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We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured
object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and
shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual
attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object
to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the
method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual
attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing
time while providing the advantages of a fully automated method.

1. Introduction

The objective of this work is to present a method which
detects and segments manufactured objects (particularly
underwater mines) in underwater video images. Actually, the
underwater video is increasingly used as a complementary
sensor to the sonar especially for detection of objects or
animals; see [1–4]. However, the underwater images present
some particular difficulties including natural and artificial
illumination, color alteration, light attenuation [5], and
marine snow. The method must tackle these problems and
is developed under two constraints: no human intervention,
low processing time. For segmenting an object in an image,
we first need to detect the presence of the object. The method
is composed of two main steps:

(1) object detection,

(2) object segmentation if an object is detected.

For detecting or tracking objects in underwater images,
generally, a preprocessing step is applied to enhance the
images. For example, in [6], a homomorphic filtering is
used to correct for the illumination, wavelet denoising,

anisotropic filtering to improve the segmentation, adjust-
ment of image intensity, and some other processing. A
self-tuning image restoration filter is applied in [7], but
the illumination is considered to be uniform, which is
a restrictive hypothesis. In [4] the constant background
features are estimated for each frame by computing the
sliding average over the ten preceding frames, and the average
is subtracted from the frame. This preprocessing cannot
be applied in our images due to the large size of our
objects and the slow movement of the object in the image,
because the average will contain the object. Also, we want
to detect an object in only one image. The main problem
encountered in our images is the shadow, a problem wich
is not discussed in previous works. We propose to use the
visual attention approach [2, 8] with some modifications.
Once the saliency map is extracted (using the visual attention
method), we apply a Linear Discriminant Analysis (LDA)
[9] to estimate the probability of object presence. For the
second step, we use active contour. Since publication of
the work of Kass et al. [10], extensive research on snakes
(active contours) has been developed to segment images.
The early approaches [10, 11] minimized an energy function
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to move the active contour toward the object’s edges. In
[12], region information has been used to overcome some
problems inherent to the edge approach. In this paper we
put forward a region based snake method in the Minimum
Description Length (MDL) framework. This approach is
adapted to our problem of segmentation of uniform color
objects. Since we require low processing times, we use explicit
snake (polygonal). Implicit approach (level set) needs more
computational time even with the fast marching method
[13]. The problem encountered in the classical snake method
is the dependence on the contour initialization. We propose
to use the visual-attention-based method to find the region
of interest to segment in the image (there is generally only
one manufactured object to be found in underwater images).
Moreover, in the classical region-based snake approach, the
region descriptor is fixed for the whole video sequence,
while in this paper we propose to select the best region
descriptor adapted to each image. The idea is to use the
information extracted with the visual attention to select,
based on a kurtosis criterion, the region descriptor for each
image to segment. This approach reduces the shadow effect
during the segmentation step. The methods are presented
in Section 2, our approach is developed in Sections 2.4 and
2.5. Experimental results on real images are reported in
Section 3.2.

2. Methods

The general method for image segmentation is composed of
six steps, the first three steps corresponding to the object
detection and the last three corresponding to the object
segmentation:

(1) extraction of a saliency map using visual attention,

(2) detection of the most salient part of the map,

(3) classification in class “object” or “no object”,

(4) selection of a region descriptor,

(5) initialization of the snake on the most salient part of
the map,

(6) segmentation of the image by the snake.

In what follows we supply the details for each of the above
subparts.

2.1. Visual Attention. The method we adapt is based on the
work of Itti et al. [8]. Low-level vision features (orientation,
brightness, color channels tuned to red, green, blue and
yellow hues) are extracted from the original color image
at several spatial scales (depending on the image size). The
different spatial scales are obtained through the use of a
dyadic Gaussian pyramid. Then we combine the different
maps, after a normalization step, to obtain a saliency map.
The final step is the determination of the most salient part of
the image using a Winner-Take-All (WTA) neural network;
see Figure 1.
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Figure 1: Visual attention method.

