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A novel strategy for object tracking in aerial imagery is presented, which is able to deal with complex situations where the camera
ego-motion cannot be reliably estimated due to the aperture problem (related to low structured scenes), the strong ego-motion,
and/or the presence of independent moving objects. The proposed algorithm is based on a complex modeling of the dynamic
information, which simulates both the object and the camera dynamics to predict the putative object locations. In this model, the
camera dynamics is probabilistically formulated as a weighted set of affine transformations that represent possible camera ego-
motions. This dynamic model is used in a Particle Filter framework to distinguish the actual object location among the multiple
candidates, that result from complex cluttered backgrounds, and the presence of several moving objects. The proposed strategy
has been tested with the aerial FLIR AMCOM dataset, and its performance has been also compared with other tracking techniques
to demonstrate its efficiency.

1. Introduction

Object tracking is a fundamental task in a wide range
of military and civilian applications, such as surveillance,
traffic monitoring and management, security, and defense.
In applications with static cameras, the tracking process aims
to locate a specific object in each frame of a video sequence
using geometric, appearance, and motion features of the
object. The main problem arises from the fact that there can
be several location candidates for the object per frame, due to
the presence of background structures, and other foreground
objects similar to the target object. Furthermore, several
disturbance phenomena, such as illumination changes due
to weather conditions (typical in outdoor applications),
variations in the object appearance because of the camera
point of view, and occlusions, prevent using the criteria
“the most similar candidate is the most adequate one.” In
order to solve this problem, additional information is used
to try to recover the actual object location among the set of
possible candidates. Typically, this information is the object
dynamics, which is used to select the candidate location
closer to the predicted location according to the equation of

the object dynamics. However, a dynamic model based on
the object dynamics is only valid for tracking systems with
static or quasistatic cameras.

In aerial imagery applications, the camera system is
mounted on a moving aerial platform, such as a plane,
a helicopter, or an Unmanned Aerial Vehicle (UAV). As a
consequence, the camera is not stabilized, and the acquired
video sequences undergo a random global motion, called
ego-motion, that prevents the use of the object dynamics
to predict the future object location, making the tracking
a challenging task. The ego-motion problem has been
addressed in different manners in the scientific literature.
They can be split into two categories: approaches based on
the assumption of low ego-motion, and those based on the
ego-motion estimation.

Approaches assuming low ego-motion consider that the
motion component due to the camera is not very significant
in comparison with the object dynamics. Under this restric-
tion, some recent works expect that the object maintains a
spatiotemporal connectivity along the sequence [1–3]; that
is, the image regions related to the object in consecutive
frames are spatially overlapped, and then they perform the
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tracking using morphological connected operators. In cases
where the hypothesis about the spatiotemporal connectivity
does not hold, the most common approach is to search for
the object in a bounded area centered in the location where
it is expected to find the object according to its dynamics.
In [4, 5] an exhaustive search is performed in a fixed-size
image region, centered in the previous object location. In [6]
the initial search location is estimated using a Kalman filter,
and then the search is performed deterministically using the
Mean Shift algorithm [7]. Other authors [8, 9] propose a
stochastic search based on Particle Filtering that is able to
deal with several possible location candidates, that is, local
maxima/minima resulting from the cost function used to
perform the search. As the displacement induced by the
ego-motion increases, all these methods lose effectiveness.
The reason is that the size of the search area must be
larger to accommodate the expected camera ego-motion,
and therefore, the probability that the tracking is distracted
by false candidates dramatically increases.

On the other hand, approaches based on the ego-
motion estimation are able to deal with strong ego-motion
situations, in which the motion component due to the
camera is quite more significant than the one corresponding
to the object dynamics. Therefore, these approaches are
more suitable for aerial imagery applications, in which the
ego-motion causes large displacements between consecutive
frames. They aim to compute the camera ego-motion
between consecutive frames in order to compensate it, and
thus recovering the spatiotemporal correlation of the video
sequence. In airborne imagery, the scene acquired by the
camera can be considered planar, since the depth relief of
the objects in the scene is small enough compared to the
average depth, and the field of view of the camera is also
small [10]. This allows to efficiently model the camera ego-
motion by a global parametric model, typically an affine or
projective geometric transformation, since the effect of the
parallax (apparent displacement of an object caused by a
change in the location of the view point) is not significant.
The existing works differ in the image registration technique
used to compute the parameters of the affine or projective
transformation. A thorough review of image registration
techniques can be found in [11] for all kinds of vision-based
applications. Another review focused on aerial imagery is
presented in [12].

On the one hand, feature-based image registration tech-
niques detect and match distinctive image features between
consecutive frames to estimate a global parametric camera
model. In [13], a detection and tracking system of moving
objects from a moving airborne platform is described, which
uses a feature-based approach to estimate an affine camera
model. In [14], the KLT method is used to infer a bilinear
camera model in an application that detects moving objects
from a mobile robot. In the field of Forward Looking
InfraRed (FLIR) imagery, the works [15–17] describe a
detection and tracking system of aerial targets from an
airborne platform that uses a robust statistic framework to
match edge features in order to estimate an affine camera
model. This system is able to successfully handle situations
in which the camera motion estimation is disturbed by the

presence of independent moving objects provided that there
are enough detected features belonging to the background.

