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Copyright © 2010 C. Lélé and D. Le Ruyet. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Orthogonally multiplexed Quadrature Amplitude Modulation (OQAM) with Filter-Bank-based MultiCarrier modulation
(FBMC) is a multicarrier modulation scheme that can be considered an alternative to the conventional orthogonal frequency
division multiplexing (OFDM) with cyclic prefix (CP) for transmission over multipath fading channels. However, as OQAM-based
FBMC is based on real orthogonality, transmission over a complex-valued channel makes the decoding process more challenging
compared to CP-OFDM case. Moreover, if we apply Multiple Input Multiple Output (MIMO) techniques to OQAM-based FBMC,
the decoding schemes are different from the ones used in CP-OFDM. In this paper, we consider the combination of OQAM-based
FBMC with single-delay Space-Time Trellis Coding (STTC). We extend the decoding process presented earlier in the case of Nt = 2
transmit antennas to greater values of Nt . Then, for Nt ≥ 2, we make an analysis of the theoretical and simulation performance of
ML and Viterbi decoding. Finally, to improve the performance of this method, we suggest an iterative decoding method. We show
that the OQAM-based FBMC iterative decoding scheme can slightly outperform CP-OFDM.

1. Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is an
efficient Multicarrier Modulation (MCM) capable of fighting
against multipath fading channels. Its robustness to multi-
path propagation effects comes from the insertion of a CP
and is, therefore, obtained at the price of a reduced spectral
efficiency. Furthermore, the rectangular shape of OFDM
symbols leads to a sin(x)/x frequency spectrum. Studies have
been conducted in order to find better MCM schemes with
respect to the frequency and/or time-frequency localization
criteria.

As suggested in [1–3], OFDM/OQAM also called as
OQAM-based Filter Bank Multicarrier (FBMC) is an MCM
scheme which may be the appropriate alternative. In
OFDM/OQAM each subcarrier is modulated with Offset
Quadrature Amplitude Modulation (OQAM). This principle
has been introduced in [4, 5], but it is only recently [1] that
FBMC has been presented as a viable alternative to OFDM.
Compared to OFDM that transmits complex-valued symbols
at a given symbol rate, OQAM-based FBMC transmits real-
valued symbols at twice this symbol rate. Therefore, a
similar spectral efficiency is achieved by both systems. In

practice, OQAM-based FBMC may provide a higher useful
bit rate since it operates without the addition of a CP.
Furthermore, with a pulse shaping that can be optimized
according to given channel characteristics, its performance
can be improved. However, all the interesting features of
OQAM-based FBMC come at the price of a relaxation of the
orthogonality conditions that only hold in the real field. At
the receive side the data is carried only by the real component
of the signal (assuming a 0 or π/2 phase modulation
term). Thus, the imaginary part appears as an interference
term. This interference term is a source of problem in
the presence of the complex-valued channel as it destroys
the real orthogonality. Therefore, when combining OQAM-
based FBMC with MIMO technique such as Space-Time
Block Codes (STBC) or Space-Time Trellis Coding (STTC)
[6, 7], the decoding process cannot be done in the same
way as with CP-OFDM modulation. In the case of a single
delay STTC chain with 2 transmit and 1 receive antennas,
refrence [8] proposed a simple preprocessing to cancel this
imaginary interference component. In this paper, we extend
the proposed method in [8] to Nt transmit antennas and
introduce an iterative decoding method. In Section 2, we give
a short description of the discrete-time OQAM modulation.
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Then, in Section 3, we provide an overview of the STTC
single delay detection. In Section 4.1, we provide a theoretical
performance analysis of ML and Viterbi decoding. Section 5
is devoted to the iterative decoding method in order to
improve the performance of the previous decoding method.
Simulation results are presented in Section 6. Conclusions
and perspectives are given in Section 7. In the rest of the
paper, FBMC will be used to denote OQAM-based FBMC.

2. The FBMCModulation

Using the baseband discrete-time model, we can write at the
transmit antenna i the OQAM-based FBMC signal as follows
[1]:

si[m] =
M−1∑

k=0

∑

n∈Z
dk,n,i g[m− nN]e j(2π/M)k(m−D/2)e jφk,n

︸ ︷︷ ︸
gk,n[m]

, (1)

where M = 2N is the even number of subcarriers, F0 =
1/T0 = 1/2τ0 is the subcarrier spacing, φk,n is an additional
phase term, g is the pulse shape, and D is the delay parameter
associated to the length of the pulse shape. The transmitted
symbols dk,n,i are real-valued data transmitted by antenna i.
They are obtained from a 22K -QAM constellation, taking the
real and imaginary parts of these complex-valued symbols of
duration T0 = 2τ0, where τ0 denotes the time offset between
the two parts [1–3, 9]. For a given subcarrier k and symbol
time index n, the real and imaginary parts are driven by the
phase term φk,n given by

φk,n = φ0 +
π

2
(n + k) (mod π), (2)

where φ0 can be arbitrarily chosen. Here, we set φ0 = 0 and
g is assumed to be real valued.