The initial image is a color image (r = red, b = blue,
g = green channels), from which we can extract the intensity
image using the following equation:
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One Gaussian pyramid I(q) is estimated from intensity
image I , where q ∈ [0 · · · 8] is the scale. Four Gaussian
pyramids R(q), G(q), B(q), and Y(q) are created from these
color channels. From I , four orientation-selective pyramids
O(q, θ) are also created using Gabor filtering at θ = 0, 45, 90,
and 135 deg. Feature maps for each pyramid are calculated
using center-surround operation as difference (pixel by pixel)
between fine scale q f = {2, 3, 4} and coarse scale qc =
{q f + {3, 4}}

I
(
qc, q f

)
=
∣
∣
∣I
(
qc
)
ΘI
(
q f

)∣∣
∣,

O
(
qc, q f , θ

)
=
∣
∣∣O
(
qc, θ

)
ΘO

(
q f , θ

)∣∣∣,
(3)



EURASIP Journal on Advances in Signal Processing 3

where Θ is the center-surround operation. For the center-
surround operation the difference between maps at different
scale is obtained by interpolation at finer scale followed
by a pixel by pixel subtraction. For color channels, the
feature maps are calculated for Green/Red and Blue/Yellow
opponency
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Forty four feature maps are finally obtained, 6 for the
intensity, 12 for the color, and 24 for orientation. Then, we
calculate the conspicuity maps (O(q),I(q),RG(q),BY(q))
by linear combination of the feature maps at scale q = 4,
followed by a normalization between 0 and 1. Compared
to the classical approach, the normalization related to the
maximum of each feature map is not applied here; see
[8]. This normalization is not needed since our subsequent
processing step is invariant to scale; see Section 2.5. Finally,
we calculate the conspicuity color map C and the saliency
map S:
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(5)

2.2. Detection of the Most Salient Part. In this step we select
only the most salient pixel of the saliency map. The WTA
neural network is not used since we have only one object to
detect:

P∗ = arg max
(x,y)

{
S(x,y)

(
q
)}
. (6)

2.3. Classification. A classic Linear Discriminant Analysis
(LDA) is used to classify the area around the maximum
detected in the previous step (Section 2.2), as “object” (1)
or “not object” (0). As this is a supervised approach, the
parameters of the model are estimated using reference
videos. An object is considered detected if

(M0 −M1)TX +
1
2

(
MT

1 M1 −MT
0 M0

)
> ln

P1

P0
, (7)

where Pi, i = 0, 1 is the prior probability for classes 0, and
1, Mi the vector of expected features values and X the feature
vector.

2.4. Initialization by Visual Attention. The idea is to use the
saliency map to initialize the active contour. Generally, in our
application, the underwater image is composed of only one
object in a dark and noisy background. The visual attention
scheme is well-adapted to these particular images where a
single region of interest is contrasted with a background. We
propose to use only the most salient part of the image to
initialize the position of the active contour.
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Figure 2: Initial image.

2.5. Adaptive Region Descriptor for Active Contour. Usually
the choice of the region descriptor depends on the appli-
cation and is fixed a priori. In this work, we introduce a
data-driven region descriptor. The information to choose
the descriptor will be deduced from the saliency map.
Once we have detected the most salient part, we can
select the most informative conspicuity map. Since we are
dealing with illuminated objects superposed on a dark
background, an informative map would mean that the pixels
are easy classifiable into either a class object or background
(nonobject). In other words, the probability density function
of the pixel values would ideally be unimodal with a mode
at the background value (I ≈ 0) and the object constituting
the distribution tail (I ≈ 1), whereas a noninformative
pixel map would result in a more uniform distribution of
its pixel values. A well-adapted criterion to differentiate an
informative from a noninformative pixel map is the entropy
of the pixel map, which is under some general assumptions
related to the more easily calculable normalized kurtosis of a
map C [14, 15]. The pixel map of choice C� is

C� = arg max
C

E
{(
C(x, y)− μC

)4
}

(
E
{(
C(x, y)− μC

)2
})

2
, (8)

where μC = E{C(x, y)}, and C(x, y) is the pixel inten-
sity for a pixel belonging to the conspicuity map C ∈
{I,O,RG,BY}. In [16] the one map is found that con-
tributes most to the activity at the most salient location
(xw, yw) looking back at the conspicuity maps. Examining
the feature maps that gave rise to the conspicuity map
Ckw with k ∈ {I ,C,O} leads to the one that contributes
most to its activity at the winning location. The winning
feature map is segmented using region growing and adaptive
thresholding. In Section 3.4, we compare this approach with
our approach and show the improvement.