On the other hand, in situations in which the detection
of distinctive features is particularly complicated, because
the acquired images are low textured and structured, an
area-based image registration technique is used to estimate
the parameters of a global parametric model. In [18], a
perspective camera model is computed using an optical
flow algorithm for the detection of moving objects in an
application of aerial visual surveillance. The optical flow
algorithm is also used in [19] to estimate the parameters of a
pseudo perspective camera model, which is utilized to create
panoramic image mosaics. The same approach is followed
in [20, 21] for a tracking application of terrestrial targets in
airborne FLIR imagery. Also, for the same type of imagery,
a target detection framework is presented in [22, 23], which
minimizes SSDs- (Sum of Squares Differences-) based error
measure to estimate an affine camera model. A similar
framework of camera motion compensation is used in [24]
for tracking vehicles in aerial infrared imagery, but utilizing
a different minimization algorithm. In [25], the Inverse
Compositional Algorithm is used to obtain the parameters of
an affine camera model for a tracking application of vehicles
in aerial imagery. The main problem associated with the
area-based image registration techniques is that the presence
of independent moving objects can drift the ego-motion
estimation, especially if their sizes are significant.

Also, a combination of both feature- and area-based
methods has been proposed in [26] to improve the quality
of the camera compensation.

All the previous approaches, independently of the spe-
cific camera ego-motion compensation technique used, have
in common that they compute only one parametric model
to represent the ego-motion between consecutive frames.
However, in real applications, there may be many situations
where the ego-motion cannot be accurately estimated, or
even where the estimation could be completely wrong,
causing the tracking failure. These situations arise as a
consequence of very low structured or textured scenes, where
the high uncertainty, derived from the so-called aperture
problem, makes almost impossible to compute the true ego-
motion. Also, the presence of independent moving objects,
especially if they take up large regions in the image, can drift
the ego-motion estimation, since the assumption of only
one global motion, that is, the ego-motion, does not hold
anymore.

In this work, a novel approach for object tracking in
airborne imagery undergoing strong camera ego-motion is
proposed, which is able to deal with the aforementioned
complex situations in order to produce a robust tracking
along the time. The tracking algorithm models both the
camera and object dynamics to efficiently predict the most
probable object locations. The camera dynamics (i.e., the
ego-motion) is probabilistically represented by a set of global
parametric models, more specifically affine transformations,
unlike the other approaches that only use one global para-
metric model. This allows to consider several possible camera
ego-motions, which have the advantage to be more robust
to the aforementioned aperture and independent moving
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object problems. The dynamic information is combined
with an appearance object model based on the detection
of bright regions, which is a characteristic feature of the
target objects in infrared imagery. Both appearance and
dynamic models are managed by a Bayesian framework,
which recursively computes the posterior probability density
function (posterior pdf) of the object location. Since the
resulting expression for the posterior pdf cannot be solved
analytically, it is approximated by means of a Particle Filter
technique [27] based on Monte Carlo simulation. Finally,
an estimation of the object location is computed from
the posterior pdf using a Gaussian-MMSE estimator [28],
which is able to deal with situations in which the posterior
pdf is clearly multimodal. In order to prove the efficiency
and robustness of the proposed tracking algorithm, it has
been tested on the AMCOM dataset, that is composed
by a set of airborne FLIR sequences, containing many
challenging tracking situations involving terrestrial vehicles.
Additionally, the proposed tracking algorithm has been
compared with two different tracking approaches, based also
on Particle Filtering, in order to demonstrate its superior
robustness and reliability.

Although the paper is focused on aerial visual tracking,
the proposed tracking framework can be used in other track-
ing applications, provided that the scene can be considered
planar; that is, the effect of the parallax is not very significant.

The rest of the paper is organized as follows. Section 2
describes the proposed tracking Bayesian filter, that com-
bines the object appearance model, and the joint camera
and object dynamic model to efficiently estimate the desired
tracking information. The Particle Filtering approximation
of the previous optimal, but not tractable, Bayesian filter is
presented in Section 3. The estimation of the object location,
based on the posterior pdf, is described in Section 4. Exper-
imental results using the FLIR AMCOM dataset are exposed
in Section 5, along with a comparison with other tracking
approaches. And, lastly, the conclusions are presented in
Section 6.

2. Bayesian Tracking

The tracking task is modeled by means of a Bayesian filter
that aims to estimate a state vector xk, containing the desired
tracking information, that evolves over time using a sequence
of noisy observations z1:k = {zi | i = 1, . . . , k} up to
time k. The state vector xk = {dk, gk} contains the object
dynamics (position and velocity over the image plane), dk,
and the camera dynamics, gk. The observation zk at time step
k contains the object location candidates, which are obtained
as a result of the processing of the frame Ik.

The Bayesian filter approach calculates some degree of
belief in the state xk at time k using the available prior
information about the object and the camera and the set
of observations z1:k. Therefore, the tracking problem can
be formulated as the estimation of the posterior probability
density function (posterior pdf) of the state of the object,
p(xk | z1:k), which is recursively calculated by means of two
stages: prediction and update. The prediction stage involves

to obtain the prior pdf of the state p(xk | z1:k−1) at time k via
the Chapman-Kolmogorov equation:

p(xk | z1:k−1) =
∫
p(xk, xk−1 | z1:k−1)dxk−1

=
∫
p(xk | xk−1)p(xk−1 | z1:k−1)dxk−1,

(1)

where p(xk−1 | z1:k−1) is the posterior pdf at the previous
time step, and p(xk | xk−1) is the state transition probability,
that encodes the information about the object and camera
dynamics. The object dynamics is modeled by the linear
function:

dk = M · dk−1, (2)

where M is a matrix that represents a first-order linear
system of constant velocity. This object dynamic model
is a reasonable approximation for a wide range of object
tracking applications, provided that the camera frame rate
is enough high. The camera dynamics is modeled by an
affine geometric transformation gk, which is a satisfactory
approximation of the ideal projective camera model for the
case of aerial imagery, since the depth relief of the objects
in the scene is small enough compared to the average depth,
and the field of view is also small [10]. Then, combining
both models, the joint object and camera dynamics can be
expressed as

dk = gk ·M · dk−1, (3)

which, firstly, predicts the object position and velocity
according to the object dynamic model, and then, it rectifies
them using the affine transformation to compensate the
camera motion.

