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This paper presents a complete vision-based vehicle detection system for floating car data (FCD) enhancement in the context of
vehicular ad hoc networks (VANETs). Three cameras (side-, forward- and rear-looking cameras) are installed onboard a vehicle
in a fleet of public buses. Thus, a more representative local description of the traffic conditions (extended FCD) can be obtained.
Specifically, the vision modules detect the number of vehicles contained in the local area of the host vehicle (traffic load) and
their relative velocities. Absolute velocities (average road speed) and global positioning are obtained after combining the outputs
provided by the vision modules with the data supplied by the CAN Bus and the GPS sensor. This information is transmitted by
means of a GPRS/UMTS data connection to a central unit which merges the extended FCD in order to maintain an updated
map of the traffic conditions (traffic load and average road speed). The presented experiments are promising in terms of detection
performance and computational costs. However, significant effort is further necessary before deploying a system for large-scale
real applications.

1. Introduction

Floating car data (FCD) refers to technology that collects
traffic state information from a set of individual vehicles
which float in the current traffic. Each vehicle, which can
be seen as a moving sensor that operates in a distributed
network, is equipped with positioning (GPS) and commu-
nication (GSM, GPRS, UMTS, etc.) systems, transmitting
its location, speed, and direction to a central control unit
that integrates the information provided by each one of the
vehicles.

FCD systems are being increasingly used in a variety of
important applications since they overcome the limitations
of fixed traffic monitoring technologies (installation and
maintenance costs, lack of flexibility, static nature of the
information, etc.). We refer to [1] for general background
concerning the most representative FCD activities in Japan,
Europe, and the United States.

FCD can be used by the public sector to collect road
traffic statistics and to carry out real-time road traffic control.
The information provided by FCD systems can be supplied to

individual drivers via dynamic message signs, PDA devices,
satellite navigation systems, or mobile phones, including
dynamic rerouting information. Thus, drivers would be
able to make more informed choices, spending less time in
congested traffic. In addition, the knowledge of the current
traffic situation can be also used to estimate time of arrival
of a fleet of public transport vehicles and, furthermore,
to plan and coordinate the movements of the fleet (fleet
management) so that driving assignments can be carried out
more efficiently. Besides previous applications, the use of
FCD entails environmental benefits since it can be used to
reduce fuel consumption and emissions.

The basic data provided by FCD systems (vehicle loca-
tion, speed, and direction) can be enriched using new
onboard sensors (ambient temperature, humidity and light,
windshield wiper status, fog light status, fuel consump-
tion, emissions, tire pressure, suspension, emergency brake,
etc.) which are centralized by means of the controller-
area-network (CAN) bus. Such data can be exploited to
extend the information horizon including traffic, weather,
road management, and safety applications [1]. In addition,
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computer vision systems can be included in order to
improve the automatic detection of potentially interesting
events and to document them by sending extended data
[2].

In order to provide ubiquitous coverage of the entire road
network, a minimum representation of the total passenger
car fleet has to be used, since each moving sensor (each
vehicle) only supplies information about its status. The
fact that everyday road users have to be asked to share
information regarding their movements and speeds arises
privacy issues that have to be addressed. Many potential road
travellers may be reluctant to join FCD projects because of
violations of their privacy due to permanent traceability or
possible liability in case of speed limit violations. Thus, the
fundamental concept for FCD systems calls for no identi-
fication information to be sent with the basic data, which
can be easily implemented from a technical perspective. For
example, in [3] a general method for anonymization of FCD
by deriving pseudonyms for trips is presented.

Another approach consists of using the information sup-
plied by a specific fleet of vehicles, rather than information
coming from individual road users. Taxis or public transport
buses can be used due to the extended periods of time
they spend on the urban road network. Although taxis and
buses provide a major source of innercity traffic information
because of the time they spend mobile, they have limitations.
Problems arise if the taxi drivers, through detailed knowledge
of the local road network, take steps to avoid congested areas
which will not be reported [4]. Traffic load perception may
be lower than the actual one if reserved taxis or buses lanes
are used. On the contrary, privacy issues are not as critical
as before, especially when using a fleet of public transport
buses.

