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A distributed wireless network with K links is considered, where the links are partitioned into M clusters each operating in a
subchannel with bandwidth W/M. The subchannels are assumed to be orthogonal to each other. A general shadow-fading model
described by the probability of shadowing α and the average cross-link gains � ≤ 1 is considered. The main goal is to find the
maximum network throughput in the asymptotic regime of K → ∞, which is achieved by: (i) proposing a distributed power
allocation strategy, where the objective of each user is to maximize its best estimate (based on its local information) of the average
network throughput and (ii) choosing the optimum value forM. In the first part, the network throughput is defined as the average
sum-rate of the network, which is shown to scale as Θ(log K). It is proved that the optimum power allocation strategy for each
user for large K is a threshold-based on-off scheme. In the second part, the network throughput is defined as the guaranteed sum-
rate, when the outage probability approaches zero. It is demonstrated that the on-off power scheme maximizes the throughput,
which scales as (W/α�) log K . Moreover, the optimum spectrum sharing for maximizing the average sum-rate and the guaranteed
sum-rate is achieved atM = 1.

1. Introduction

A primary challenge in wireless networks is to use available
resources efficiently so that the network throughput is
maximized. Throughput maximization in multiuser wireless
networks has been addressed from different perspectives,
resource allocation [1–3], routing by using relay nodes [4],
exploiting mobility of the nodes [5], and exploiting channel
characteristics (e.g., power decay versus distance law [6–8],
geometric path loss and fading [9]).

Among different resource allocation strategies, power
and spectrum allocation have long been regarded as effi-
cient tools to mitigate the interference and improve the
network throughput. In recent years, power and spectrum
allocation schemes have been extensively studied in cellular
and multihop wireless networks [1, 2, 10–12]. In [11],
the authors provide a comprehensive survey in the area of
resource allocation, in particular in the context of spec-
trum assignment. Much of these works rely on centralized

and cooperative algorithms. Clearly, centralized resource
allocation schemes provide a significant improvement in
the network throughput over decentralized (distributed)
approaches. However, they require extensive knowledge of
the network configuration. In particular, when the number
of nodes is large, deploying such centralized schemesmay not
be practically feasible. Due to significant challenges in using
centralized approaches, the attention of researchers has been
drawn to the decentralized resource allocation schemes [13–
18].

In decentralized schemes, the decisions concerning net-
work parameters (e.g., rate and/or power) are made by the
individual nodes based on their local information. The local
decision parameters that can be used for adjusting the rate
are the Signal-to-Interference-plus-Noise Ratio (SINR) and
the direct channel gain. Most of the works on decentralized
throughput maximization target the SINR parameter by
using iterative algorithms [15–17]. This leads to the use of
game theory concepts [19] where the main challenge is the
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convergence issue. For instance, Etkin et al. [17] develop
power and spectrum allocation strategies by using game
theory. Under the assumptions of the omniscient nodes
and strong interference, the authors show that Frequency
Division Multiplexing (FDM) is the optimal scheme in the
sense of throughput maximization. They use an iterative
algorithm that converges to the optimum power values.
In [16], Huang et al. propose an iterative power control
algorithm in an ad hoc wireless network, in which receivers
broadcast adjacent channel gains and interference prices to
optimize the network throughput. However, this algorithm
incurs a great amount of overhead in large wireless networks.

A more practical approach is to rely on the channel gains
as local decision parameters and avoid iterative schemes.
Motivated by this consideration, we study the throughput
maximization of a distributed single-hop wireless network
with K links, operating in a bandwidth of W . Wireless
networks using unlicensed spectrum (e.g., Wi-Fi systems
based on IEEE 802.11b standard [20]) are a typical example
of such networks. To mitigate the interference, the links
are partitioned into a fixed number (M) of clusters, each
operating in a subchannel with bandwidth W/M, where
the subchannels are orthogonal to each other. The cross-
link channel gains are assumed to be Rayleigh-distributed
with shadow fading, described by parameters (α,�), where
α denotes the probability of shadowing and � (� ≤ 1)
represents the statistical average of the Rayleigh distribution.
The above configuration differs from the geometric models
proposed in [5–8, 21]. Unlike the studies in [14–17] which
rely on iterative algorithms using SINR, we assume that
each transmitter adjusts its power solely based on its direct
channel gain.