Based on this joint dynamic model, the transition
probability p(xk | xk−1) can be expressed as

p(xk | xk−1) = p
(

dk, gk | dk−1, gk−1
)

= p
(

dk | dk−1, gk−1:k
)
p
(

gk | dk−1, gk−1
)

= p
(

dk | dk−1, gk
)
p
(

gk
)
,

(4)

where it has been assumed that, on the one hand, the current
object position is conditionally independent of the camera
motion in the previous time step (as the proposed joint
dynamic model states), and, on the other hand, the current
camera motion is conditionally independent of both the
camera motion and the object position in previous time
steps. This last assumption results from the fact that the
camera ego-motion is completely random, not following any
specific pattern. The probability term p(dk | dk−1, gk) models
the uncertainty of the proposed joint dynamic model as

p
(

dk | dk−1, gk
) = N

(
dk ; gk ·M · dk−1, σ2

tr

)
, (5)

where N(x;μ, σ2) is a Gaussian or Normal distribution of
mean μ and variance σ2. Thus, the term σ2

tr represents the
unknown disturbances of the joint dynamic model.

The other probability term in (4), p(gk), expresses
the probability that one specific geometric transformation



4 EURASIP Journal on Advances in Signal Processing

represents the true camera ego-motion between consecutive
time steps. For the ongoing tracking application, dealing
with infrared imagery, the probability of a specific geometric
transformation gk is based on the quality of the image
alignment achieved by gk between consecutive frames. The
quality of the image alignment is computed by means of
the Mean Square Error function, mse(x, y), between the
current frame Ik, and the previous frame Ik−1 warped
by the transformation gk. Thus, the probability p(gk) is
mathematically expressed as

p
(

gk
) = N

(
mse

(
Ik, gk · Ik−1

)
; 0, σ2

g

)
, (6)

where N(x;μ, σ2) is a Gaussian distribution of mean μ and
variance σ2, and σ2

g is the expected variance of the image
alignment process.

After the prediction stage, the update stage aims to reduce
the uncertainty of the predicted p(xk | z1:k−1) using the
new available observation zk (observations are available at
discrete times) through Bayes’ rule:

p(xk | z1:k) = p(zk | xk)p(xk | z1:k−1)
p(zk | z1:k−1)

, (7)

where p(zk | xk) is the likelihood function that evaluates the
degree of support of the observation zk to the predicted xk.
Finding an observation model for the likelihood p(zk | xk)
in airborne infrared imagery, that appropriately describes
the object appearance and its variations along the time, is
quite challenging due to the special characteristics of the
infrared imagery (low signal-to-noise ratio, target objects
low contrasted with the background, and nonrepeatability
of the target signature), changes in illumination, variations
in the 3D viewpoint, and changes in the object size along
the sequence. The most robust and reliable object property
is the presence of bright regions or, at least, regions that
are brighter than their surrounding neighborhood, which
typically correspond to the engine and exhaust areas of
the object. Based on this fact, the likelihood function uses
an observation model that aims to detect the main bright
regions of the target. This is accomplished by a rotationally
symmetric Laplacian of Gaussian (LoG) filter, characterized
by a sigma parameter that is tuned to the lowest dimension
of the object size, so that the filter response is maximum
in the bright regions with a size similar to the tracked
object. The main handicap of the observation model is its
lack of distinctiveness, since whatever bright region with
an adequate size can be the target object. As consequence,
the resulting LoG filter response is strongly multimodal.
This fact, coupled with the camera ego-motion, dramatically
complicates a reliable estimation of the state vector. This
situation is illustrated in Figures 1 and 2. The first one,
Figure 1, shows two consecutive frames, (a) and (b), of an
infrared sequence acquired by an airborne camera, in which
the target object has been enclosed by a rectangle. Figure 2
shows the LoG filter response related to Figure 1(b), where
the own image has been projected over the filter response
for a better interpretation, in such a way that the upper
left corner of Figure 1(b) corresponds with the origin of

coordinates of Figure 2. The multimodality feature is clearly
observed, and in theory any of the modes could be the
right object position. Moreover, for this specific case, if only
the object dynamics is considered, the closest mode to the
predicted object location (marked by a vertical black line)
is not the true object location, because of the effects of the
camera ego-motion.

Based on the previous observation model, and assuming
that zk is conditionally independent of gk given dk, the
likelihood probability can be expressed as

p(zk | xk) = p
(

zk | dk, gk
)

= p(zk | dk) = N
(

zk; dk, σ2
L

)
,

(8)

where zk is the LoG filter response of the frame Ik, and
the variance σL is set to highlight the main modes of zk,
while discarding the low significant ones. This is illustrated in
Figure 3, where only the most significant modes of Figure 2
are highlighted.

The denominator of (7) is just a normalizing constant
given by

p(zk | z1:k−1) =
∫
p(zk, xk | z1:k−1)dxk

=
∫
p(zk | xk)p(xk | z1:k−1)dxk.

(9)

The initial pdf p(x0 | z0) ≡ p(x0), called the prior, is
initialized as a Kronecker’s delta function δ(x0) using the
ground truth information. In a general case, p(x0) could be
initialized as a Gaussian function using the information given
by an object detector algorithm, as in [1, 2, 15–17, 22, 23].

In practice, the computation of the posterior pdf, by
means of the recursive (1) and (7), is not feasible, since
the dynamic and observation models are nonlinear and
non-Gaussian. As a result, the use of approximate inference
methods is necessary. In the next section, a Particle Filtering
strategy is presented to obtain an approximate solution of the
posterior pdf.