This paper presents a complete vision-based vehicle
detection system onboard a fleet of public transport buses
with the aim of improving the data collected in FCD
applications. The proposed system has been developed in the
framework of the GUIADE project. Three cameras covering
the local environment of the vehicle are used: forward-rear-
and side-looking cameras. The system obtains under certain
constraints, such as good weather and daytime conditions,
the number of vehicles in the local range of the bus as well
as their relative position and velocity. This information is
combined with the data provided by regular FCD systems
(global location, speed, and direction), obtaining a more
detailed description of the local traffic load and the average
speed. The communication system between the vehicles and
the central control unit is based on wireless technology
via GPRS/UMTS cellular protocols. Finally, the central unit
integrates the data collected by the fleet in order to generate
updated traffic status maps.

The remainder of this paper is organized as follows: the
description of the system including the wireless communica-
tion scheme is summarized in Section 2. Section 3 describes
the vision-based vehicle detection system as well as the spatial
and temporal integration of the collected data. Experimental
results that validate the proposed approach are presented in
Section 4. Finally, conclusions and future works are discussed
in Section 5.

2. SystemDescripction

The proposed FCD architecture can be seen in Figure 1.
Floating car data is supplied by a fleet of public transport
buses which corresponds to an inner-city bus line. Each vehi-
cle is equipped with a global positioning system (GPS), wire-
less communication interfaces (GPRS/UMTS and WLAN
IEEE 802.11) and a complete vision-based vehicle detection
system.

The vehicle-to-infrastructure (V2I) communication sys-
tem is based on the geographic coverage provided by cellular
networks. General packet radio service (GPRS) and universal
mobile telecommunications system (UMTS) are used to
connect each vehicle with the central control unit. Each
vehicle provides information that can be divided in three
main groups.

(1) Standard FCD information: vehicle identifier (2
bytes), timestamp (11 bytes), GPS position (8 bytes),
speed (2 bytes), and direction (2 bytes).

(2) Vehicle status information: ambient temperature (2
bytes), humidity (2 bytes), light (2 bytes), windshield
wiper status (1 byte), fog light status (1 byte), fuel
consumption (4 bytes), and emissions (4 bytes).

(3) Extended FCD information: globally referenced aver-
age traffic load (2 bytes) and average road speed for a
measured segment travel time (2 bytes).

As can be observed, the total message size per vehicle is
45 bytes. The extended FCD information is supplied to the
central unit at a frequency of 1 Hz. Accordingly, the band-
width currently demanded by vehicular communication in
the communication channel, that is, the vehicle throughput,
is 360 bps without overheads. This value can be considered
negligible taking into account the available bandwidth and
the proposed FCD architecture.

The central control unit integrates the information
provided by each one of the vehicles in order to compute
updated traffic and weather maps which will be used for fleet
management tasks as well as to estimate the time of arrival.

The vehicle-to-vehicle (V2V) communication system
is defined as a backup communication system based on
a wireless-fidelity (WiFi) IEEE 802.11a/b/g interface. In
situations where the cellular network is not working, in-
range vehicles will exchange the most updated information
available.

One of the main advantages of the proposed approach
is that it does not need to deal with privacy issues since the
floating vehicles correspond to a fleet of public transport
buses.

3. Vision-Based Traffic Detection System

In this section, we present the main contribution of this
work: a complete vision-based traffic detection system which
enhances the data supplied by standard FCD systems.
The benefits of using computer vision instead of other
technologies such as radar-based systems can be summarized
as follows. Computer vision systems can compensate for
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Figure 1: Overview of the proposed FCD architecture.

the lower angular resolution of the low-cost radar and the
increased appearance of ghost radar targets (guard-rails,
railings, lamp posts, reflections, etc.). These false positives
are relevant and they cannot simply be ignored. The camera
has very good angular resolution and can be used to
determine height, width, and lateral speed of the target.
Pattern recognition can be used to classify the object and
even weakly reflective targets such as pedestrians can be
detected. Moreover, the cost of a vision system is significantly
lower than the cost saved by using the simpler radar. A vision
system, in addition to overcoming cost reduction problems,
can contribute to the system features such as road analysis
and scene understanding.