2.6. Active Contour. A parametric snake is a curve Γ(s) =
[x(s), y(s)], s ∈ [0, 1], which minimizes an energy func-
tional

E[Γ(s)] = Eint[Γ(s)] + Eext[Γ(s)], (9)
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Figure 3: Conspicuity maps.

by moving through the spatial domain of an image. The total
energy consists of two energies: internal Eint and external Eext.
The internal energy preserves the smoothness and continuity.
The external energy is derived from the information in the
image I . A typical energy function for a snake using image
gradients is given as [11]
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∮
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2
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where Γs = (ẋ(s), ẏ(s)), Γss = (ẍ(s), ÿ(s)), and α, β, λ
are positive coefficients. For a snake using the region
information in the image based on Minimum Description
Length (MDL) we have [12]
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where Ri is the segmented region i, μ is the code length
for unit arc length, N is the number of regions, and αi the

parameters of the distribution describing the region i. λ is
the code length needed to describe the distribution and code
system for region Ri. The external force is processed using a
window W(x,y) of m pixels around the control point. Then
the equation is
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If we assume that each pixel (x, y) has a multiplicative
mixture distribution, we obtain
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Figure 4: The histograms and the estimated kurtosis for the conspicuity maps.
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m
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The motion equation for point �v = (x, y) is

d�v
dt
= −∂E[Γ, {αi}]

∂�v . (15)

Using (11)

d�v
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∑

k∈Q(�v)

{
−μ

2
κk(�v)�nk(�v) + logP

(
I(�v) | αk

)
�nk(�v)

}

, (16)

where Q(�v) = {k | �v lies on Γk}, κk(�v) is the curvature, �nk(�v) is
the unit normal to Γk at point �v.
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Figure 5: Maximum detected: green cross and the initial snake in
red. The image is presented at initial scale (s = 0) after up sampling
operation on Blue/Yellow conspicuity map.

As the objects of interest are simple manufactured
objects, we propose to add a constraint on the snake form.
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Figure 6: Segmentation using the conspicuity map.
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Figure 7: Segmentation presented on the real image. In red the
obtained segmentation, in blue the ground true. The blue square
is the area of interest which can be used for the recognition step.

This allows a smooth segmentation of the image. The
constrained form is ellipsoidal. Related works in literature
already propose to add to the energy a penalty function
increasing with the distance of the curve to an ellipse [17, 18].
We propose to estimate directly the ellipse parameters and
not the control points of the curve as in [19], but allowing
for a rotation of the ellipse as in [18]. Using the parametric
expression of ellipses as function of θ, we have

Γ(s, t)

=
⎛

⎝
x(θ, t)

y(θ, t)

⎞

⎠

=
⎛

⎝
xc(t) + a(t) cos(θ) cos

(
φ(t)

)− b(t) sin(θ) sin
(
φ(t)

)

yc(t) + a(t) cos(θ) sin
(
φ(t)

)
+ b(t) sin(θ) cos

(
φ(t)

)

⎞

⎠,

(17)

where (xc(t), yc(t)) is the ellipse center, a and b the half-
length of the ellipse axes, and φ(t) the angle between the x-
axis and the major axis of the ellipse. As we add a constraint

14/Nov/2006 15:11:18 0.9 m 1

Figure 8: Segmentation of a mine in basin without water. Cgood =
0.96 and Cfalse = 0.02.

21/Nov/2006 14:29:40 7.2 m 1

Figure 9: Segmentation of a mine in basin. Cgood = 0.86 and Cfalse =
10−3.

of form, we can eliminate, respectively, the internal energy
and the internal force in (9) and (15). Then (15) becomes

d�v
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=

⎛

⎜
⎜
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⎠
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Then, we express the evolution of the ellipse parameters
if we consider a discretized curve Γ to be an M-tuple
(�v1,�v2, . . . ,�vN ) of points:

Fx�vi = logP
(
I(�vi) | αk

)〈
�n�vi ,�x

〉
,
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= logP
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dxc(t)
dt
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N
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21/Nov/2006 09:51:34 6.9 m 1

Figure 10: Segmentation of a circular mine in basin. Cgood = 0.64
and Cfalse = 0.