3. Particle Filter Approximation

The optimal solution of the posterior pdf p(xk | z1:k),
given by (7), cannot be determined analytically in practice,
but it can be approximated using suboptimal methods.
Particle Filtering is an approximate inference method based
on Monte Carlo simulation for solving Bayesian filters. In
contrast to other approximate inference methods, such as
Extended Kalman Filters, Unscented Kalman Filters, and
Hidden Markov Models, Particle Filtering is able to deal with
continuous state spaces and nonlinear/non-Gaussian pro-
cesses [29], conditions that arise in real tracking situations.
The Particle Filter technique approximates p(xk | z1:k) by a
set of NS-weighted random samples {xi

k, i = 1, . . . ,NS} [27]:

p(xk | z1:k) ≈ 1
c

NS∑
i=1

wi
kδ
(

xk − xi
k

)
, (10)
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(a) (b)

Figure 1: Two consecutive frames of an FLIR sequence acquired by an airborne camera.
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Figure 2: Multimodal LoG filter response related to Figure 1(b).
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Figure 3: Likelihood distribution related to Figure 2.

where the function δ(x) is Kronecker’s delta, {wi
k, i =

1, . . . ,NS} is the set of weights related to the samples, and
c = ∑NS

i=1 w
i
k is a normalization factor. As the number of

samples becomes very large, this approximation becomes
equivalent to the true posterior pdf.

Both samples xi
k and weights wi

k are obtained using
the concept of importance sampling [27, 28], which aims

to reduce the variance of the estimation given by (10) by
means of a Monte Carlo simulation. The set of samples
{xik, i = 1, . . . ,NS} is drawn from a proposal distribution
function q(xk | xk−1, zk), called the importance density. The
optimal q(xk | xk−1, zk) should be proportional to p(xk |
z1:k) and should have the same support (the support of
a function is the set of points where the function is not
zero), since in this case the variance is zero. But this is
only a theoretical solution, since it would imply that p(xk |
z1:k) is known. The approach followed in this paper is to
approximate the importance density by the likelihood and
the prior probability of the camera motion:

q(xk | xk−1, zk) = p(zk | dk)p
(

gk
)
, (11)

which is an efficient simplification of the optimal, but not
tractable, importance density q(xk | xk−1, zk) = p(xk |
xk−1, zk) [29].

The samples xi
k = {di

k, gi
k} are drawn from the previous

proposal distribution by a hierarchical sampling strategy.
This, firstly, draws samples gi

k from p(gk) and then draws
samples di

k from p(zk | dk).
The sampling procedure for obtaining samples gi

k from
p(gk) is based on a two-stage strategy, that firstly performs
a fast, but rough, sampling of the affine space, and lastly
improves the affine sampling by refining the samples with
higher probability through a more expensive and accurate
procedure. This two stage strategy allows to efficiently obtain
a probabilistic representation of the camera motion with a
relatively low computational cost. Section 3.1 describes the
sampling procedure in more detail.

The object dynamic samples di
k are drawn from the like-

lihood p(zk | dk) (11), which is a convenient decision since
the main modes of the posterior distribution also appear
in the likelihood function. Sampling from the likelihood
function is not a trivial task, since it is a bivariate function
composed by narrow modes (see Figure 3). To deal with
this issue, a Markov Chain Monte Carlo (MCMC) sampling
method is proposed, which is able to efficiently represent
the likelihood function by a reduced number of samples.
Section 3.2 describes the MCMC sampling procedure in
more detail.
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Figure 4: Particle Filtering-based approximation of the posterior
probability p(xk | z1:k).

Figure 5: SIR resampling of p(xk | z1:k).

Once that the samples xi
k = {di

k, gi
k} have been obtained,

the weights wi
k are computed by [29]

wi
k = wi

k−1

p
(

zk | xi
k

)
p
(

xi
k | xi

k−1

)

q
(

xi
k | xi

k−1, zk
) . (12)

Using the likelihood, transition, and importance density
probabilities, this expression can be simplified as

wi
k = wi

k−1

p
(

zk | di
k

)
p
(

di
k | di

k−1, gi
k

)
p
(

gi
k

)

p
(

zk | di
k

)
p
(

gi
k

)

= wi
k−1p

(
di
k | di

k−1, gi
k

)
.

(13)

According to this expression, the samples that best fit with
the joint camera and object dynamic model will have more
relevance than the rest.

The importance sampling principle has a serious draw-
back, called the degeneracy problem [27], consisting in only
one weight has a significant value after a few iterations, while
the rest of weights has an inconsiderable value. In order to
overcome this problem, a resampling step is applied to reduce
the degeneracy problem. This is accomplished by means of

the Sampling Importance Resampling (SIR) algorithm that
selects more times the samples with higher weights, while
the ones with an insignificant weight are discarded. After SIR
resampling, all the samples have the same weight.

Figures 4 and 5 show the estimated posterior probability,
p(xk | z1:k), and the result of applying the SIR resampling,
respectively. Notice that the samples corresponding with
modes related to background structures have a lower weight
than the ones related to the tracked object, due to the
coherence with the expected camera and object dynamics.
As a result, the estimated posterior pdf concentrates all the
meaningful samples in the target object region.

3.1. Sampling of the Affine Space. The sampling procedure
for obtaining samples gi

k from p(gk) is based on a two-
stage strategy, that firstly draws a set of affine transformation
samples that represent a rough estimation of p(gk) and
then refines the sampling by improving the accuracy of the
samples with higher weight using a complex algorithm.