Each individual vehicle is equipped with three FireWire
cameras (forward-, rear- and side-looking cameras) that
cover the local environment of the bus (see Figure 2). A com-
mon hardware trigger synchronizes the image acquisition of
the three cameras and an onboard PC houses the computer
vision software.

Each individual vehicle detection system provides infor-
mation about the number of detected vehicles and both
their relative position and speed. These results are combined
with the GPS measurements and the data provided by the
CAN bus in order to provide globally referenced traffic
information. This scheme is described in Figure 3.

The layers of the proposed architecture of the three vision
modules are conceptually the same: lane detection, vehicle
candidates selection, vehicle recognition, and tracking. The first

step of each one of the vision systems consists of reducing the
searching space in the image plane in an intelligent manner
in order to increase the performance of the vehicle detection
module. Accordingly, road lane markings are detected and
used as the guidelines that drive the vehicle searching process
(see Figure 4). The area contained by the limits of the lanes is
scanned in order to find vehicle candidates that are passed
on to the vehicle recognition modules. Thus, the rate of
false positives is reduced. In case that no lane markings are
detected, a basic region of interest is used instead covering the
front, rear, and side parts of the vehicle. Finally, a tracking
stage is implemented using Kalman filtering techniques.

3.1. Lane Detection. An attention mechanism is necessary in
order to filter out inappropriate candidate windows based
on the lack of distinctive features, such as horizontal edges
and vertical symmetrical structures, which are essential
characteristics of road vehicles. This has the positive effect
of decreasing both the total computation time and the
rate of false positive detections. Lane markings are detected
using gradient information in combination with a local
thresholding method which is adapted to the width of the
projected lane markings. Then, clothoid curves are fitted
to the detected markings. The algorithm scans up to 25
lines in the candidates searching area, from 2 meters in
front of the camera position to the maximum range in
order to find the lane marking measurements. The proposed
method implements a nonuniform spacing search that
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Figure 2: Main vehicle sensors: three cameras (forward, rear, and side looking cameras) and a global positioning system.
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Figure 4: Rear, side, and forward lane detection.

reduces certain instabilities in the fitted curve. The final state
vector is composed of 6 variables [5] for each lane on the
road

x = [coh, c1h, cov, c1v, xo, θo,wo]T , (1)

where coh and c1h represent the clothoid horizontal curvature
parameters, cov and c1v stand for the clothoid vertical curva-
ture parameters, while xo, θo, and wo are the lateral error and
orientation error with regard to the centre of the lane and
the width of the lane, respectively. The clothoid curves are
then estimated based on lane marking measurements using a
Kalman filter for each lane.

Apart from the detected road lanes additional virtual
lanes have been considered so as to cope with situations
in which a vehicle is located between two lanes (e.g., if
it is performing a change lane manoeuvre). Virtual lanes
provide the necessary overlap between lanes, avoiding both
misdetections and double detections caused by the two
halves of a vehicle being separately detected as two potential
vehicles. A virtual lane is located to provide overlap between
two adjoining lanes. Figure 5 provides some examples of lane
markings detection in real outdoor scenarios. Detected lanes
determine the vehicle searching area and help reduce false
positive detections. In case no lane markings are detected
by the system, fixed lanes corresponding to a straight road
model are assumed instead.

3.2. Side Vehicle Detection. Side vehicle detection module [6]
relies on the computation of optical flow. In order to reduce
computational time, optical flow is computed only on Canny
points in the image. Canny edge pixels are consequently
matched and grouped together in order to detect clusters
of pixels that can be considered as candidate vehicles in the
image. Classical clustering techniques are used to determine
groups of pixels, as well as their likelihood to form a single
object. Even after pixels clustering, some clusters can still
be clearly regarded as belonging to the same real object.
A second grouping stage (double-stage) is then carried out
among different clusters in order to determine which of
them can be further merged into a single blob. For this
purpose, simple distance criteria are considered. Two objects
that are very close to each other are finally grouped together
in the same cluster. The reason for computing a two-stage
clustering process relies on the fact that by selecting a small
distance parameter in the first stage, interesting information
about clusters in the scene can be obtained. Otherwise, using
a large distance parameter in the single clustering process,
highly gross clusters would have been achieved, losing all
information about the granular content of the points that
provide optical flow in the image.

