segmenting the
eyelids, and are only slightly degraded when not considering
the occlusions. On the opposite, the identification error rates
come to 1.80% in middle security mode and to 5.43% in
high-security mode, when testing the fully automatic system
including the proposed segmentation step.

In what follows, we use only images that are correctly
segmented, those for which the global error is less than 25%
(thus, less than 2% of image rejection).

2.3.5. Normalization. The normalization stage is usu-
ally accomplished by using the method proposed by
Daugman [2]. This model remaps each point within the iris
region to a pair of polar coordinates (r, 8) where r is on the
interval [0, 1] and 6 is an angle on the circle ([0,27]). The
angle sampling step is predefined, as well as the number of
pixels sampled along each radius, so that the output image
is a rectangle of fixed size. Let us denote by ny and n, the
number of points along the angle and the radius axes. We
designate the coordinates of pairs of pixels located on the
pupil and the iris borders, aligned with the pupil centre
and forming an angle 8, with the x-axis, as (x;(6,), y5(6,))
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F1IGURE 7: Polar transform.

and (x;(0,), yi(0,)), respectively, (Figure 7). The Daugman’s
transform is expressed as

x(1%, 0,) = 11xi(0,) + (1 — 1) x,(6,),

(11, 0,) = 1 yi(0n) + (1 — 1)y, (0n),

with
(4)
0, = 1271, n=0,...,n9 — 1,
ng
k
rh=—— k=0,...,n — L
n— 1

Even though other normalizations have been proposed
(e.g., [3, 7]), Daugman’s transformation is commonly
adopted since it easily deals with pupil dilatation or focal
variations. Moreover, as the signatures are computed from
the normalized images, no further normalization is necessary
to compare signatures.

The size of the unwrapped images is set to ng X n, =
256 x 128 pixels (Figure 8(a)). The binary mask defining
the pixels belonging to the iris texture is defined in the
same way (Figure 8(b)). The last step consists in a histogram
equalization that increases the contrast of the texture and
normalizes dynamically the grey-levels (Figure 8(c)).

2.4. Signature Extraction. Finding the appropriate features
for the description of the unwrapped iris images represents
the key for a robust signature extraction and classification.
The literature acknowledges manifold of propositions. For
example, Daugman [2, 6, 13, 14] applied 2D Gabor filters for
extracting the phase structure information of the iris. Boles
and Boashash [7] have chosen zero-crossing representations
of the 1D wavelet transform of a concentric circle on the iris
image, at various resolution levels, in order to characterize
the iris texture. Wildes [3] decomposed the iris region using
LoG (Laplacian of Gaussian) filters. The resulted filtered
image is thus represented as a 4-level Laplacian pyramid and
further used for generating a compact iris signature. Lim et
al. [12] decorrelated the iris images using a 4-level 2D Haar
transform and quantized the high-frequency information
thus obtained. Ma et al. [9-11] defined new spatial filters to
capture local details of the iris. Tisse et al. [25] introduced a
concept of instantaneous phase and/or emergent-frequency.

The instantaneous phase is obtained by constructing an
analytic image which is a combination of the original image
and its Hilbert transform. Module of emergent frequency
and the real and the imaginary parts of the instantaneous
phase are used to encode the iris texture.

Lately, the subband decomposition methods [26] have
gained a lot of interest due to their demonstrated efficiency
in characterising different types of textures. Among these
schemes, some have employed separable wavelet basis [7,
12, 15, 27], as well as wavelet packet basis [28] in order to
represent the analysed texture in a way that discriminant fea-
tures are highlighted. A major inconvenience of the wavelet
representation, however, is that only a subset of the possible
space-frequency segmentation is used for the extraction of
the spatial frequency components of the texture. Wavelet
packets (WP) provide a solution to this problem so that full
or adaptive frequency segmentation for a given texture can
be obtained.