The goal of the first stage is to compute with a low
computational cost a set of affine transformation samples,
which represent a rough approximation of the underlying
p(gk). The algorithm is based on a fast uniform sampling
that uses the available prior knowledge for bounding the
range of possible affine parameters and for estimating an
appropriate sampling step. For the purpose of bounding the
range of affine parameters, a subset of the video sequences
used to test the proposed tracking algorithm have been
used as training set, in order to analyze the set of the
expected camera motions. These sequences belong to the
infrared AMCOM dataset (see Section 5) and have been
acquired by different infrared cameras on board an aerial
platform. The camera motion estimation in this training
set has been supervised by a user to accurately and reliably
obtain the actual camera motion. The resulting analysis
reveals that the most significant motions are translations,
which can reach a value close to the half of the image size
for some extreme situations. On the contrary, the magnitude
of the scale, rotation, and shear transformations is much
less significant, close to identity matrix transformation. On
the other hand, the choice of the sampling step depends
on the capability of the whole sampling procedure to
converge to the actual affine transformation given an initial
affine transformation sample. Regarding the convergence,
the sampling step should be small to ensure that at least
the distance in the affine space between one sample and
the actual affine transformation that represent the camera
motion is short enough. But considering the computational
cost, the sampling step should be as large as possible. The
convergence capability has been experimentally measured by
synthetically warping an image by different affine transfor-
mations of increasing magnitude, until the converge to the
actual camera motion is not possible. In addition, since the
convergence capability depends on the scene structure, this
process has been performed with a set of different images
belonging to several sequences of the AMCOM dataset. As
a result, the sampling step for the translation components
must be less than 8 pixels, while for the rest of motion
components a unique sample is enough, which assumes no
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scale, rotation, and/or shear distortion, since the sampling
procedure satisfactorily achieves the convergence to the real
affine parameters for camera motions that take place in the
AMCOM video sequences. Taking into account the previous
sampling guidelines, the initial set of affine transformation
samples has the form

tik =

⎡
⎢⎢⎢⎢⎣

1 0
(
tx
)i
k

0 1
(
ty
)i
k

0 0 1

⎤
⎥⎥⎥⎥⎦, i = 1, . . . ,NS, (14)

where (tx)ik and (ty)ik are the translation components, with
a sampling step less than 8 pixels. For the ongoing tracking
application, the sampling step has been fixed to 5, which is
a good tradeoff between accuracy and computational cost.
Note that the rest of affine parameters of tik are equivalent to
the identity matrix, meaning that there is no scale, rotation,
and shear warping with respect to the previous image frame,
since, as stated before, the whole sampling procedure can
satisfactorily deal with these kinds of distortions in the
AMCOM dataset. Figure 6 shows the initial set of affine
transformations, {tik, i = 1, . . . , 441}, arranged in a 21 × 21
grid.

The set of initial affine transformations {tik | i =
1, . . . ,NS} are evaluated by checking the consistency of
the scene structure between the current image and the
compensated one, that is, the previous image warped by the
affine transformation sample under evaluation. Two images
have a similar scene structure when their image edges have
a similar shape and spatial arrangement, indicating that
they are closely aligned. The scene structure of an image is
characterized by a set of shape descriptors, called extended
shape contexts (E-SCs). The shape context descriptor was
originally proposed by Belongie et al. [30] for recognizing 2D
and 3D objects in low clutter situations. Mori and Malik [31]
proposed an extended version of the shape context, the E-SC,
to achieve a greater robustness to the clutter. The first step to
evaluate the consistency of the scene structure between the
previous image warped by the affine transformation under
evaluation, tik · Ik−1, and the current image, Ik, consists in
computing the most relevant edges of both images using the
Canny algorithm. A uniform random sampling of the edge
locations of Ik is carried out, and then an E-SC descriptor
is computed in each sampled location. Both the set of
E-SC descriptors and their spatial distribution define the
scene structure. Another set of E-SC descriptors is computed
using the detected edges in Ik−1. The locations of the E-
SC descriptors are the same as those of Ik, but warped
by the transformation tik under evaluation. This approach
is computationally much more efficient than warping the
whole image Ik−1 using tik. The similarity of both sets of
descriptors is measured by computing the Bhattacharyya
distance between corresponding E-SC descriptors. The con-
sistency of the scene structure is then obtained by summing
the contributions of all the distances. A low value of the
consistency of the scene structure means that Ik and tik · Ik−1

are roughly aligned. The samples {tik | i = 1, . . . ,NS} and

their associated weights, given by the values of consistency of
the scene structure, are a rough estimation of p(gk).

Figure 7 shows the weights of the affine transformations
tik used to roughly approximate the camera motion proba-
bility p(gk) between two consecutive time steps. The weights
are arranged in the same way of the previous grid of initial
transformations and are encoded with a color scale. In this
case, the maximum weight corresponds with t74

k .
The second stage refines the previous rough estimation

of p(gk) by means of an image registration algorithm
presented in [32]. This method assumes an initial geometric
transformation tik and then uses the whole image intensity
information to compute a global affine transformation gi

k,
which is an improved estimation of the camera motion.
This method explicitly accounts for global variations in
image intensities to be robust to illumination changes. To
reduce the computational cost, only the samples tik with
higher probability are used to improve the estimation of
p(gk). Finally, the set of affine transformations {gi

k | i =
1, . . . ,NS} is obtained by means of an SIR resampling,
which makes a random selection of the affine transformation
samples according to their weights. The resulting set of
affine transformations is an accurate approximation of the
underlying camera motion probability.

An alternative approach to the SIR resampling could be
to select the sample with the highest weight, since it should
represent the most accurate camera motion. In this case, the
sampling procedure would be equivalent to an optimization
approach based on an stochastic search, since only the
best sample is used. However, the statement “the highest
p(gi

k) corresponds with the most accurate camera motion
estimation” is not always true. For example, in situations
with independent moving objects, the camera ego-motion
estimation can be biased by the moving objects. Also, a
poor estimation is obtained when the effects of the aperture
problem [33, 34] are quite significant. As a consequence,
in both situations the actual camera motion could be
represented by one gi

k with a probability value lower than the
one with the maximum probability value. For this reason,
a probabilistic representation of the camera motion based
on discrete samples is more efficient than a deterministic
approach that estimates the best transformation.