The selected clusters constitute the starting point for
locating candidate vehicles in the image. For that purpose,
the detected positions of clusters are used as a seed point
to search for a collection of horizontal edges that could
potentially represent the lower part of a car. The candidate
is located on the detected horizontal edges that meet
certain conditions of entropy and vertical symmetry. Some
of the most critical aspects in side vehicle detection are
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Figure 5: Vehicle searching area as a result of the lane markings analysis for forward, rear and side modules.
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Figure 6: Side vehicle detection flow diagram.

subsequently listed: (1) shadows on the asphalt due to
lampposts, other artefacts or a large vehicle overtaking the
ego-vehicle on the right lane; (2) self-shadow reflected on the
asphalt (especially problematic in sharp turns like in round-
about points), or self-shadow reflected on road protection
fences; (3) robust performance in tunnels; and (4) avoiding
false alarms due to vehicles on the third lane.

The flow diagram of the two-stage detection algorithm
is depicted in Figure 6. As can be observed, there is a pre-
detector that discriminates whether the detected object is
behaving like a vehicle or not. If so, the frontal part of the
vehicle is located in the region of interest. In addition, the
vehicle mass centre is computed. In case the frontal part of
the vehicle is properly detected and its mass centre can also
be computed, a final warning message is issued. After being
located, vehicle candidates are classified by using a linear
SVM classifier [7] with HOG features [8] previously trained

with the samples obtained from real road images, and at that
point vehicle tracking starts. Tracking is stopped when the
vehicle gets out of the image. Sometimes, the shadow of the
vehicle remains in the image for a while after the vehicle
disappears from the scene, provoking the warning alarm to
hold on for 1 or 2 seconds. This is not a problem, however,
since the overtaking car is running in parallel with the ego-
vehicle during that time although it is out of the image scene.
Thus, maintaining the alarm in such cases turns out to be a
desirable side effect.

Figure 7 shows an example of blind spot detection in a
sequence of images. The indicator depicted in the upper-
right part of the figure toggles from green to blue when
a vehicle enters the blind spot area (indicated by a green
polygon). A blue bounding box depicts the position of the
detected vehicle.

3.3. Forward and Rear Vehicle Detection. Forward- and rear-
looking vehicle detection systems share the same algorithmic
core. The attention mechanism sequentially scans each road
lane from the bottom to the maximum range looking for
a set of features that might represent a potential vehicle.
Firstly, the vehicle contact point is searched by means
of the top-hat transformation. This operator allows the
detection of contrasted objects on nonuniform backgrounds
[9]. There are two different types of top-hat transformations:
white hat and black hat. The white hat transformation
is defined as the residue between the original image and
its opening (◦ operator). The black hat transformation is
defined as the residue between the closing (• operator) and
the original image. The white and black hat transformations
are analytically defined as follows:

WHT
(
x, y

) = ( f − f ◦ b)(x, y
)

White Hat, (2)

BHT
(
x, y

) = ( f • b − f
)(
x, y

)
Black Hat. (3)

The opening operator (◦) is defined as the dilation of the
erosion and the closing operator (•) is defined as the erosion
of the dilation (for more details see [10]). In our case we use
the white hat operator (2) since it enhances the boundary
between the vehicles and the road [11]. Horizontal contact
points are preselected if the number of white top-hat features
is greater than a configurable threshold. Then, candidates are
preselected if the entropy of Canny points is high enough
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(a) (b) (c) (d)

Figure 7: Example of the side-vehicle detection module (also called blind spot detection) in a sequence of images. The indicator in the
upper-right part of the figure toggles from green to blue when a car is detected in the blind spot.

(a) (b) (c)

Figure 8: From left to right: original image; contact point detection on white top-hat image; candidate preselected with high entropy of
Canny points.

(a)

(b)

Figure 9: Canny images after adaptive thresholding.
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(a)

(b)

(c)

Figure 10: Upper row: gray level symmetry; Middle row: vertical edges symmetry; Lower row: horizontal edges symmetry.