If each user maximizes its rate selfishly, the optimum
power allocation strategy for all users is to transmit with
full power. This strategy results in excessive interference,
degrading the average network throughput. To prevent this
undesirable effect, one should consider the negative impact
of each user’s power on other links. A reasonable approach
for each user is to choose a noniterative power allocation
strategy to maximize its best local estimate of the network
throughput. In fact, the network nodes aim to cooperative
unselfishly to improve the network throughput. We call this
unselfish action in the proposed distributed wireless network
as a virtual cooperation without broadcasting information
from one link to the other links.

The network throughput in this paper is defined in two
ways: (i) average sum-rate and (ii) guaranteed sum-rate. It is
established that the average sum-rate in the network scales
at most as Θ(logK) in the asymptotic case of K → ∞.
This order is achievable by the distributed threshold-based
on-off scheme (i.e., links with a direct channel gain above
certain threshold transmit at full power and the rest remain
silent). In addition, the on-off power allocation scheme is
always optimal for maximizing the guaranteed sum-rate in
the network, which is shown to scale as (W/α�) logK . These
results are different from the result in [22] where the authors
use a similar on-off scheme for M = 1 and prove its
optimality only among all on-off schemes, and from that in
[18] where the authors use a distributed power allocation for

two users. This work also differs from the studies in [23–25]
in terms of the network model. We use a distributed power
allocation strategy in a single-hop network, while the studies
in[23, 24] consider an ad hoc network model with random
connections and relay nodes.

We optimize the average network throughput in terms
of the number of the clusters, M. It is proved that the
maximum average sum-rate and the guaranteed sum-rate
of the network for every value of α and � are achieved at
M = 1. In other words, splitting the bandwidth W into M
orthogonal subchannels does not increase the throughput.

The rest of the paper is organized as follows. In Section 2,
the network model and objectives are described. The dis-
tributed on-off power allocation strategy and the network
average sum-rate are presented in Section 3. We analyze
the network guaranteed sum-rate in Section 4. Finally, in
Section 5, an overview of the results and some conclusion
remarks are presented.

1.1. Notations. For any functions f (n) and g(n) [26] we have
the following:

(i) f (n) = O(g(n)) means that limn→∞| f (n)/g(n)| <∞;

(ii) f (n) = o(g(n)) means that limn→∞| f (n)/g(n)| = 0;

(iii) f (n) = ω(g(n)) means that limn→∞ f (n)/g(n) = ∞;

(iv) f (n) = Ω(g(n)) means that limn→∞ f (n)/g(n) > 0;

(v) f (n) = Θ(g(n)) means that limn→∞ f (n)/g(n) = c,
where 0 < c <∞;

(vi) f (n) ∼ g(n) means that limn→∞ f (n)/g(n) = 1;

(vii) f (n) � g(n) means that limn→∞ f (n)/g(n) ≤ 1.

(viii) f (n) ≈ g(n) means that f (n) is approximately equal
to g(n), that is, if we replace f (n) by g(n) in the
equations, the results still hold.

Throughout the paper, we use log(·) as the natural
logarithm function and P{·} denotes the probability of
the given event. Boldface letters denote vectors; and for a
random variable x, x means E[x], where E[·] represents the
expectation operator. RH(·) represents the right hand side of
the equations.