3.2. MCMC Sampling of the Likelihood Function. The object
dynamic samples di

k are drawn from the likelihood p(zk | dk)
(11) to finally obtain xi

k = {di
k, gi

k}. This is a convenient
decision since the main modes of the posterior distribution
also appear in the likelihood function. Sampling from the
likelihood function is not a trivial task, since it is a bivariate
function composed by narrow modes (see Figure 3). To
deal with this issue, a Markov Chain Monte Carlo (MCMC)
sampling method is proposed, which is able to efficiently
represent the likelihood function by a reduced number
of samples. The MCMC approach generates a sequence
of samples {di

k, i = 1, . . . ,NS} by means of a Markov
Chain, in such a way that the stationary distribution is
exactly the target distribution. The Metropolis-Hasting [28,
35] algorithm is an MCMC method that uses a proposal
distribution for simulating such a chain. The appropriate
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Figure 6: Initial set of affine transformation samples used to roughly approximate p(gk).
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Figure 8: Metropolis-Hasting sampling of the likelihood distribu-
tion depicted in Figure 2.

selection of the proposal distribution is the key for the
efficient sampling of the target distribution. For the case of
the likelihood p(zk | dk) sampling, a Gaussian function, with
mean zero and a variance proportional to the lowest size
dimension of the tracked object, has proven to be efficient.
Another fundamental issue is the initialization of the Markov
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Figure 9: Result of applying the Gaussian kernel over p(xk | z1:k)
(depicted in Figure 4), along with the final state estimation x̂k

marked by a black circle.

Figure 10: Tracked object accurately enclosed by a white rectangle.

Chain. Since the likelihood function concentrates almost all
the probability in a few sparse regions of the state space
(i.e., in its sparse narrow modes), the Markov Chain needs
a large amount of samples to correctly simulate it. A more
efficient approach is to use a set of Markov Chains, with
different initialization states given by the main local maxima
of the likelihood distribution. In this way, the likelihood is
efficiently simulated by a reduced number of samples located
on the main modes.

Figure 8 shows the result of applying the proposed
Metropolis-Hasting sampling algorithm to simulate the
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Figure 11: Common intermediate results for all the three tracking algorithms in a situation of strong ego-motion.
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Figure 12: Tracking results for the BEH algorithm in a situation of strong ego-motion.

likelihood distribution depicted in Figure 3. The samples
have been marked with circles. Notice that the samples are
on the main modes of the likelihood distribution, in spite of
the relatively low number of used samples.

4. State Estimation

The estimated posterior pdf, p(xk | z1:k), embodies all the
available statistical information, allowing the computation
of an optimal estimation of the state of the object x̂k. In
general terms, the resulting posterior probability can be
quasi-unimodal (if there is only one significant mode) or
multimodal. This fact depends on the distance between
the mode corresponding to tracked object and the modes
relative to the background in the likelihood function. While
for the case of a quasi-unimodal posterior probability, the
state estimation can be efficiently performed by means
of the MMSE estimator, for the case of a multimodal
posterior probability, the MMSE estimator does not produce
a satisfactory estimation, since the background modes bias
the result. To avoid such a bias in the estimation, the MMSE
estimator should only use the samples relative to the tracked
object mode, discarding the rest. This is achieved by means
of a bivariate Gaussian kernel N(x;μe,Σe) of mean μe and
covariance matrix Σe [28], which gives more relevance to
the samples located close to the Gaussian mean. In this way,
when the Gaussian mean is centered over the tracked object
mode, only the samples related to this mode will have a
significant value. The proposed Gaussian-MMSE estimator

is mathematically expressed as

x̂k = max

⎛
⎝ 1
NS

NS∑
l=1

NS∑
i=1

N
(

xi
k; xl

k,Σe

)
p
(

xi
k | z1:k

)⎞⎠, (15)

where the covariance matrix Σe determines the bandwidth
of the Gaussian kernel, which must be coherent with the
size of the tracked object mode. Taking into account the
relationship between the size of the tracked object mode and
the bandwidth of the LoG filter used in the object detection
(Section 2), that in turn it was set according to the object size,
an efficient covariance matrix can be estimated as

Σe =

⎡
⎢⎣
sx
2

0

0
sy
2

⎤
⎥⎦, (16)

where sx and sy are the width and height of the object,
respectively, which are the same parameters as the ones used
in the LoG-based object detector.

Figure 9 shows the result of applying the Gaussian kernel
over p(xk | z1:k), along with the maximum corresponding
to the final estimation x̂k, that has been marked by a black
circle. Figure 10 shows the tracked object accurately enclosed
by a white rectangle corresponding to the estimated x̂k.

5. Results

The proposed object tracking algorithm has been tested
using the AMCOM dataset. This consists of 40 infrared
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Figure 13: Tracking results for the DEH algorithm in a situation of strong ego-motion.
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Figure 16: Tracking results for the BEH algorithm in a situation where the ego-motion compensation is especially challenging due to the
aperture problem.

sequences acquired from a camera mounted on an airborne
platform. A variety of moving and stationary terrestrial
targets can be found in two different wavelengths: mid-
wave (3μm–5μm) and long-wave (8μm–12μm). In general,
the tracking task is quite challenging in this dataset due
to the strong camera ego motion, the magnification and
pose variations of the target signatures, and the own
characteristics of the FLIR imagery described in Section 2.