Assuming a distortion-free channel, a perfect reconstruc-
tion of real symbols is obtained owing to the following real
orthogonality condition:

R
{〈

gk,n | gp,q

〉}
= R

{ ∞∑

m=−∞
gk,n[m]g∗p,q[m]

}
= δk,pδn,q,

(3)

where δk,p = 1 if k = p and δn,q = 0 if n /= q. However,
in practice for transmission over a realistic channel, the
orthogonality property is lost, leading to intersymbol and
intercarrier interferences. It has been shown in previous
studies [8] that, when combining FBMC with single delay
STTC in presence of 2 transmit and one receive antennas,
specific processing should be done in order to remove the
interference terms. In this paper, we will extend this method
for Nt ≥ 2 antennas.

3. Single-Delay STTC in FBMCwithNt

Transmit Antennas

3.1. Transmission Model. Let us first assume that only
the ith antenna is transmitting. At the receiver side, the
demodulated signal yk,n at the frequency k and time instant

n (nτ0) can be written as

yk,n = Hk,n,idk,n,i + jIk,n,i + υk,n, (4)

where

(i) Hk,n,i is the channel coefficient between transmit
antenna i and the receiver, at subcarrier k and time
instant n,

(ii) υk,n is the noise component at subcarrier k and time
instant n,

(iii)

Ik,n,i =
(− j

) ∑

(k′,n′) /= (k,n)

Hk′,n′,i dk′,n′,i

∞∑

m=−∞
gk,n[m]g∗k′,n′[m].

(5)

We assume that we have a prototype filter well localized
in time and frequency. This implies that in the previous
equation the main contribution comes from the closest
neighborhood, that is, gk,n[m]g∗k′,n′[m] takes a significant
value only for |k − k′| ≤ 1 and |n− n′| ≤ 1. Moreover, if we
assume that the channel is constant over a set of at least three
consecutive subcarriers and a set of at least three consecutive
time indexes, then we can rewrite the previous expression as
in [10]:

Ik,n,i ≈ Hk,n,i
(− j

) ∑

(k′,n′) /= (k,n)

dk′,n′,i

∞∑

m=−∞
gk,n[m]g∗k′,n′[m]

︸ ︷︷ ︸
uk,n,i

.

(6)

Thus, the demodulated signal can be approximated by

yk,n ≈ Hk,n,i
(
dk,n,i + juk,n,i

)
+ υk,n. (7)

Throughout the remainder of the paper, we will consider
(7) as the expression of the signal at the output of the
demodulator.

3.2. Problem Statement. Let us consider the single delay
STTC scheme with Nt antennas as shown in Figure 1. The
real data to be transmitted is modulated by an FBMC
modulator and transmitted by the first antenna. The same
stream of data is delayed by 2ni real data before being
modulated by FBMC modulator and transmitted by the nith
antenna. The delay 2ni is chosen to have the same delay as
with a CP-OFDM system although a delay of ni could also
be chosen. We denote by ak,n the real data from the main
stream of data at frequency k and time index n. Thus, at a
given subcarrier k the transmission is given at antenna i by
dk,n,i = ak,n−2i. At the receiver side, the demodulated signal
can be written as

yk,n =
Nt−1∑

i=0

Hk,n,i
(
dk,n,i + juk,n,i

)
+ υk,n, (8)

where υk,n is the noise component at the subcarrier k and
time instant n. As the same stream of data is transmitted over
the Nt antennas, we have uk,n,i = uk,n−2i,0 = bk,n−2i. In the
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remainder of the paper, we will assume a channel constant
over time, that is, (Hk,n,i = Hk,i); we get

yk,n =
Nt−1∑

i=0

Hk,i(ak,n−2i + jbk,n−2i)︸ ︷︷ ︸
xk,n−2i

+ υk,n. (9)

The problem is to recover from yk,n the data ak,n. The
presence of the term bk,n−2i makes the decoding process from
yk,n difficult. Some processing should be carried out in order
to recover the real data.