Especially for images with highly textured content, or
residual textures (as the unwrapped iris images), the energy
compactness performance of the wavelet packet subband
structures is superior to classical wavelet one, as it has been
shown in [29]. Moreover, a valid reason for using WP for iris
signature extraction is that cyclic events (e.g., unwrapped iris
strips) produce regular patterns in the spatial domain which
can be efficiently represented by wavelet packet means.

As the WP transform [30-32] generalizes the dyadic
wavelet decomposition by iterating the decompositions on
the high-pass bands, it can be implemented by using a pair
of Quadrature Mirror Filter (QMF) banks that divide the
frequency bands into equal parts. This recursive splitting of
the vector space is represented by the admissible WP tree
(Figure 9).

There are two major categories of features extraction
methods employing wavelet packets. The first one uses
abstract aggregates of the original wavelet packet features
such as: entropy, energy, distance, and so forth. on the full
WP decomposition tree [33, 34]. The second category clus-
ters the best-basis WP feature extraction methods. Generally,
in this latter class, the WP decomposition coefficients are
used to form a feature space by merging specific nodes of the
WP tree and splitting others, in order to produce a tree that
represent the best reflection of the properties of the texture
(29, 33]. The features are then extracted based on some
criteria applied to the wavelet coefficients in the terminal
nodes of the resulted optimized tree [35].

Therefore, a compact iris signature can be obtained by
quantizing the coefficients of the full WP decomposition
tree into one bit each, depending on their sign [34]. In the
following we propose a signature extraction method (which
could be classified as belonging to the first category) which
uses the energy of the WP coefficients as discriminator for
determining which subbands carry the most useful part of
the information.

The subbands to be analysed will be generated by the
full 3-level WP decomposition using the orthogonal Haar
transform, as shown in Figure 9. Due to the orthogonality
of the involved transform, the energy preserving criterion
is fulfilled. We can thus use the normalized WP subbands



EURASIP Journal on Advances in Signal Processing

W L

'4 1\ f \
gk
{

‘
Ir
Y
v

FiGgure 8: Normalization process. (a) Unwrapped image, (b) binary unwrapped mask, and (c) equalized iris texture with masked occlusions.

Image

%\

A H v D

ZANIZAN

AH VDAH VD AH VD AH VD

AH VD AH VD
23

60 61 6263
FIGUre 9: Full 3-level wavelet packet decomposition tree: the low-
pass subbands (approximations) are denoted by A and the high-pass
ones are represented following their directions—H (horizontal), V
(vertical), and D (diagonal).

Haar, mean wavelet packets energy, ISEP

Energy
®©
(=)

0 TT?‘?‘? T T P T?T?nOnOTTI? P00
0 10 20 30 40 50 60
Wavelet packets

FIGURE 10: Mean wavelet-packet energy distribution.

energies E;_o, _¢3 as discriminator for deciding which packets
should be considered for signature extraction

LS
El - Ni jZkWi (])k)) (5)

where w;(j,k) denotes the ith subband wavelet packet
coefficients (N; gives the total number of coefficients of the
ith subband).

As shown in Figure 10, the subbands 2 (AAV) and 10
(AVV) are efficient discriminants for the mean-energy value
criterion. We propose thus to select these two most energetic

subbands of the full WP decomposition tree and generate the
signature bitwise as in the following:

si(j, k) if |wi(j,k)| >T,

sign (wi(j, k)), ©

=0, otherwise,

where the threshold T is dynamically computed, following
the descending magnitude order of the absolute values of the
coefficients, such that only the most relevant ones retaining a
certain percentage (Section 3.1) of the subband energy are
sign-quantized. This way, similar to the wavelet-based de-
noising algorithms, the small coefficients are thus assimilated
to noise and therefore filtered, in order to decrease their
impact in the signature matching process. We thus obtain for
each of the two energy-selected packets a robust signature,
each represented by 16 x 32 symbols ({—1,0,1}) and which
will be coded on 384 bytes.