2. NetworkModel and Objectives

2.1. Network Model. In this work, we consider a single-hop
wireless network consisting of K pairs of nodes indexed by
{1, . . . ,K}, operating in bandwidth W . The term “pair” is
used to describe a transmitter and its corresponding receiver,
while the term “user” is used only for the transmitter. All the
nodes in the network are assumed to have a single antenna.
The links are assumed to be randomly divided intoM clusters
denoted by C j , j = 1, . . . ,M such that the number of links
in all clusters are the same. Without loss of generality, we
assume that C j � {( j − 1)n + 1, . . . , jn}, where n � K/M
denotes the cardinality of the set C j which is assumed to
be known to all users. It is assumed that K is divisible by
M, and hence, n = K/Mis an integer number. To eliminate
the mutual interference among the clusters, we assume an
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M-dimensional orthogonal coordinate system in which the
bandwidth W is split into M disjoint subchannels each with
bandwidth W/M. It is assumed that the links in C j operate
in subchannel j. We also assume that M is fixed, that is, it
does not scale with K . The power of AdditiveWhite Gaussian
Noise (AWGN) at each receiver is (N0W)/M, where N0 is the
noise power spectral density.

The channel model is assumed to be Rayleigh flat fading
with the shadowing effect. The channel gain, defined as
the square magnitude of the channel coefficient, between
transmitter k and receiver i is represented by the random
variable Lki. For k = i, the direct channel gain is defined as
Lki � hii, where hii is exponentially distributed with unit
mean (and unit variance). For k /= i, the cross channel gains
are defined based on a shadowing model as follows:

Lki �

⎧
⎨

⎩

βkihki, with probability α,

0, with probability 1− α,
(1)

where hki’s have the same distribution as hii’s, 0 ≤ α ≤ 1 is a
fixed parameter, and the random variable βki, referred to as
the shadowing factor, is independent of hki and satisfies the
following conditions:

(i) βmin ≤ βki ≤ βmax, where βmin > 0 and βmax is finite;

(ii) E[βki] � � ≤ 1.

It is also assumed that {Lki} and {βki} are mutually
independent random variables for different (k, i).

All the channels in the network are assumed to be quasi
static block fading, that is, the channel gains remain constant
during one block and change independently from block to
block. In addition, we assume that each transmitter knows
its direct channel gain.

We assume a homogeneous network in the sense that
all the links have the same configuration and use the same
protocol.We denote the transmit power of user i by pi, where
pi ∈ P � [0,Pmax]. The vector P( j) = (p( j−1)n+1, . . . , pjn)

represents the power vector of the users in C j . Also, P
( j)
−i

denotes the vector consisting of elements of P( j) other than
the ith element, i ∈ C j . To simplify the notations, we assume
that the noise power (N0W)/M is normalized by Pmax.
Therefore, without loss of generality, we assume that Pmax =
1. Assuming that the transmitted signals are Gaussian, the
interference term seen by link i ∈ C j will be Gaussian with
power

Ii =
∑

k∈C j

k /= i

Lki pk.
(2)

Due to the orthogonality of the allocated subchannels, no
interference is imposed from links in Ck on links in C j , k /= j.
Under these assumptions, the achievable data rate of each
link i ∈ C j is expressed as

Ri

(

P( j),L
( j)
i

)

= W

M
log

(

1 +
hii pi

Ii + (N0W)/M

)

, (3)

where L
( j)
i � (L(( j−1)n+1)i, . . . ,L( jn)i). To analyze the

performance of the underlying network, we use the following
performance metrics

(i) Network Average Sum-Rate:
We define the network average sum-rate as

Rave � E

⎡

⎢
⎣

M∑

j=1

∑

l∈C j

Rl

(

P( j),L
( j)
l

)

⎤

⎥
⎦, (4)

where the expectation is computed with respect toL
( j)
l . This

metric is used when there is no decoding delay constraint,
that is, decoding is performed over arbitrarily large number
of blocks.