4. Interference CancelationMethod

4.1. Cancelation Procedure. For the case Nt = 2, it has been
shown in [8] that if we define zk,n+2 as

zk,n+2 = H∗
k,1yk,n + H∗

k,0yk,n+2, (10)

then we have

R
{
zk,n+2

} = R
{
H∗

k,1yk,n + H∗
k,0yk,n+2

}

= ∣∣Hk,1
∣∣2
ak,n−2 + 2R

{
H∗

k,1Hk,0

}
ak,n

+
∣∣Hk,0

∣∣2
ak,n+2 + wk,n+2,

(11)

with wk,n+2 = R{H∗
k,1υk,n + H∗

k,0υk,n+2}. Let 2L f denotes the
frame length, for e ∈ {0, 1}. If we denote by

te =
[
R{zk,e} R{zk,e+2} · · · R{zk,e+2(L f−1)}

]T
,

ae =
[
ak,e ak,e+2 · · · ak,e+2(L f −1)

]T
,

we =
[
wk,e wk,e+2 · · · wk,e+2(L f−1)

]T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣Hk,0
∣∣2 0 · · · · · · 0

2R{Hk,0H
∗
k,1}

∣∣Hk,0
∣∣2 . . . · · ·

...

∣∣Hk,1
∣∣2 2R

{
Hk,0H

∗
k,1

} ∣∣Hk,0
∣∣2 0

...

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 · · · ∣∣Hk,1
∣∣2 2R

{
Hk,0H

∗
k,1

} ∣∣Hk,0
∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G2

,

(12)

( (·)T denotes the transpose operation and (·)H the transpose
conjugate one) then we have

te = G2 ae + we. (13)

In this last equation, the imaginary interference term is
canceled. Thus the decoding process can be easily carried out
by using either Maximum Likelihood (ML) decoding, Viterbi
decoding, or linear equalization such as Zero Forcing (ZF)
or Minimum Mean Square Error (MMSE) decoding. More
generally with Nt ≥ 2, let us note and compute

zk,n+2Nt−2 =
Nt−1∑

p=0

H∗
k,Nt−1−p yk,n+2p

=
Nt−1∑

p=0

Nt−1∑

i=0

H∗
k,Nt−1−pHk,ixk,n+2p−2i

+
Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p

︸ ︷︷ ︸
nk,n+2Nt−2

=
Nt−1∑

i=1

i−1∑

p=0

H∗
k,Nt−1−pHk,ixk,n+2p−2i

︸ ︷︷ ︸
Bk,n

+
Nt−1∑

i=0

∑

p=i
H∗

k,Nt−1−pHk,ixk,n+2p−2i

︸ ︷︷ ︸
Ak,n

+
Nt−1∑

i=0

Nt−1∑

p=i+1

H∗
k,Nt−1−pHk,ixk,n+2p−2i

︸ ︷︷ ︸
Ck,n

+
Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p. (14)

Moreover Ak,n is given by

Ak,n = xk,nμk, (15)
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and details for this equation are given in Appendix A.1. The
expression of Bk,n is given by

Bk,n =
Nt−1∑

q=1

xk,n−2qγq, (16)

where γq are real-valued quantities which depend only on
the channel coefficients as shown in Appendix A.2. The
expression of Ck,n is given by

Ck,n =
Nt−1∑

q=1

xk,n+2qβq, (17)

where βq are real-valued quantities which depend only on the
channel coefficients as shown in Appendix A.3. Therefore,

zk,n+2Nt−2 =
Nt−1∑

q=1

γqxk,n−2q + μkxk,n +
Nt−1∑

q=1

βqxk,n+2q

+
Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p.

(18)

Thus, by noting that t(1)
k,n+2Nt−2 = R{zk,n+2Nt−2}, we have

t(1)
k,n+2Nt−2 =

Nt−1∑

q=1

γqak,n−2q + μkak,n +
Nt−1∑

q=1

βqak,n+2q

+ R

⎧
⎨
⎩

Nt−1∑

p=0

H∗
k,Nt−1−pυk,n+2p

⎫
⎬
⎭

︸ ︷︷ ︸
wk,n+2Nt−2

.
(19)

For e∈{0, 1}, we note te=[ tk,e tk,e+2 · · · tk,e+2(L f −1) ]
T

,

we = [ R{wk,e} R{wk,e+2} · · · R{wk,e+2(L f −1)

]T
, and

GNt

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βNt−1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

βNt−2 βNt−1 0 · · · · · · · · · · · · · · · · · · · · ·
...

...
. . .

. . .
. . . · · · · · · · · · · · · · · · · · ·

...

β1

. . .
. . .

. . .
. . . · · · · · · · · · · · · · · ·

...

μk
. . .

. . .
. . .

. . .
. . . · · · · · · · · · · · ·

...

γNt−1

. . .
. . .

. . .
. . .

. . .
. . . · · · · · · · · ·

...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . . · · · · · ·

...

γ1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . · · ·

...