24/Nov/2006 09:55:08 6.9 m 1

Figure 11: Segmentation of a mine in basin. Cgood = 0.65 and
Cfalse = 0.
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(19)

kxc , kyc , ka, and kb are coefficients of ponderation controlling
the speed of the active contour. The rotation around the
center of the ellipse can be found by calculating the angular
momentum for a solid object as with Newton’s second law.
For an object with a moment of inertia J on which a torque
τ is exercised, we have

J
d2φ

dt2
= τ,

dφ

dt
= τ

J
· Δt.

(20)

17/Sep/2007 09:55:40 9.1 m 3

Figure 12: Segmentation of a mine at sea. Cgood = 0.66 and Cfalse =
0.005.

17/Sep/2007 10:26:49 8.7 m 3

Figure 13: Segmentation of a mine at sea. Cgood = 0.57 and Cfalse =
7.10−3.

Since for an ellipse with uniform density and mass M the
moment of inertia is

J = M
(
a2 + b2

)

4
, (21)

and the torque in any point �v can be calculated as

τ = R�v · F⊥�v , (22)

we obtain

dφ

dt
= R�v · F⊥�v

(1/4)M(a2 + b2)
Δt. (23)

with

F⊥�v = Fy�v cos
(
θ�v + φ

)− Fx�v sin
(
θ�v + φ

)
,

R�v =
√(

a(t) cos(θ�v)
)2 +

(
b(t) sin(θ�v)

)2,
(24)

where F⊥�v is the force at the point �v normal to R. We can
generalise for forces applied along the contour

dφ(t)
dt

= kφ
N

N∑

i=1

R�vi · F⊥�vi
a(t)2 + b(t)2 ,

(25)

where kφ is a coefficient controlling the speed of evolution of
the contour including the constants Δt and 4/M.
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17/Sep/2007 09:41:01 8.8 m 3

Figure 14: Segmentation of a mine at sea. Cgood = 0.25 and Cfalse =
0.

Figure 15: Segmentation of a mine at sea with pre-processing and
segmentation using RGB information. Cgood = 0.53 and Cfalse = 0.

3. Results

In this section, we present first some criterion of perfor-
mance and then we show the results obtained on real images.

3.1. Criterion. The criterion expresses the segmentation
quality:

Cgood = card{Ωin ∩Ωo}
card{Ωo}

,

Cfalse = card{Ωin ∩Ωb}
card{Ωb}

,

(26)

where Ωin is the internal region of the snake, Ωo the region of
the object to detect, Ωb the background region and card(Ω)
defines the cardinality (the number of elements in set Ω).

3.2. Illustration of the Method on Real Image. The method
has been tested on real images of underwater mines (the
information contained in this publication are using ac-rov
data recorded at Lanvéoc (France) by the GESMA (Groupe
d’Etudes Sous-Marines de l’Atlantique)). Since we have only
a partial knowledge on the recording conditions, we cannot
use an illumination model or any a priori information
to restore images. The first result presented is a mine in
seawater environment with low visibility, some acquisition
noise and compression noise, see Figure 2. We select the best

Figure 16: Segmentation of a mine at sea with pre-processing and
segmentation using RGB information. Cgood = 0.2 and Cfalse = 0.
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Figure 17: Segmentation of a mine using the feature map selected
by maximum activity. Cgood = 0.26 and Cfalse = 0.003.

conspicuity map, Figure 3, using the kurtosis criterion (8).
Figure 4 shows the histograms for the conspicuity maps and
the calculated kurtosis. The maximum kurtosis for this image
is obtained for the Blue/Yellow map. Once the maximum on
the saliency map is detected, we initialize an active contour
on this position; see Figure 5. Then after convergence of the
snake, we obtain the segmentation of the object displayed in
Figures 6 and 7. For this image we obtain Cgood = 0.67 and
Cfalse = 10−4.

3.3. Results on Different Images. In this section, we present
the segmentation results on a set of underwater images.
The images have been recorded with different conditions of
depth, illumination, noise, acquisition system, camera, and
so forth.