The choice of the orthogonal Haar transform and of the
quantization method has also been retrospectively validated
by experiments (see Section 3.1).

2.5. Identification Method. The final task to be performed in
an iris recognition system is the iris matching, that is, the
comparison of the tested iris signature to signatures stored in
a reference database, followed by the decision classifying the
iris as an authentic or impostor. As mentioned before (see
Section 1), different distance metrics have been proposed
(Hamming, Euclidean, Manhattan) as well as different classi-
fiers (from simple thresholds to neural networks classifiers).

In [36], we proposed a global iris identification method
based on a normalized Manhattan distance measure. The
applied measure combines the normalized Manhattan met-
rics given by signatures extracted from two wavelet packets
(subbands 2 and 10). Two signatures for each individual
are stored in the reference database. The tested signature
is compared to both signatures of each individual and the
minimum distance is retained to provide the final measure
of dissimilarity. The eyelid occlusions are also taken into
account [24].

However, this kind of global analysis cannot deal with
distortions due to segmentation imprecision. Indeed, many
parameters, related to the image acquisition process, impact
the segmentation results and are responsible for the seg-
mentation inaccuracies observed in Section 2.3.4. Especially,
the optical axis, the illumination conditions, the pupil
size, and the partial occlusions by eyelids or eyelashes
are causes of segmentation variability: displacement of the
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FIGURE 11: (a) The 8 areas in the source image, (b) corresponding
to 8 rectangular blocks in the unwrapped image (128 x 256).

circle or ellipse centre, change of the radius or ellipse
axis parameters. This variability results in translations of
the iris structures in the unwrapped image, as well as
dilation or contraction, especially in the radial direction, thus
disturbing the signature comparison step. Consequently,
despite the demonstrated robustness of the segmentation
process (Section 2.3.4), acquisition conditions lead to iris
detection inaccuracies that strongly affect the identification
performances (23, 24].

To cope with such local distortions due to segmentation
imprecision, we propose a novel signature comparison
method based on a fusion of local distances. The reason
is that the local distortions are not uniform over the
unwrapped image. Another idea is to give more importance
to iris areas which are likely to provide more reliable
information. In our method, the iris is divided in eight
subregions, equivalent to eight rectangular subwindows in
the unwrapped image, as illustrated in Figure 11.

Blocks 1 to 4 correspond to the texture close to the pupil.
As blocks 5 to 7 are related to peripheral textures, they are
more prone to occlusions.

2.5.1. Local Distance Measures. The first step of our iden-
tification method consists in a global angular shifting to
compensate for eye rotation between the reference and the
tested image [34]. Local comparisons are then performed, as
described in what follows.

The tested unwrapped image is extended by N pixels in
both directions to authorize horizontal and vertical sliding
of the subwindows with minimized side effects. N is the
maximum shift, in pixels, of the subwindows.

The comparison is therefore independently realized on
each rectangular block of the unwrapped image. The blocks
of the tested unwrapped image slide along the vertical and
horizontal directions, around their central position, while
the subwindows of the reference image are fixed.

Let us denote by nglfn’n}( j,k) the coefficients of the
signature derived from packet P; (i = 2,10), for the
subwindow b (b € [1,8]) of the tested iris T and the
translation {m, n} (m € [-N, N]). We denote by Sf’b(j,k) its
equivalent for the reference iris R. M {T,;lh’n} (j, k) are the binary
masks defining the nonoccluded coefficients (corresponding
to iris texture) for the subwindow b and the translation
{m, n} of the tested iris T, and MR?( j» k) their equivalent for

the reference iris R [22]. The distances HDE (mn; between the
tested and reference subsignatures derived from packet P; for
the subwindow b and the translation {m, n} are computed as
follows:

b
HDi,{m,n}
1 . . . .
= o 2 |Stin (k) = SE2 Giuk) | M (k) MRY (),
b ik

(7)

where Nj is the number of coefficients equal to 1 in both
masks for the subwindow b.