0
.. .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 γ1 · · · γNt−1 μk β1 · · · βNt−2 βNt−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

We have:

te = GNtae + we. (21)

There is no imaginary interference in (21) and conse-
quently Maximum Likelihood (ML) [11] or linear equalizers
can be used to estimate ak,n.

The computation of zk,n from yk,n according to (14)
is referred to as Preprocessing1 as shown in Figure 2. We
will now provide a theoretical performance analysis of this
scheme.

4.2. A Theoretical Performance Analysis. Let us consider that
the noise υk,n is an AWGN noise with E{|υk,n|2} = N0. It
is worth noticing that R{wk,n} is Gaussian noise as it is the
result of the real part of a linear transformation of Gaussian
noise. However this noise is colored. For example, when
NT = 2, we have

(i) E{wk,nw
∗
k,n+2} = E{wk,n+2w

∗
k,n} = N0(|Hk,0|2 +

|Hk,1|2)R{(Hk,0)∗Hk,1}/2,

(ii) E{wk,nw
∗
k,n} = N0(|Hk,0|2 + |Hk,1|2)/2 = U0/2,

(iii) for q /={0, 1}, E{wk,nw
∗
k,n+2q} = 0.

Let us recall that if the noise was white the ML performance
would have been obtained by the Viterbi decoder. Therefore,
the performance of Viterbi decoding in this present case
is suboptimal. In [12] the authors evaluate the loss of
performance of Viterbi decoding in presence of correlated
noise. The optimal performance using an ML decoding is
very complex to implement since it requires an exhaustive
search over all the possible transmitted sequences. Another
alternative could be to perform a whitening followed by
a Viterbi decoding. However, such Viterbi decoding will
be more complex since the whitening will increase the
number of states. Indeed, the noise we is colored with a
correlation matrix R. Since R is a positive Hermitian matrix,
its eigenvalues are real and positive. We have

R = Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 λLf −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Λ

QH ,
(22)

with Q being a unitary matrix, that is, QQH = IL f . We denote

Λ1/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1/2
0 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 λ1/2
L f −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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FBMC modulator

FBMC modulator

FBMC modulator

Z−2

Antenna 0

Antenna 1

Z−2(Nt−1)
Antenna Nt − 1

Figure 1: FBMC Single-delay STTC transmitter.

FBMC
demodulator

Preprocessing 1
yk,n zk,n

Classical
decoding process

ak,n

Figure 2: FBMC Single-delay STTC receiver.

Therefore, the whitening process can be done by computing

y
e
= Λ−1/2QHze = Λ−1/2QHG2︸ ︷︷ ︸

H

ae + Λ−1/2QHwe︸ ︷︷ ︸
μ
e

= Hae + μ
e
.

(24)

It can easily be proved that μ
e

is AWGN. As we will
see in the simulation results section, the presence of the
colored noise will lead to a degradation of performance. Let
us now present an iterative decoding approach which should
improve the performance compared to that of the previous
decoding strategy.

5. Iterative Method

5.1. Iterative Procedure. In this section we propose an
iterative decoding procedure for FBMC single-delay STTC
decoding. At the output of the Preprocessing1 block
(see Figure 3), we can perform a decoding procedure

(ML, Viterbi, or linear decoding) to derive an estimate value

â(1)
k,n of ak,n. From (6) and using this estimate â(1)

k,n, we can

compute an estimate û(1)
k,n of uk,n by

û(1)
k,n =

∑

(p,q) /= (0,0)

â(1)
k+p,n+q

∞∑

m=−∞
gk,n[m]gk+p,n+q[m]

︸ ︷︷ ︸
γp,q

.
(25)

It is worth noticing that for a well-localized prototype filter
in time and frequency domain it is enough to consider the
previous sum only for p, q ∈ {1,−1}, that is,

û(1)
k,n ≈

∑

|p|=1,|q|=1

â(1)
k+p,n+qγp,q. (26)

This approximation is justified in [10]. γp,q can be computed
off-line since the prototype filter response is known. Then in
(9) we can remove the contribution of the uk,n components
by computing

y(2)
k,n = yk,n −

Nt−1∑

i=0

Hk,iû
(1)
k,n−2i =

Nt−1∑

i=0

Hk,iak,n−2i

+
Nt−1∑

i=0

jHk,i

(
uk,n−2i − û(1)

k,n−2i

)
+ υk,n.

(27)

If we assume a perfect cancelation of the uk,n terms, that is,
uk,n = û(1)

k,n, then we have

y(2)
k,n =

Nt−1∑

i=0

Hk,iak,n−2i + υk,n. (28)
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FBMC
demodulator Preprocessing1 Decoder 1

Decoder 2
Interference estimation

+
Interference cancelation

Preprocessing 2

yk,n
t(1)
k,n+2Nt−2

(2r + 1)
âk,n

(2r+2)
yk,n

(2r + 2)
âk,n

Figure 3: Receiver decoding processing for FBMC modulation in the case of single delay STTC transmission.