The method is robust to the acquisition conditions. Even
under bad lighting conditions, the mine is detected, for an
example without enough light; see Figure 11. An example
with artificial light is shown in Figure 9 and another with
natural light Figure 12. The misclassification results are very
low, from 0% to 2%; see Figures 8 and 10; and we detect a
minimum of 25% of the object; see Figure 14.

3.4. Comparison with Other Methods. In this section we
compare our method with two other alternative approaches:
the approach proposed by [6], also developed for the
same images, and the approach proposed by [16] using
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Figure 18: Selected feature map (RG(3, 7)) by maximum activity
and segmentation.

29/Nov/2006 09:48:02 6.8 m 1

Figure 19: Segmentation of a gray mine at sea. Cgood = 0.25 and
Cfalse = 0.002.

the maximum of activity to select the feature map; see
Section 2.5.

3.4.1. First Method. The image is corrected using the fol-
lowing pre-processing and the segmentation is applied using
RGB features:

(i) removing aliasing effect due to digital conversion of
the images,

(ii) converting color space from RGB to YCbCr,

(iii) correction of nonuniform illumination using homo-
morphic filtering,

(iv) wavelet denoising,

(v) anisotropic filtering to improve image segmentation,

(vi) adjusting image intensity,

(vii) converting from YCbCr to RGB,

(viii) equalizing color mean.

We obtain similar results with the method proposed in [6]
for objects without shadows; see Figures 8 and 15. However,
our method is more robust to shadow; see, for example,

Figure 16, and compare with Figure 7. For some images the
segmentation using active contour cannot converge as the
contours are blurred and the contrast is low between the
object and the background; see Figures 12 and 13. Using the
conspicuity map, we can reduce this effect.

3.4.2. Second Method. We implement the method to select
the feature map based on the maximum activity and use
active contour segmentation. As in the previous approach,
we obtain very similar results for objects with a uniform
illumination and no shadows. But, as illustrated in Figures
17 and 18 compared to the results presented in Figures 6
and 7, this method focuses on the illuminated part of the
object. The criterion to select the map is local compared to
our criterion (8) and the selection will thus focus on detail.

3.5. Results Obtained during the Evaluation of the Project
TOPVISION. The results next were obtained by our method
applied on test videos for the project TOPVISION (OPer-
ational Trials of UnderWater Videos for Identification of
Harmfull Article) [20]. Remark that these videos were never
used during the development of the method. The project is
composed of 4 steps.

(i) object detection,

(ii) position finding,

(iii) caracterisation,

(iv) identification.

For the detection step, we only try to detect if an object is
present in the image. We use the output of the LDA classifier
for the detection step; see Section 2.3. For the position
finding, the position is correct if we are inside the object.
We are using the maximum of the saliency map as position;
Section 2.4. Only the two first steps have been evaluated on
11 videos (≈20000 images), and we have obtained 64.77%
of good object detection (and 2.82% of false alarms) and
85.28% of positon finding. The method presented in [6] has
been tested on the same images for the detection step and
obtains 56.55% of good object detection and 0.79% of false
alarms. The results are more robust in terms of false alarm
but the percentage of detection is inferior. The method uses
the detection of geometric forms to determine the object
presence. This needs more computation than our method
because, after the preprocessing step (see Section 3.4), it
extracts lines and circles.

3.6. Limits of the Method. The method provides satisfactory
results in numerous cases, but when the object is of a color
indistinguishable from that of the background it presents
some limitation illustrated in Figure 19. It is difficult for the
method to find the object. To obtain an acceptable result we
had to remove the ellipsoidal constraint.

4. Conclusion

In this paper we have presented a fully automated method
to detect and segment manufactured objects in underwater
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images. The method uses two well-known approaches with
some original adaptations: the visual attention scheme, and
the active contours. We have described the successive steps
of the method and presented some results on real images.
The method presents good performance even with noisy
images and is robust to different acquisition conditions
(illumination, camera settings, shadow, etc). The limitations
of the approach have also been evoked. Essentially to ensure
good results the object to segment must be uniform and
sufficiently contrasted with respect to the background. For
the future, we are developing a method to track these objects
in videos based on the conspicuity map and particle filtering.
Currently, we can track the object using the estimated snake
in the previous frame as initialization in the actual frame.
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