(a) (b)

Figure 11: (a) Overlapped candidates. (b) Nonmaximum suppression results.

for a region defined by means of perspective constraints and
prior knowledge of target objects (see Figure 8).

Before computing the Canny features, an adaptive
thresholding method is applied. This process is based on
an iterative algorithm that gradually increases the contrast
of the image, and compares the number of Canny points
obtained in the contrast increased image with the number

of edges obtained in the current image. If the number of
Canny features in the actual image is higher than in the
contrast increased image the algorithm stops. Otherwise,
the contrast is gradually increased and the process resumed.
This adaptive thresholding method permits to obtain ro-
bust image edges, as depicted in the examples provided in
Figure 9.
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(a)

(b)

Figure 12: Forward data set. (a) positive samples (vehicles). (b) negative samples.

(a)

(b)

Figure 13: Rear data set. (a) positive samples (vehicles). (b) negative samples.

(a) (b)

Figure 14: Linear SVM with HOG features classification examples: nonvehicle (red) and vehicle (green).
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(a) (b)

(c) (d)

Figure 15: Data association by features matching. (a, b) Harris features on image t. (c, d) matched Harris features on image t + 1.
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Figure 16: Number of vehicles detected by the three vision modules compared with the manually labeled ground truth in a real sequence.

In a second step, vertical edges (Sv), horizontal edges
(Sh), and grey level (Sg) symmetries are obtained, so that,
candidates will only pass to the next stage if their symmetries
values are greater than a threshold. The vertical and hori-
zontal edges symmetries are computed as listed inAlgorithm
1. The grey level symmetry computation procedure is
shown inAlgorithm 2. Some examples of the three types of
symmetries are depicted in Figure 10.

Symmetry axes are linearly combined to obtain the
final position of the candidate. Finally, a weighted vari-
able is defined as a function of the entropy of Canny
points, the three symmetry values and the distance to the
host vehicle. We use this variable to apply a nonmaxi-
mum suppression process per lane which removes over-
lapped candidates. An example of this process is shown in
Figure 11.
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(a) (b)

Figure 17: Examples with strong illumination changes after passing beneath a bridge.

(1) Initialize Acc0,...,ROIWIDTH = 0
(2) For i = 0, ...,ROIHEIGHT

(3) For each pair of vertical/horizontal edge pixels (x1, i) and (x2, i)
(4) Acc(x1+x2)/2 + +
(5) Sv,h = arg

i
max(Acci/Sv,h,MAX)

Algorithm 1: Vertical and horizontal edges symmetries computation procedure.

The selected candidates are classified by means of a
linear SVM classifier [7], in combination with histograms of
oriented gradients features [8]. We have developed and tested
two different classifiers depending on the module (forward
and rear classifiers). All candidates are resized to a fixed
size of 64 × 64 pixels to facilitate the features extraction
process. The rear-SVM classifier is trained with 2000 samples
and tested with 1000 samples (1/1 positive/negative ratio)
whereas the forward-SVM classifier is trained with 3000
samples and tested with 2000 samples (1/1 positive/negative
ratio). Figures 12 and 13 depict some positive and negative
samples of the forward and rear training and test data sets,
respectively. Figure 14 shows a couple of examples of vehicle
detection after linear SVM classification with HOG features.

After detecting consecutively an object classified as
vehicle a predefined number of times (empirically set to
3 in this work), data association and tracking stages are
triggered. The data association problem is addressed by using
feature matching techniques. Harris features are detected
and matched between two consecutive frames as depicted in
Figure 15.

Tracking is implemented using Kalman filtering tech-
niques [12]. For this purpose, a dynamic state model and
a measurement model must be defined. The proposed
dynamic state model is simple. Let us consider the state
vector xn, defined as follows:

xn =
[
u, v,w,h, u̇, v̇, ẇ, ḣ

]T
. (4)

In the state vector x and y are the respective horizontal and
vertical image coordinates for the top left corner of every
object, and w and h are the respective width and height in
the image plane, a dynamical model equation can be written
like this

xn+1 = A · xn + ωn

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎝
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0 0 0 0 0 0 0 1
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ẇ
ḣ
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⎟
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⎟
⎟
⎟
⎟
⎟
⎠

n

+ ωn.
(5)