The local distances measured for the subwindow b and
combining two wavelet packets are obtained as

b b b
D{m,n} = 2HDZ,{m,n}I_IDIO,{m,n}' (8)

As each considered subband provides specific discriminating
information, the use of the product as fusion rule is
very pertinent, increasing the discrimination power of the
classifier. Other conjunctive rules, such as the minimum,
would provide less selective results.

Subsignatures are generated for all the (2N + 1) X
(2N + 1) possible block translations and compared to the
corresponding reference subsignatures. This process leads to
a set of (2N + 1) x (2N + 1) distance measures for each
block. The optimal superposition between the tested and the
reference subsignatures is given by the minimum distance
Db:

D’ =minDj, . be][lL8]. (9)

In this way, eight distances are obtained, each corre-
sponding to the analysis of a subwindow. The aim of the next
step is the fusion of these local distances, in order to get a final
measure representing the global dissimilarity of both irises.

2.5.2. Fusion of Local Distances. In the literature, diverse
fusion rules are admitted, such as the minimum or maxi-
mum, the arithmetical or geometrical average [37]. In our
system, we take into account some additional knowledge by
giving more importance to the local distances corresponding
to the most informative and reliable areas. Therefore, we
choose a weighted sum as fusion rule and the global distance
between the tested and the reference iris is given by:

8
D, = > wDt. (10)
b=1

In this equation, the weight wb is a combination of two
weights, in order to take into account knowledge about the
information quantity carried by the different subregions and
their reliability. The first weight, denoted by w}, represents
the proportion of coefficients corresponding to nonoccluded
iris texture.

The second weight, w? allows giving less importance to
the local measures that are statistically different from the
others. Thus, the influence of blocks that are likely to be



10

unreliable or nondiscriminating is reduced [24]. Let m be
the mean and o the standard deviation of the eight local
distances DY obtained between the tested iris and a reference
iris (9). The weight, denoted as w?, is given by the following
equation:

p» if Dl <m—o,
b _
S

=4p

1, otherwise,

w it D >m+o, (11)

where p is less than 1.
The final weight of block b is defined by:

b,b
wh= i (12)
D=1 WgWh

In our algorithm, two parameters are required: the
maximum shift N and the parameter p of the weight w?. Both
are obtained in a prior training phase on a representative
subset of the database. The optimal values of parameters are
those which minimize the error rates: N = 3 and p = 0.8.
These learnt parameters are then validated on a test set that
is independent of the training set [24].

In what follows, we will refer to the measure derived
from (10), (11), and (12) with N = 0 and p = 1 as global
comparison. In this case, the measure is made globally on
the nonoccluded iris texture.

As experiments show (see Sections 3 and 4), significant
improvement of performances is obtained when applying the
local identification approach instead of the global one.

3. Validation and Performances Evaluation

In this Section, we propose the simulation framework
for both CASIA and ISEP databases, in order to validate
parameters involved in the algorithm and to evaluate the
robustness of the proposed method. In our experiments,
we have considered 888 images of 222 classes from each
of our databases. The retained ISEP images were selected
randomly. Indeed, the performances measurements should
not be biased by different numbers of classes, in order to be
comparable.

In the following, we express the performance results
in terms of false reject rate (FRR), false accept rate (FAR)
and equal error rate (EER). The FAR measures the rate of
impostors accepted by the system, the FRR measures the rate
of authentics rejected by the system, and the EER is the rate
where FAR = FRR. Moreover, we study the error rate in high-
security mode: the FRR when preventing the false accept
errors (denoted by FRR (FAR = 0%) in what follows).