The operation of estimating uk,n and canceling its contri-
bution to the signal yk,n is referred to as “Interference esti-
mation + Interference cancelation” as depicted in Figure 3.

Thus, we can perform from y(2)
k,n a new decoding (Decoder

2 block) to obtain a new estimate â(2)
k,n of ak,n. In the same

manner, we can use either a Viterbi/ML decoding or a linear

decoder. From â(2)
k,n and (19) we can also compute t(2)

k,n+2 by

t(2)
k,n+2Nt−2 =

Nt−1∑

q=1

γqâ
(2)
k,n−2q + μkâ

(2)
k,n +

Nt−1∑

q=1

βqâ
(2)
k,n+2q. (29)

t(2)
k,n+2 can also be rewritten as

t(2)
k,n+2Nt−2 =

Nt−1∑

q=1

γqak,n−2q + μkak,n +
Nt−1∑

q=1

βqak,n+2q

+
Nt−1∑

q=1

γq
(
â(2)
k,n−2q − ak,n−2q

)
+ μk

(
â(2)
k,n − ak,n

)

+
Nt−1∑

q=1

βq
(
â(2)
k,n+2q − ak,n+2q

)

=
Nt−1∑

q=1

γqak,n−2q + μkak,n +
Nt−1∑

q=1

βqak,n+2q

+ noise component.
(30)

t(2)
k,n+2Nt−2 is a new version of the t(1)

k,n+2Nt−2 signal which
is obtained from the estimates of the Decoder 2 block
output. Thus, this last equation can be used to perform
another estimation â(3)

k,n of ak,n in the same manner as we

compute â(1)
k,n. We expect to improve the estimation of ak,n

since the noise component in (30) should be less correlated
than the one in (19). Again from â(3)

k,n we can derive an

estimate û(2)
k,n of uk,n as in (25). Therefore, we can repeat

another decoding process as already presented. We can
run this decoding process as many times as necessary. The

process of computing t(2)
k,n+2Nt−2 from the â(2)

k,n is referred to
as Preprocessing2; see Figure 3. Let us have a look at the
convergence of this iterative method.

5.2. A Convergence Analysis of the Iterative Procedure. Let us
consider the function Pe = C1(SNR) that we obtain when
considering the perfect cancelation of the interference term
by using (28) and the function Pe = C2(SNR) obtained using
(19). Pe is the real symbol error probability and SNR =
2σ2

a /N0 = 1/N0 assuming that the real symbol power σ2
a is

fixed at 1/2. These functions are illustrated in Figure 4 for a
given channel realization. Let us note that C1 is Δ dB better
than C2, that is,

C1

(
1

(1 + αΔ)N0

)
= C2

(
1
N0

)
, (31)

with Δ = 10log10(1 + αΔ). At the first iteration, when using
(19) for decoding, we obtain at SNR = 1/N0 a symbol
probability of error Pe1 = C2(1/N0). This first iteration is
summarized by the point A1(1/N0,Pe1) in Figure 4. Now,
from this probability of error we can derive the degradation
that we obtain when applying interference cancelation.
Indeed, the cancelation of the interference will add some
noise to the current noise component. This additional noise
component is given by the cancelation error

n+ =
Nt−1∑

i=0

jHk,i

(
uk,n−2i − û(1)

k,n−2i

)

=
Nt−1∑

i=0

jHk,i

∑

(p,q) /= (0,0)

(
ak+p,n−2i+q − â(1)

k+p,n−2i+q

)

×
∞∑

m=−∞
gk,n−2i[m]gk+p,n−2i+q[m].

(32)

Using the current observation

âk,n = ak,n with probability 1− Pe1,

âk,n /= ak,n with probability Pe1

(33)
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and considering that [10]

∑

(p,q) /= (0,0)

∣∣∣∣∣

∞∑

m=−∞
gk,n−2i[m]gk+p,n−2i+q[m]

∣∣∣∣∣

2

= 1, (34)

we have

E
{∣∣n+

∣∣2
}
= Pe1

Nt−1∑

i=0

∣∣Hk,i
∣∣2

︸ ︷︷ ︸
αh

.
(35)

Therefore, the symbol probability of error is given at
second iteration by

Pe2 = C1

(
1
N1

0

)
= C1

(
1

N0 + Pe1αh

)

= C1

(
1

N0(1 + αhC2(1/N0)/N0)

)
,

(36)

where 1/N1
0 is the SNR at the input of Decoder 2.