(ii) Network Guaranteed Sum-Rate:
We define the network guaranteed sum-rate as

Rg �
M∑

j=1

∑

l∈C j

Eh
ll
[R∗(hll)], (5)

in which for all hll , l ∈ C j , we have

R∗(hll) � supR(hll), (6)

such that

P
{

Rl

(

P( j),L
( j)
l

)

< R(hll)
}

−→ 0. (7)

This metric is useful when there exists a stringent decoding
delay constraint, that is, decoding must be performed over
each separate block, and a single-layer code is used. In
this case, as the transmitter does not have any information
about the interference term, an outage event may occur.
Network guaranteed throughput is the average sum-rate of
the network which is guaranteed for all channel realizations.

2.2. Objectives

Part I: Maximizing the Network Average Sum-Rate. The main
objective of the first part of this paper is to maximize the
network average sum-rate. This is achieved by the following.

(i) Proposing a distributed and noniterative power allo-
cation strategy, where each user maximizes its best
estimate (based on its local information, that is, direct
channel gain) of the average network sum-rate.

(ii) Choosing the optimum value forM.

To address this problem, we first define a utility function
for link i ∈ C j ( j = 1, . . . ,M) that describes the average sum-
rate of the links in cluster C j as follows:

ui
(
pi,hii

)
� E

⎡

⎢
⎣

∑

l∈C j

Rl

(

P( j),L
( j)
l

)

⎤

⎥
⎦, (8)

where the expectation is computed with respect to
{Lkl}k,l∈C j excluding k = l = i (namely, hii). As mentioned
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earlier, hii is considered as the local (known) information
for link i however, all the other gains are unknown to user
i which is the reason behind statistical averaging over these
parameters in (8). User i selects its power using

p̂i = argmax
pi∈P

ui
(
pi,hii

)
. (9)

Given the optimum power vector P̂( j) = ( p̂( j−1)n+1, . . . , p̂ jn)
obtained from (9), the network average sum-rate is then
computed as (4). Next, we choose the optimum value of M
such that the network average sum-rate is maximized, that is,

M̂ = argmax
M

Rave. (10)

Part II: Maximizing the Network Guaranteed Sum-Rate. The
main objective of the second part is finding the maximum
achievable network guaranteed sum-rate in the asymptotic
case of K → ∞. For this purpose, a lower bound and
an upper bound on the network guaranteed sum-rate are
presented and shown to converge to each other as K → ∞.
Also, the optimum value ofM is obtained.

3. Network Average Sum-Rate

In order tomaximize the average sum-rate of the network, we
first find the optimum power allocation policy. Using (8), we
can express the utility function of link i ∈ C j , j = 1, . . . ,M,
as

ui
(
pi,hii

) = Ri
(
pi,hii

)
+

∑

l ∈ C j

l /= i

Rl
(
pi
)
,

(11)

where

Ri
(
pi,hii

) = E
[
W

M
log

(

1 +
hii pi

Ii + (N0W)/M

)]

(12)

with the expectation computed with respect to Ii defined in
(2), and

Rl
(
pi
)

= E
[

Rl

(

P( j),L
( j)
l

)] (13)

= E
[
W

M
log

(

1 +
hll pl

Il + (N0W)/M

)]

(14)

= E

[
W

M
log

(

1 +
hll pl

Lil pi +
∑

k /= l,iLkl pk + (N0W)/M

)]

,

k, l ∈ C j , l /= i,
(15)

with the expectation computed with respect to P
( j)
−i and

{Lkl}k,l∈C j excluding l = i. Note that the power of the
users are random variables, since they are a deterministic
function of their corresponding direct channel gains, which

are random variables. It is worth mentioning that the power
pi in (15) prevents the ith user from selfishly maximizing its
average rate given in (12) displaying a virtual cooperation in
the network. Using the fact that all users follow the same
power allocation policy, and since the channel gains Lkl

are random variables with the same distributions, Rl(pi)
becomes independent of l. Thus, by dropping the index l
from Rl(pi), the utility function of link i can be simplified
as

ui
(
pi,hii

) = Ri
(
pi,hii

)
+ (n− 1)R

(
pi
)
. (16)

Noting that pi depends only on the channel gain hii, in the
sequel we use pi = g(hii).