3.1. Signature Extraction. The energy of the WP coefficients
is used as discriminator for determining which subbands
carry the most useful part of the information for the
signature generation, as explained in Section 2.4. The study
was first made using the Haar wavelet, but other wavelets
could be suitable for generating the signature. Especially,
the Biorthogonal 1.3 leads to a similar energy repartition of
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TaBLE 2: EER and FRR (FAR = 0%) measured on (a) CASIA and (b)
ISEP databases for a binary coding and the proposed coding.

()

EER FRR (FAR = 0%)
Binary coding 0.00% 0.45%
Proposed coding 0.00% 0.00%
(b)
EER FRR (FAR = 0%)
Binary coding 0.21% 1.81%
Proposed coding 0.00% 0.00%

the wavelet packet coefficients and achieves also a good dis-
crimination [34]. Consequently, we now refine the analysis
by computing the identification performances obtained for
both wavelets, on both ISEP and CASIA databases. Moreover,
we look for the best percentage of energy defining the sign-
quantized coefficients (Section 2.4, equation (6)). Figure 12
shows the EER and the FRR (FAR = 0%) as a function of
this parameter, for both wavelets and both databases. The
training set includes the first half of the individuals, and the
test set the second half (as described in [24]). Note that the
images were manually segmented to avoid misinterpretation
due to segmentation errors. The comparison method is
global.

The training shows that the most suitable wavelet is the
Haar wavelet for both CASIA and ISEP databases. Keeping
respectively around 99% of the energy for defining the
threshold T leads to the best performances. These results
are confirmed on the test sets. They reinforce the idea that
some WP coefficients are more related to noise than to iris
texture features and therefore must have less importance
in the signature comparison. Table 2 shows the error rates
obtained on the complete databases, for the proposed
coding (6) compared to the binary coding coupled with
a Hamming distance. The performances are significantly
improved especially on the ISEP database.

Thus, the proposed signature, extracted from manually
segmented images, leads to an identification system without
errors. It is worth noting that coding the packet having the
third highest energy does not increase the separation between
authentic and impostor distributions.

3.2. Robustness Evaluation. We now focus on the robustness
evaluation of the identification process, with regards to
acquisition conditions. For that, we progressively degrade
the quality of the images, by changing the illumination
conditions, blurring, and modelling optical axis deviations.
All modifications are carried out on the original images.
The transformed images are unwrapped according to the
parameters provided by the manual segmentation and new
signatures are generated. In this way, segmentation inaccu-
racies do not interfere in the signature robustness analysis.
Obviously, this process concerns only images of the test
database, the reference signatures being unchanged. Then,
the performances are measured for gradually increasing
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FIGURE 12: Performance results obtained for the choice of the wavelet and the percentage of energy defining the sign-quantized coefficients.
(a) EER and (b) FRR obtained on the training sets; (c) EER and (d) FRR obtained on the test sets.

FIGURE 13: Examples of unwrapped images extracted from (a) ISEP
and (b) CASIA databases.

defects. Measurements are done for both global and local
approaches. Some visual examples are given in the next
subsections for the images represented in Figure 13.

3.2.1. Robustness to Illumination Variations. The tested
image, denoted by I, is transformed by adding a constant
k, corresponding to a shift of the grey-level histogram
(overexposure or underexposure, Figure 14). The resulting
pixel values are limited to the range [0, 1]:

I'(x,y) = min(max(0,I(x, y) +k),1), I(x,y) €[0,1].

(13)

Figure 15 shows the EER and the FRR (FAR = 0%) as
a function of the illumination shift k. The performances,
obtained with the global comparison method of the iris
signatures, show very good robustness to illumination
changes, since the EER and FRR remain stable in the range
of k [—0.4,+0.2] for the CASIA database (Figures 14(a) and
14(b)) and [0,+0.3] for the ISEP database (Figure 14(c)).
These results can be linked to the grey-level repartition of
the iris texture: the performances start to deteriorate when
more than approximately 2.5% of the pixels are saturated to
0 or 1. Indeed, the saturation effect leads to the removal of
some iris texture, explaining the observed behaviour. On the
ISEP database, an underexposure leads quickly to an increase
of the error rates, since the database contains at least 10% of
very dark eyes.