In addition, the proposed object tracking algorithm
has been compared with other two tracking algorithms to
prove its superior performance using the same AMCOM
dataset. These both algorithms are inspired on the existing
works [8, 9], which also use a Particle Filter framework
for the tracking, making easier and fairer to compare the
performance of all the three algorithms. The three algorithms
differ in the way they tackle the ego-motion: Bayesian
modeling, deterministic modeling and not explicit modeling.

The algorithm presented in this paper uses a Bayesian model
for the ego-motion, and it is called tracking with Bayesian
ego-motion handling (BEH). The second algorithm is based
on a deterministic modeling and is referred to as tracking
with deterministic ego-motion handling (DEH). It models
the ego-motion by only one affine transformation, which is
equivalent to express p(gk) by a Kronecker’s delta centered
in gd

k , an affine transformation deterministically computed
through the image registration algorithm described in [32].
The last algorithm, referred to as tracking with no ego-
motion handling (NEH), has not an explicit model for the
camera ego-motion, which leads to a simplified expression
of the state transition probability:

p(xk | xk−1) = N
(

dk; M · dk−1, σ2
tr

)
, (17)
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Figure 17: Tracking results for the DEH algorithm in a situation where the ego-motion compensation is especially challenging due to the
aperture problem.

where the value of the parameter σ2
tr should be larger than

that of BEH and DEH algorithms to try to alleviate the ego-
motion effect.

With the purpose of making a fair comparison, the same
number of samples has been used for the three algorithms:
NS = 300. This number is enough to ensure a satisfactory
approximation of the state posterior probability given the
specific characteristics of the AMCOM dataset. In the same
way, the same value has been chosen for σ2

tr = 2 for the BEH
and DEH algorithms, while a value of σ2

tr = 4 has been chosen
for NEH algorithm, in order to alleviate its lack of an explicit
ego-motion model and make it comparable with the other
algorithms. The BEH algorithm needs an extra parameter
which has been heuristically set to σ2

g = 0.03, offering good
results for the given AMCOM dataset. However, other values
with a variation less than the 15 percent have also offered
similar results.

In the two following subsections, two different tracking
situations are evaluated to demonstrate the higher per-
formance of the BEH algorithm in complex ego-motion
situations. The last subsection presents the overall tracking
results for each of three algorithms using the aforementioned
AMCOM dataset.

5.1. Strong Ego-Motion Situation. The BEH algorithm has
been compared with the DEH and NEH ones for a situation

of strong ego-motion. Figure 11 shows the common inter-
mediate results for all the three algorithms. Figures 11(a)
and 11(b) show two consecutive frames that have undergone
a large displacement, in which the target object has been
enclosed by a black rectangle as visual aid. Figure 11(c) shows
the multimodal likelihood function, and lastly, Figure 11(d)
shows the resulting Metropolis-Hasting based sampling,
where each sample has been marked by a black circle.

Figure 12 shows the tracking results for the BEH
algorithm. The probability values of gi

k (the estimated affine
transformations) before the SIR resampling are shown in
Figure 12(a), which have been arranged in a rectangular
grid, in a similar way to Figure 5. The probability values are
displayed using a color scale. Notice that there is a peak in the
middle left side, indicating that the camera has undergone
a strong right translation motion. Figure 12(b) shows the
sampled posterior probability, where the samples di

k with
higher weights are correctly located over the target object,
thanks to the Bayesian treatment of the camera ego-motion.
Figure 12(c) shows the result of applying the Gaussian kernel
over the sampled posterior probability, which is used by
the Gaussian-MMSE estimator to compute the final state
estimation (marked as a black circle). Finally, Figure 12(d)
shows the target object satisfactorily enclosed by white
rectangle, whose coordinates are determined by the state
estimation. Observe that the infrared image is projected over
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Figure 18: Tracking results for the NEH algorithm in a situation where the ego-motion compensation is especially challenging due to the
aperture problem.

the X-Y plane of each probability distribution as visual
aid.

Figures 13 and 14 show the tracking results for the
DEH and NEH algorithms, respectively. Notice that the
tracking fails in both cases, since the dynamic model does
not correctly represent the camera and object dynamics,
and consequently the tracking drifts to another mode of
the likelihood function. In the case of DEH algorithm,
this fact can be checked by observing that the estimated
affine transformation corresponds to the one located in the
coordinates (11, 11) of Figure 12(a), which has a probability
value much lower than the one related to the true camera
motion.

5.2. High Uncertainty Ego-Motion Situation. A comparison
or the tracking performance of all the three algorithms
(BEH, DEH, and NEH) is presented for a situation where
the ego-motion estimation is especially challenging due to
the aperture problem (the frames are very low-textured).
Figure 15 shows common intermediate results, in which the
first column shows five consecutive frames, where the target
object has been enclosed by a black rectangle as visual aid.
The last two rows show the resulting multimodal likelihood
function and the Metropolis-Hasting based sampling for
each frame, respectively.

Figure 16 shows the tracking results for the BEH
algorithm. The probability values of gi

k (the estimated affine

transformations) before the SIR resampling are shown in
the first column, which have been arranged in a rectangular
grid, in a similar way to Figure 5. The probability values
are displayed using a color scale. Notice that there is not a
well-defined peak, unlike the strong ego-motion situation
(Figure 12(a)), but there is a set of affine transformation
candidates with similar probability values, meaning that
whatever of them could be the true camera motion. The
affine transformations with higher probability value are
located in the horizontal direction, indicating that the
aperture problem is especially significant in that direction. In
other words, the horizontal translation of the camera motion
cannot be reliably computed between consecutive frames.
The second column of Figure 16 shows the sampled posterior
probability related to each frame. Notice that there are several
samples with high weights that are not located over the
target object, as a consequence of the high uncertainty in
the camera ego-motion estimation. However, the majority
of samples that have a high weight are located over the
target object, allowing to track it satisfactorily. This fact
can be verified by observing the two last columns, which,
respectively, show the Gaussian-MMSE estimation and the
tracking result, where the target object has been satisfactorily
enclosed by a rectangle (whose coordinates are determined
by the state estimation).