Lemma 3.1. Let assume 0 < α ≤ 1 is fixed and E[pk] � qn.
Then with probability one (w. p. 1), we have

Ii ∼ (n− 1)α̂qn, (17)

as K → ∞ (or equivalently, n → ∞), where α̂ � α�. More
precisely, substituting Ii by (n − 1)α̂qn does not change the
asymptotic average sum-rate of the network.

Proof. See Appendix A.

Lemma 3.2. For large values of n, the links with a direct
channel gain above hTh = c logn, where c > 1 is a constant,
have negligible contribution in the network average sum-rate.

Proof. See Appendix B.

From Lemma 3.2 and for large values of n, we can limit
our attention to a subset of links for which the direct channel
gain hii is less than c logn, c > 1.

Theorem 3.3. Assuming K is large, the optimum power
allocation policy for (9) is p̂i = g(hii) = U(hii − τn), where
τn > 0 is a threshold level which is a function of n and U(·)
is the unit step function. Also, the maximum network average
sum-rate in (4) is achieved atM = 1 and is given by

Rave ∼ W

α̂
logK. (18)

Proof. The steps of the proof are as follows: First, we derive
an upper bound on the utility function given in (16). Then,
we prove that the optimum power allocation strategy that
maximizes this upper bound is p̂i = g(hii) = U(hii − τn).
Based on this power allocation policy, in Lemma 3.5, we
derive the optimum threshold level τn. We then show that,
using this optimum threshold value, the maximum value
of the utility function in (16) becomes asymptotically the
same as the maximum value of the upper bound obtained in
the first step. Finally, the proof of the theorem is completed
by showing that the maximum network average sum-rate is
achieved atM = 1.
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Step 1 (Upper Bound on the Utility Function). Let us assume
that E[pk] = qn. Using the results of Lemma 3.1, Ri(pi,hii) in
(16) can be expressed as

Ri
(
pi,hii

) ≈ W

M
E

[

log

(

1 +
hii pi

(n− 1)α̂qn + (N0W)/M

)]

(19)

(a)= W

M
log

(

1 +
hii pi
λ

)

, (20)

as K → ∞, where

λ � (n− 1)α̂qn +
N0W

M
. (21)

In the above equations, (a) follows from the fact that hii
is a known parameter for user i and pi = g(hii) is the
optimization parameter. With a similar argument, (15) can
be simplified as

R
(
pi
) ≈ W

M
E

[

log

(

1 +
hll pl

Lil pi + (n− 2)α̂qn + (N0W)/M

)]

,

i /= l,

(22)

(a)= α
W

M

× E

[

log

(

1 +
hll pl

βilhil pi + (n− 2)α̂qn + (N0W)/M

)]

+ (1− α)
W
M

× E

[

log

(

1 +
hll pl

(n− 2)α̂qn + (N0W)/M

)]

(23)

= αW

M
E

[

log

(

1 +
hll pl

βilhil pi + λ′

)]

+ (1− α)
W

M
E
[

log
(

1 +
hll pl
λ′

)]

,

(24)

as K → ∞, where the expectation is computed with respect
to hll , hil, pl and βil, and λ′ � (n − 2)α̂qn + (N0W)/M. Also,
(a) comes from the shadowing model described in (1). Using
(20), (24), and the inequality log(1 + x) ≤ x, ∀x ≥ 0, the
utility function in (16) is upper bounded as

ui
(
pi,hii

) ≤ W

M

hii
λ
pi + n

αW

M
E

[
hll pl

βilhil pi + λ′

]

+ n(1− α)
W

Mλ′
E
[
hll pl

]
.