The robustness with regard to contrast changes is studied
in a similar way, using this time the following transformation

Ia(x’}’) = al(x’y)) I(x)}’) € [0)1],
(14)

I'(x,y) = min(max(O,Ia(x,y) -1, +f),l),



(b) k=0.2
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(c) k=03

FiGgure 14: Examples of illumination variations. (a, b) CASIA image, (c) ISEP image.
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FiGure 15: (a) EER and (b) FRR (FAR = 0%) as a function of the illumination, measured on CASIA and ISEP databases.
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where T denotes the mean grey-level of the image. The
contrast is decreased when a is lower than 1 and increased
otherwise, with a histogram mean unchanged, however with
a saturation effect for the darkest and the brightest pixels
(a > 1) (Figure 16).

Figure 17 shows the EER and the FRR (FAR = 0%) as
a function of a. The admissible loss of contrast is around
a factor of 0.1 for the CASIA images and 0.5 for the ISEP
images, which demonstrates strong robustness (Figures 16(a)
and 16(c)). A high contrast amplification corresponds to
some binarization of the unwrapped images (Figures 16(b)
and 16(d)). We observe again a very good robustness, since
the admissible factors are up to 3 (ISEP) or 5 (CASIA).

A similar robustness to illumination variation has been
obtained with the local comparison method.

3.2.2. Robustness to Blurring. The images are blurred with a
Gaussian filter of increasing standard deviation o, simulating
a progressive focus degradation (Figure 18). It is worth
noting that the algorithm is very robust, up to a standard
deviation equal to ¢ = 3 (Figures 18 and 19), for the global
comparison approach. With the local analysis approach,
the EER slightly increases for strong blurring, however
insignificantly with respect to the gain obtained in high-
security mode (FRR (FAR = 0%)).

Ilumination variation
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3.2.3. Robustness to Optical Axis Deviation. Ideally, the
images should be acquired with the optical axis orthogonal
to the eye. Nevertheless, ocular motion or head rota-
tion movements cause deviations and the image might
be nonorthogonally projected on the focal plane, causing
deformations of the iris structures. In this study, we simulate
vertical and horizontal axis deviations (Figure 20).

The tests show that the algorithm is robust for images
with an optical axis deviation up to 15°, in vertical or
horizontal direction. The local comparison method reduces
both error rates (EER, FRR (FAR = 0%)), since it allows
compensating for the distortions induced by the optical axis
deviation.

3.2.4. Conclusion. These experiments show that our biomet-
ric signature and identification process, applied on accurately
segmented images, lead to a zero error identification system,
which is furthermore very robust to acquisition conditions,
in terms of illumination variability, focusing, and optical axis
deviation. These results suggest that restoration techniques,
such as deblurring [38], could be useful to improve the
segmentation process, but are not necessary for extracting
and comparing signatures. As these restoration techniques
are heavy and complex, and as they cannot deal with all
types image variability (such as variability due to occlusions),
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(c) a=0.5

FIGURE 16: Examples of contrast variations. (a, b) CASIA image, (¢, d) ISEP image.
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FiGUure 17: (a) EER and (b) FRR (FAR = 0%) as a function of the contrast variation, measured on CASIA and ISEP databases.
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FiGure 18: Examples of blurring with ¢ = 3. (a) CASIA image, (b)
ISEP image.

we prefer to address the segmentation imprecision issue
at the signature comparison step. In the next section, we
will evaluate the benefits of the local analysis method, for
dealing with the distortions induced by the segmentation
inaccuracies.

4. Global Performances

Up to now, the simulations were done on manually seg-
mented images. In the followings, we introduce the segmen-
tation process described in Section 2.3. So, the identification
system is fully automatic. Figure 21 shows the performances
obtained with both global and local analysis methods. The
EER and the FRR (FAR = 0%) are detailed in Table 3. The
95% confidence intervals have been calculated using the
bootstrap method [39].