In the model, Δt is the simple time, A represents the system
dynamics matrix and ωn is the noise associated to the model.
Although the definition of A is simple, it proves to be
highly effective in practice since the real time operation
of the system permits to assure that there will not be
great differences in distance for the same vehicle between
consecutive frames. The model noise has been modelled as a
function of distance and camera resolution. The state model
equation is used for prediction in the first step of the Kalman
filter. The next step is to define the measurement model. The



EURASIP Journal on Advances in Signal Processing 11

(1) For each possible symmetry axis xi initializes Si = 0
(2) For j = 0, ...,ROIHEIGHT

(3) For k = 0, ...,ROIWIDTH/2
(4) If abs(image[ j][xi+k] − image[ j][xi−k]) < Δ
(5) Si + +
(6) Sg = arg

i
max(Si/(areaROI /2))

Algorithm 2: Gray level symmetry computation procedure.
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Figure 18: Traffic load Li at every frame in a real sequence.
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Figure 19: Average road speed vi at every frame in a real sequence.

measurement vector is defined as zn = [u, v,w,h]T . Then,
the measurement model equation is established as follows:

zn+1 = H · xn + vn

=

⎛
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⎜
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⎝
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n

+ vn.
(6)

In last equation, H represents the measurement matrix and
vn is the noise associated to the measurement process. The
purpose of the Kalman filtering is to obtain a more stable
position of the detected vehicles. Besides, oscillations in
vehicles position due to the unevenness of the road makes
v coordinate of the detected vehicles change several pixels up
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Figure 20: Average traffic load at every second in a real sequence.
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Figure 21: Average road speed at every second in a real sequence.

or down. This effect makes the distance detection unstable,
so a Kalman filter is necessary for minimizing these kinds of
oscillations.

3.4. FCD Integration. As depicted in Figure 3, the FCD
integration or Data Fusion module uses three sources of data:
the measurements provided by the GPS, the data supplied
by the CAN bus, and the output obtained from the three
vision-based vehicle detection modules. Whereas the GPS
and the CAN bus sample frequency is 1 Hz, the vision-based
system operates in real-time at 25 frames per second (25 Hz).
The proposed data fusion scheme provides information at
the lowest sample frequency (1 Hz) covering two consecutive
GPS measurements, the vehicle speed vhi (via CAN bus) and
the outputs of the vision module.

The outputs of the side, forward, and rear vehicle
detection systems at frame i are the number of detected
vehicles Ni and their corresponding distances to the host

vehicle d(k)
i (note that d is used here as a distance/range
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Figure 22: GPS trajectory and the corresponding traffic load computed at the central unit (the aerial image has been obtained from Google
Earth).

measurement). These outputs are combined to cover the
whole local environment of the vehicle. The traffic load at
frame i is given by next expression

Li = Ni + 1
NMAX

, (7)

where NMAX is the maximum number of vehicles in range
that can be detected by the three systems (in our case NMAX is
defined as 9 or 13 for two lanes and three lanes roads, resp.).
The average road speed at frame i is computed as follows:

vi = 1
Ni + 1

⎛

⎝
Ni−1∑

k=0

⎛

⎝

(
d(k)
i − d(k)

i−1

)

Δt
+ vhi

⎞

⎠ + vhi

⎞

⎠

= 1
(Ni + 1)Δt

Ni−1∑

k=0

(
d(k)
i − d(k)

i−1

)
+ vhi ,

(8)

where d(k)
i and d(k)

i−1 represent the distance between the host
vehicle and vehicle k at frames i and i − 1, respectively, Δt
corresponds to the sample time, vhi is the host vehicle speed
provided by the CAN bus, and Ni is the number of detected
vehicles. Note that the distance values correspond to filtered
measurements since they are obtained from the first two
elements of the Kalman filter state vector (u and v) using
known camera geometry and ground-plane constraints.