C2(1/N0) is a Q-function that is exponentially decreasing
as SNR increases; thus, αhC2(1/N0)/N0 decreases as SNR
increases since the exponential function overwhelms the
polynomial function. Then, there is a noise power Na

0 such
that, for N0 < Na

0

αh
C2(1/N0)

N0
< αΔ, (37)

and thus,

1
N0(1 + αhC2(1/N0)/N0)

>
1

(1 + αΔ)N0
. (38)

Therefore for N0 < Na
0 ,

C1

(
1

N0(1 + αhC2(1/N0)/N0)

)

< C1

(
1

(1 + αΔ)N0

)
= C2

(
1
N0

)
,

(39)

that is,

Pe2 < Pe1. (40)

For N0 < Na
0 the output of the second iteration will give

better performance than that of the first iteration. This
second iteration is summarized by the point A2(1/N1

0 ,Pe2) in
Figure 4.

When recombining the signal at the input of Decoder 1
for the third iteration using (29), the noise component is now
smaller than that in the previous case since Pe2 < Pe1.

Consequently, the third iteration performance is given
by C2 at SNR = 1/N2

0 with N2
0 < N1

0 . Thus, C2(1/N2
0 ) <

C2(1/N0), that is, the probability of error at the output of
Decoder 1 for the third iteration Pe3 is less than that for Pe1.
This third iteration is summarized by the point A3(1/N2

0 ,Pe3)
in Figure 4. Let us notice that Pe3 could be greater than Pe2.

The next iteration performance can be derived in the
same manner since we just have to replace N0 by N2

0 . Thus,
the probability of error at the output of a given decoder
(Decoder 1 or Decoder 2) will always decrease or reach a fixed
point.
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Figure 4: Convergence illustration.

6. Simulation Results

In this section, we will evaluate the performance of the two
decoding methods that we have presented. We consider a
transmission scheme with two and three transmit antennas.

For Nt = 2, we have

t(1)
k,n+2Nt−2 =

∣∣Hk,1
∣∣2
ak,n−2 + 2R

{
H∗

k,1Hk,0

}
ak,n

+
∣∣Hk,0

∣∣2
ak,n+2 + wk,n+2Nt−2,

(41)

and for Nt = 3, we get

t(1)
k,n+2Nt−2 =

∣∣Hk,2
∣∣2
ak,n−4 + 2R

{
H∗

k,2Hk,1

}
ak,n−2

+
(

2R
{
H∗

k,2Hk,0

}
+
∣∣Hk,1

∣∣2
)
ak,n

+ 2R
{
H∗

k,1Hk,0

}
ak,n+2 +

∣∣Hk,0
∣∣2
ak,n+4.

(42)

The simulation parameters we consider are given as
follows:

(i) no channel coding,

(ii) QPSK modulation,

(iii) Rayleigh channel per antenna, that is, flat over all the
subcarriers. We assume that the channel coefficients
are perfectly known by the receiver,

(iv) number of subcarrier M = 32,

(v) we used a truncation of the IOTA (Isotropic Orthog-
onal Transform Algorithm) prototype function [1].
Its duration is limited to 4T0, which leads to a nearly
orthogonal prototype filter containing L = 4M = 128
taps.
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Figure 5: Performance of single delay STTC with 2 transmit anten-
nas and one receive antenna (FBMC and CP-OFDM modulation).

In this section, we give BER (Bit Error Rate) versus SNR
simulation results, and consequently, we do not take into
consideration the loss of efficiency due to the cyclic prefix
in CP-OFDM modulation.

In Figure 5 we show the performance of the FBMC
decoding structure introduced in Figure 2. For FBMC, we
consider both ML and Viterbi decoding. ML decoding
using an exhaustive search among all possible transmitted
sequences of data outperforms Viterbi decoding by 1 dB.
This is due to the fact that the noise is colored; thus,
Viterbi decoding is suboptimal. We also give the CP-OFDM
performance using a Viterbi decoding. We can see that CP-
OFDM outperforms ML/FBMC by about 1 dB.