TaBLE 3: EER and FRR (FAR = 0%) obtained with automatically
segmented databases, for both global and local comparison meth-
ods, on (a) CASIA and (b) ISEP databases. Note that the error rates
were zero on the manually segmented databases.

(a)

EER FRR (FAR = 0%)
Global 1.80% [0.45% : 3.6%] 5.43% [2.7% : 8.56%]
Local 1.36% [0%: 3.15%] 2.64% [0.45% : 4.95%]
(b)
EER FRR (FAR = 0%)
Global 0.47% [0%: 1.36%] 2.3% [0.45% : 4.52%]
Local 0.47% [0% : 1.82%] 1.34% [0% : 3.18%]

TaBLE 4: Performances reached by our local analysis method,
compared with the literature.

EER FRR (FAR = 0%)
Daugman’s algorithm [40] 1.44% 3.41%
Proenca [40] 1.01% 2.39%
Chen et al. [15] 0.79% Non evaluated
Proposed 1.36% 2.64%

As expected, there is a performance loss due to segmen-
tation imprecision, but this is significantly reduced by the
local comparison, especially in high-security mode. Indeed,
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FIGURE 19: (a) EER and (b) FRR (FAR = 0%) as a function of the standard deviation of the blurring Gaussian filter, measured on CASIA and
ISEP databases.
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Figure 21: ROC curves obtained with automatically segmented databases, for both global and local comparison methods, on (a) CASIA and

(b) ISEP databases.

the local analysis allows compensating for segmentation
inaccuracies, as explained in [24]. The results obtained for
the ISEP database (Figure 21(b)) confirm the analysis.

Finally, the performances of the fully automatic system,
relying on the local analysis method, have been compared
with those published in the literature [15, 40], on the CASIA
databases. In [40], Proenga compared Daugman’s algorithm
[2] with his own approach, on the CASIA-IrisV3-Interval
database with a subset of 800 images and 80 subjects.
Similarly, Chen et al. [15] evaluated the EER performance
on the CASIA V1 database with a subset of 756 images and
108 subjects. In all these experiments, the images were hand-
selected to eliminate incorrectly segmented irises, following a
selection procedure similar to that presented in Sections 2.1
and 2.3.4.

As it can be seen in Table 4, we obtain similar results for
approximately the same number of iris images (888). How-
ever our database contains two or three more subjects (222)
and so, these results demonstrate a very good robustness with
respect to the increase of subjects.

5. Conclusion and Perspectives

In this paper, we presented a ready-to-use iris identification
system. Several methods have been proposed and validated
for iris segmentation, signature extraction and comparison.

Firstly, a precise and robust pupil and iris segmentation
scheme, taking into account eyelid occlusions, is described.
The segmentation process is done automatically and its
performance is objectively measured. The measurements,
realized on two different types of images (visible domain
and near infrared), demonstrate that 90% of the irises are
detected with less than 10% of global error.

A wavelet-packet-based signature extraction method,
as well as a novel identification approach, based on the
fusion of local distance measures, are further proposed.

Experimental results demonstrate their efficiency in terms
of error rates and the benefit of our local-based signa-
ture scheme for compensating segmentation imprecision.
Moreover, a robustness evaluation of such signature scheme,
with regards to the acquisition conditions, has been carried
out. The performance comparison, conducted on different
iris-databases, highlights the efficiency of our identification
step in normal conditions, as well as its robustness to the
most common degradation factors: illumination variations,
optical axe deviation, and focus degradation. The overall
performances of the system could be further increased
by improving the accuracy of the automatic segmentation
method. Moreover, the presented system could be jointly
used with other biometrics approaches (fingerprint, face
recognition, etc.) in the design of a multimodal high-security
system.
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