(25)

Note that the factor (n − 1) in (16) is replaced by n in (25),
which does not affect the validity of the equation. Noting that
hll is independent of hil, i /= l, we have

E

[
hll pl

βilhil pi + λ′
| βil

]

= μ
∫ ∞

0

e−y

yβil pi + λ′
dy

= − μ

βil pi
eλ

′/(βil pi)Ei

(

− λ′

βil pi

)

,

(26)

where

μ � E
[
hll pl

]
, (27)

and Ei(x) � − ∫∞
−x e−t /dt, x < 0 is the exponential-integral

function [27]. Thus, the right hand side of (25) is simplified
as

ui
(
pi,hii

) ≤ W
M

hii
λ
pi − n

αμW

M
E

[
1

βil pi
eλ

′/(βil pi)Ei

(

− λ′

βil pi

)]

+ n(1− α)
W

M

μ

λ′
,

(28)

where the expectation is computed with respect to βil. An
asymptotic expansion of Ei(x) can be obtained as [27, page
951]

Ei(x) = ex

x

⎡

⎣
L−1∑

k=0

k!
xk

+O
(

|x|−L
)
⎤

⎦; L = 1, 2, . . . , (29)

as x → −∞. Setting L = 4, we can rewrite (28) as

ui
(
pi,hii

) ≤ W

M

hii
λ
pi + n

αWμ

Mλ′

× E

⎡

⎣

⎛

⎝1− βil pi
λ′

+ 2

(
βil pi
λ′

)2

− 6

(
βil pi
λ′

)3
⎞

⎠

⎤

⎦

+ n
αWμ

Mλ′
E

⎡

⎣O

⎛

⎝

∣
∣
∣
∣
∣

βil pi
λ′

∣
∣
∣
∣
∣

4
⎞

⎠

⎤

⎦ + n(1− α)
Wμ

Mλ′

(30)

(a)≈ W

M

hii
λ
pi

+ n
αWμ

Mλ′

(

1− �pi
λ′

+ 2κ
(
pi
λ′

)2

− 6η
(
pi
λ′

)3
)

+ n(1− α)
Wμ

Mλ′
,

(31)

� Ξi
(
pi ,hii

)
(32)

as λ′ → ∞, where κ � E[β2il] and η � E[β3il], and (a)
follows from the fact that, for large values of λ′, the term
E[O(|(βil pi)/λ′|4)] can be ignored.
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Step 2 (Optimum Power Allocation Policy for Ξi(pi,hii)).
Using the fact that pi ∈ [0, 1], the second-order
derivative of (31) in terms of pi, ∂2Ξi(pi,hii)/∂p2i =
n(αWμ/Mλ′)(4κ/λ′2− (36η/λ′3)pi), is positive as λ′ → ∞. It
is observed from (29) and (31) that for any value of L > 4, the
second-order derivative of (31) in terms of pi is positive too.
Thus, (31) is a convex function of pi. It is known that a convex
function attains its maximum at one of its extreme points
of its domain [28]. In other words, the optimum power that
maximizes (31) is p̂i ∈ {0, 1}. To show that this optimum
power is in the form of a unit step function, it is sufficient to
prove that pi = g(hii) is a monotonically increasing function
of hii.

Suppose that the optimum power that maximizes
Ξi(pi,hii) is pi = 1. Also, let us define h′ii � hii + δ, where
δ > 0. From (31), it is clear that Ξi(pi,hii) is a monotonically
increasing function of hii, that is,

Ξi
(
pi = 1,h′ii

)
> Ξi

(
pi = 1,hii

)
. (33)

On the other hand, since the optimum power is pi = 1, we
conclude that

Ξi
(
pi = 1,hii

)
> Ξi

(
pi = 0,hii

)
. (34)

Using the fact that Ξi(pi = 0,hii) = Ξi(pi = 0,h′ii), we arrive
at the following inequality