In the rest of this section, we will focus on the iterative
decoding performance. The simulation results are obtained
using Viterbi decoding blocks implemented inside Decoder
1 and Decoder 2 blocks in Figure 3. The Viterbi algorithm
implemented in Decoder 1 is related to (41). For QPSK
modulation, the Trellis is a 4NT−1 state Trellis with only two
possible transitions per state since the detection is performed
on real data. Whereas the Viterbi algorithm implemented in
Decoder 2 is related to (28) and is a 2NT−1 state Trellis with
two transitions per state, again detection is performed on
real data. We also consider hard estimation of the data at
the output of a given Viterbi decoder. For the CP-OFDM
case with QPSK modulation, we have a 4NT−1 state Trellis
with 4 transitions per state as the detection is performed
on complex data. Therefore, this Viterbi algorithm is more
complex compared with one of the two Viterbi algorithms
used in the case of FBMC modulation. The two Viterbi
algorithms used in FBMC taken together have a complexity
comparable to the one used with CP-OFDM. However,
the two Viterbi algorithms used in FBMC operate on a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SNR
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CP-OFDM
Perfect interference

cancellation

Figure 6: Performance of single delay STTC (iterative decoding)
with 2 transmit antennas and one receive antenna (FBMC and CP-
OFDM modulation).

frame sequence which is two times longer than the one
for CP-OFDM modulation. Then, in terms of complexity
the proposed FBMC structure has a significantly higher
complexity than that of CP-OFDM mainly due to the
“Interference estimation + Interference cancelation” block.

For uncorrelated Rayleigh channels, we plot the perfor-
mance of this FBMC receiver structure for different iteration
stages as well as the performance of CP-OFDM with ML
decoding as a matter of comparison. Figures 6 and 7 provide
the simulation results for Nt = 2 and Nt = 3, respectively.
For n = 1, we have a 2 dB degradation compared to CP-
OFDM. For n ≥ 2 (more than two-Viterbi decoding), we
get closer to CP-OFDM. For n = 5 or 6, we almost reach
the same performance as that of CP-OFDM. In Figure 6
we also plot the curve obtained when we assume perfect
interference cancelation in the second iteration as mentioned
in (28). In that case, there is a possible gain of 0.8 dB since the
Viterbi structure with 2 states and two transitions per state
(Decoder 2) provides better performance than the 4-state
Viterbi decoder with 4 transitions per state implemented
for CP-OFDM. Indeed, it is possible to show that the
structures of the code related to these two Trellises have the
same minimum distance. However, the performance gain
is due to the distance distribution associated to the two
Trellises.

Moreover, let us evaluate this scheme in presence of
a frequency selective channel. We consider the following
channel parameters:

(i) uncoded QPSK modulation,

(ii) M = 64 subcarriers,

(iii) static channels (no Doppler), IOTA prototype,
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Figure 7: Performance of single delay STTC (iterative decoding)
with 3 transmit antennas and one receive antenna (FBMC and CP-
OFDM modulation).

(iv) 3-tap channels between the transmit antennas and
the receive: power profile: 0, −4, −10 (dB) Delay: 0,
1, 2 (number of samples),

(v) OFDM Cyclic Prefix length: 4 samples,

(vi) perfect channel estimation.

As shown in Figure 8, after one iteration (n = 1), we
have about 2 dB degradation compared to CP-OFDM. For
n = 2 and n = 3, the loss is reduced to 0.7 dB, and for
n = 6 the degradation is about 0.3 dB compared to CP-
OFDM. However, the iterative method has an inherent gain
as FBMC does not use a CP contrary to CP-OFDM.

7. Conclusion

In this paper, we have presented two general methods for
data detection when combining FBMC and single delay
STTC as well as the interference cancelation and the iterative
methods. The interference cancelation method despite its
simplicity has poorer performance compared to that of CP-
OFDM. Thus, we have proposed an iterative decoding based
on interference estimation and cancelation which does not
require any channel coding or decoding block. We have
shown that in the case of QPSK modulation and Rayleigh or
frequency selective channels it is possible with this decoding
method to perform as better as OFDM-STTC. Moreover if
the iterative cancelation process is improved, then a potential
gain can be achieved. This is obtained with a relatively higher
complexity. In future work, we will look at FBMC with
other STTC schemes and evaluate their performance under
nonlocally flat channels.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
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Figure 8: Performance of single delay STTC (iterative decoding)
with 2 transmit antennas and one receive antenna over frequency
selective channels.

Appendix

A. General Expression of Ak,n, Bk,n, and Ck,n

A.1. Ak,n Value. Let us compute Ak,n.
(i) Case Nt is even, that is, Nt = 2Ut,

Ak,n = xk,n

⎛
⎝
Ut−1∑

i=0

H∗
k,2Ut−1−iHk,i +

2Ut−1∑

i=Ut

H∗
k,2Ut−1−iHk,i

⎞
⎠.

(A.1)

Using the relation q = 2Ut − 1− i, we have

Ak,n = xk,n

⎛
⎝
Ut−1∑

i=0

H∗
k,2Ut−1−iHk,i +

Ut−1∑

q=0

H∗
k,qHk,2Ut−1−q

⎞
⎠

= xk,n

⎛
⎝
Ut−1∑

i=0

(
H∗

k,2Ut−1−iHk,i + H∗
k,iHk,2Ut−1−i

)
⎞
⎠

= xk,n

⎛
⎝2

Ut−1∑

i=0

R
{(

H∗
k,2Ut−1−iHk,i

)}
⎞
⎠

︸ ︷︷ ︸
μk

.