Figures 17 and 18 show the tracking results for the DEH
and NEH algorithms, arranged in the same way of Figure 16.
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Observe that the tracking fails in the frame 172 for the DEH
algorithm, and also in the frame 171 for NEH algorithm.
These failures arise from the accumulation of slight errors
in the estimation of the object location, which, in turn,
are caused by the poor characterization of the camera ego-
motion.

5.3. Global Tracking Results. Finally, the global results about
the performance of the BEH, DEH, and NEH algorithms
using the sequences of the AMCOM dataset are shown in
Table 1. The table is divided into two sections, showing
the tracking results for long-wave and mid-wave infrared
imagery, respectively. The first two columns show the
sequence name and the target name, respectively. The third,
fourth, and fifth columns show the first frame, the last frame,
and the number of consecutive frames in which the target
appears. The remaining columns show the performance
of the BEH, DEH, and NEH algorithms, measured as the
number of tracking failures and the tracking accuracy. The
number of failures indicates the number of times that the
target object has been lost. An object is considered to be
lost when the rectangle that encloses the object according
to the ground truth and the rectangle resulting from the
tracking estimation do not overlap each other. The tracking
accuracy has been defined as the average Euclidean distance
between the object locations (centers of the corresponding
rectangles) of the ground truth and the tracking estimation.
Therefore, the accuracy will be better when its value is
less. It is important to note that the algorithms are not
reinitialized with ground truth data in case of tracking failure
(object lost), since one of the more appealing advantages of
the Particle Filter framework is its capability of recovering
from tracking failures thanks to the handling of multiple
hypotheses (or samples). This also affects the tracking
accuracy, since all the erroneous object locations, derived
from tracking failures, have been taken into account in its
estimation. Therefore, the sequences with a lot of tracking
failures will have a much worse tracking accuracy.

From the analysis of the number of tracking failures, it
can be summarized that there are 11 situations (sequences) in
which the BEH algorithm outperforms the DEH one and 16
situations in which the BEH algorithm outperforms the NEH
one. Regarding the DEH algorithm, there are 11 situations in
which it outperforms the NEH one, and 3 situations in which
it outperforms BEH algorithm. Lastly, there are 4 situations
in which the NEH algorithm outperforms the DEH one and
none situation in which it outperforms the BEH algorithm.
In the rest of situations, the performance is similar for all
the three algorithms. To sum up, the BEH algorithm is the
best of all, and the DEH algorithm is better than NEH
one, as was expected. The errors obtained by the DEH and
NEH algorithms arise from the poor characterization of the
camera ego-motion, which is satisfactorily solved by the BEH
algorithm.

The results about the tracking accuracy follow the same
trend. An interesting fact happens when the ego-motion
is quite low: the tracking accuracy of the DEH algorithm
is slightly better than BEH one. The reason is that a
deterministic approach introduces less uncertainty than a

Bayesian approach for situations in which it is possible
to reliably compute the camera motion. Nonetheless, the
improvement is insignificant, and in addition, the BEH
algorithm is able to cope with a wider range of situations than
the rest.

There is one situation in which none of the three
algorithms can ensure a correct tracking. This situation arises
when the likelihood distribution has false modes very close
to the true one (corresponding to the tracked object), and
the apparent motion of the tracked object is very low. Under
these circumstances, the tracker can be locked on a false
mode.

As regards the type of infrared imagery, long and mid
wave, the tracking results do not show any appreciable
difference between them. Theoretically, mid-wave infrared
imagery is better to detect and track objects with hot
spots, arising from working engines and exhaust pipes, since
the target-background contrast is greater. However, if the
terrestrial vehicles are not working, and therefore they are
at room temperature, the long-wave infrared imagery is
preferable, since the target-background contrast is much
greater. Anyway, the AMCOM dataset is not oriented to
examine these kinds of differences, since each sequence is
only acquired in a specific wave range, and therefore, a
thorough comparison is not possible. Regarding the tracking
performance, the only condition is that there exists an
appreciable contrast between the target and the background,
since the proposed Bayesian framework is able to handle the
clutter (background regions with similar infrared signature
to the target object) by means of the coherence between each
object region candidate and the object and camera dynamics.

In order to provide a better understanding of the results
presented in Table 1, the following website http://www.gti
.ssr.upm.es/paper/RobustTracking/ has been built, which
contains the object tracking results along with the ground
truth for all the sequences. In addition, all the intermediate
results (likelihood probability, MCMC sampling, probability
values of the affine transformations, posterior probability,
and Gaussian-MMSE estimation) are also available, which
are useful to comprehend the obtained tracking results.

6. Conclusions

A novel strategy for object tracking in aerial imagery is
presented, which is able to deal with complex situations
in which the ego-motion cannot be reliably estimated. The
proposed algorithm uses a complex dynamic model that
combines the object and camera dynamics to predict the
possible object locations. A probabilistic formulation is used
to represent the camera dynamics by a set of affine trans-
formations, each one corresponding to a possible camera
ego-motion. Using this robust model to encode the dynamic
information, the tracking algorithm is able to distinguish the
actual object location among multiples candidates, derived
from the appearance model of the object. This approach
has been proven to be very robust not only in situations
with strong ego-motion but also in those situations in
which the ego-motion cannot be accurately estimated due
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to the aperture problem, strong camera motion, and/or the
presence of independent moving objects. In these cases,
it clearly outperforms other tracking approaches based on
a deterministic ego-motion compensation or even without
explicit compensation. The experimental results, performed
with the AMCOM dataset, support this conclusion.
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