Two consecutive GPS measurements define both a spatial
and a temporal segment. The temporal segment corresponds
to the GPS sample time (1 second), and the spatial segment
will be defined as the globally referenced trajectory between
the two GPS measurements. In order to obtain the extended
FCD information (i.e., the road traffic load and the road
speed) for this spatio/temporal segment we integrate the
values supplied by the vision modules during 25 consecutive
frames. With this approach a dense coverage of the road
traffic load and the road speed can be assured for host vehicle
speeds up to 180 km/h since the total range of the vision

module covers more than 50 m (25 meters for both the rear
and the forward looking modules; the side range covers up
to two third parts of the bus length in the adjacent lane).
Obviously this maximum speed will never be exceeded by a
public bus. This approach facilitates further map-matching
tasks since the extended FCD information between two
consecutive points will always be globally referenced.

4. Experimental Results

The system was implemented on a PC Core 2 Duo at 3.0 GHz
and tested in real traffic conditions using CMOS cameras
with low-resolution images (320 × 240). After training and
test, a tradeoff point has been chosen at detection rate (DR)
of 95% and false positive rate (FPR) of 5% for the rear-
SVM classifier and at DR of 90% and FPR of 6% for the
forward-SVM classifier. We have to note that these numbers
are obtained in an offline single-frame fashion, so that, they
will be improved in subsequently stages. In addition, the lane
detection system reduces the searching area and the number
of false candidates passed to further stages.

In order to validate the proposed vision-based vehicle
detection system as an extended source for FCD applications
we have recorded several video sequences in real traffic
conditions, and we have manually labeled the number of
vehicles in range at every frame (a total of 800 frames). The
speed of the host vehicle was around 90 km/h so the length
of the traveled route was 1 km approximately. Both the traffic
load Li and the average road speed vi are computed at every
frame using (7) and (8). Figure 16 shows the ground truth
and the number of vehicles detected in range. Most of the
errors take places in cases where the host vehicle is passing
beneath a bridge due to strong illumination changes (see
Figure 17) and in curves or cases where there are strong
changes in the vehicle pitch, roll or camera height.

The traffic load Li and the average road speed vi at
every frame are depicted in Figures 18 and 19, respectively.
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These values are provided by the vision modules at a
frequency of 25 Hz. As the extended FCD information is
supplied to the central unit at a frequency of 1 Hz the
traffic load and the average road speed are finally integrated
during 25 consecutive frames. These results are shown in
Figures 20 and 21. We use a colour code to describe the
level of traffic load and the road speed: green indicates
that there is good flow/high speeds; yellow indicates that
there is semi-dense traffic/medium speeds, and red shows
dense traffic/slow speeds (traffic jams). After combining the
results with the GPS measurements we can obtain the traffic
load in universal transverse mercator (UTM) coordinates, as
depicted in Figure 22 (note that map-matching is not carried
out; the aerial image has been obtained from Google Earth).

5. Concluding Remarks

This paper presented a complete vision-based vehicle detec-
tion system that enhances the data supplied by FCD systems
in the context of vehicular ad hoc networks. The system
is composed of three vision subsystems (side, forward and
rear subsystems) that detect the traffic load and the relative
velocities of the vehicles contained in the local area of
the host vehicle. Under certain constraints, such as good
weather and daytime conditions, absolute velocities, and
global positioning are obtained after combining the outputs
provided by the vision modules with the outputs supplied
by the CAN Bus and the GPS sensor. Standard FCD systems
provide the vehicle position, speed, and direction. The
proposed approach extends this information by including
more representative measurements corresponding to the
traffic load and the average road speed.

In order to cover the entire road network, the proposed
vision-based system is defined for being installed onboard
a fleet of public buses where privacy is a minor issue.
The extended packets collected by each moving vehicle are
transmitted to the central unit by means of a GPRS/UMTS
data connection. The central unit merges the extended FCD
in order to maintain an updated map of the traffic conditions
(traffic load and average road speed).

The presented experiments are promising in terms of
detection performance and computational costs. However,
significant effort is further necessary before deploying a
system for large-scale real applications. For this purpose, new
experiments will be carried out merging the data collected by
more than one vehicle, including map-matching techniques
and further analysis on V2I and V2V communications (e.g.,
using repetition based MAC protocols [13]). In addition,
the proposed vision-based vehicle detection system will be
extended to deal with complex weather conditions (e.g., wet
or snowy roads) as well as night-time conditions.
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