(A.2)

(ii) Case Nt is odd, that is, Nt = 2Ut + 1,

μk =
⎛
⎝
Ut−1∑

i=0

H∗
k,2Ut−iHk,i + H∗

k,Ut
Hk,Ut +

2Ut∑

i=Ut+1

H∗
k,2Ut−iHk,i

⎞
⎠.

(A.3)
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Again using q = 2Ut − i, we have

μk =
⎛
⎝2

Ut−1∑

i=0

R
{(

H∗
k,2Ut−iHk,i

)}
+
∣∣Hk,Ut

∣∣2

⎞
⎠, (A.4)

and we get

Ak,n = xk,nμk. (A.5)

A.2. Bk,n Value. Let us now compute Bk,n; setting q = p − i,
we get

Bk,n =
Nt−1∑

i=1

i−1∑

p=0

H∗
k,Nt−1−pHk,ixk,n+2p−2i

=
Nt−1∑

i=1

i∑

q=1

xk,n−2qH
∗
k,Nt−1+q−iHk,i.

(A.6)

This last equation is the sum over a triangular set of index;
therefore, the sum can be taken either from lines or from
columns where the total is the same. Therefore,

Bk,n =
Nt−1∑

q=1

xk,n−2q

Nt−1∑

i=q
H∗

k,Nt−1+q−iHk,i. (A.7)

Taking m = i− q, we get

Bk,n =
Nt−1∑

q=1

xk,n−2q

Nt−1−q∑

m=0

H∗
k,Nt−1−mHk,m+q

︸ ︷︷ ︸
γq

.
(A.8)

(i) Case Nt − q is even, that is, Nt − q = 2Uq; then,

γq =
Nt−1−q∑

m=0

H∗
k,Nt−1−mHk,m+q

=
Uq−1∑

m=0

H∗
k,2Uq+q−1−mHk,m+q

+
2Uq−1∑

m=Uq

H∗
k,2Uq+q−1−mHk,m+q

= 2
Uq−1∑

m=0

R
{
H∗

k,2Uq+q−1−mHk,m+q

}
.

(A.9)

(ii) Case Nt − q is odd, that is, Nt − q = 2Uq + 1; then,

γq =
Nt−1−q∑

m=0

H∗
k,Nt−1−mHk,m+q

=
Uq−1∑

m=0

H∗
k,2Uq+q−mHk,m+q + H∗

k,Uq+qHk,Uq+q

+
2Uq∑

m=Uq+1

H∗
k,2Uq+q−mHk,m+q

= 2
Uq−1∑

m=0

R
{
H∗

k,2Uq+q−mHk,m+q

}
+
∣∣∣H∗

k,Uq+q

∣∣∣
2
.

(A.10)

A.3. Ck,n Value. Let us now compute Ck,n; setting q = p − i,
we get

Ck,n =
Nt−2∑

i=1

Nt−1−i∑

q=1

H∗
k,Nt−1−q−iHk,ixk,n+2q. (A.11)

This last equation is the sum over a triangular set of index;
therefore, the sum can be taken either from lines or from
columns where the total is the same. Therefore,

Ck,n =
Nt−1∑

q=1

xk,n+2q

Nt−1−q∑

i=0

H∗
k,Nt−1−q−iHk,i

︸ ︷︷ ︸
βq

.
(A.12)

(i) Case Nt − q is even, that is, Nt − q = 2Uq; then,

βq =
Nt−1−q∑

i=0

H∗
k,Nt−1−q−iHk,i

=
Uq−1∑

i=0

H∗
k,2Uq−1−iHk,i +

2Uq−1∑

m=Uq

H∗
k,2Uq−1−iHk,i

= 2
Uq−1∑

i=0

R
{
H∗

k,2Uq−1−iHk,i

}
.

(A.13)

(ii) Case Nt − q is odd, that is, Nt − q = 2Uq + 1; then,

βq =
Nt−1−q∑

i=0

H∗
k,Nt−1−q−iHk,i =

Uq−1∑

i=0

H∗
k,2Uq−iHk,i + H∗

k,Uq
Hk,Uq

+
2Uq∑

m=Uq+1

H∗
k,2Uq−iHk,i

= 2
Uq−1∑

m=0

R
{
H∗

k,2Uq−iHk,i

}
+
∣∣∣H∗

k,Uq

∣∣∣
2
.

(A.14)
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