Ξi
(
pi = 1,h′ii

)
> Ξi

(
pi = 0,h′ii

)
. (35)

From (33)–(35), it is concluded that g(hii) is a monoton-
ically increasing function of hii. Consequently, the optimum
power allocation strategy that maximizes Ξi(pi,hii) is a unit
step function, that is,

p̂i =
⎧
⎨

⎩

1 if hii > τn,

0 otherwise,
(36)

where τn is a threshold level to be determined.We call this the
threshold-based on-off power allocation strategy. It is observed
that the optimum power p̂i is a Bernoulli random variable
with parameter qn , that is,

f
(
p̂i
) =

⎧
⎨

⎩

qn, p̂i = 1,

1− qn, p̂i = 0,
(37)

where f (·) is the probability mass function (pmf) of p̂i.
We conclude from (36) and (37) that the probability of link
activation in each cluster is qn � P{hii > τn} = e−τn which is
a function of n.

Step 3 (Optimum Threshold Level τn). From Step 1, it is
observed that for every value of pi we have

ui
(
pi,hii

) ≤ Ξi
(
pi,hii

)
. (38)

The above inequality is also valid for the optimum power
p̂i obtained in Step 2. Thus, using the fact that for X ≤ Y ,
E[X] ≤ E[Y ], we conclude

E
[
ui
(
p̂i,hii

)] ≤ E
[
Ξi

(
p̂i,hii

)]
, (39)

where the expectations are computed with respect to hii. In
the following lemmas, we first derive the optimum threshold
level τn that maximizes E[Ξi( p̂i,hii)], and then prove that
this quantity is asymptotically the same as the optimum
threshold level maximizing E[ui( p̂i,hii)], assuming an on-
off power scheme. In fact, since the threshold τn is fixed and
does not depend on a specific realization of hii, finding the
optimum value of τn requires averaging the utility function
over all realizations of hii. We also show that the maximum
value of E[ui( p̂i,hii)] (assuming an on-off power scheme) is
the same as the optimum value of E[Ξi( p̂i,hii)], proving the
desired result.

Lemma 3.4. For large values of n and given 0 < α ≤ 1,
the optimum threshold level that maximizes E[Ξi( p̂i,hii)] is
computed as

τ̂n ∼ logn. (40)

Also, the maximum value of E[Ξi( p̂i,hii)] scales as
(W/Mα̂) logn.

Proof. See Appendix C.

Lemma 3.5. For large values of n and given 0 < α ≤ 1,

(i) the optimum threshold level that maximizes
E[ui( p̂i,hii)] is computed as

τ̂n = logn− 2 log logn +O(1), (41)

(ii) the probability of link activation in each cluster is given
by

qn = δ
log 2n

n
, (42)

where δ > 0 is a constant,

(iii) the maximum value of E[ui( p̂i,hii)] scales as
(W/Mα̂) logn.

Proof. See Appendix D.

Step 4 (Optimum Power Allocation Strategy that Maximizes
ui(pi,hii)). In order to prove that the utility function in (16)
is asymptotically the same as the upper bound Ξi(pi,hii)
obtained in (31), it is sufficient to show that the low SINR
conditions in (20) and (24) are satisfied. Using (20), (21),
and (42), the SINR is equal to hii pi/λ, where

λ ≈ α̂ δ log2n +
N0W

M
. (43)

It is observed that λ goes to infinity as n → ∞. On the other
hand, since we are limiting our attention to links with hii <
hTh = c logn, we have

hii pi
λ

= O

(
1

logn

)

, (44)
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when n → ∞. Thus, for large values of n, the low SINR
condition, hii pi/λ� 1, is satisfied. With a similar argument,
the low SINR condition for (24) is satisfied. Hence, we can
use the approximation log(1 + x) ≈ x, for x� 1, to simplify
(20) and (24) as follows:

Ri
(
pi,hii

) ≈ W

M

hii
λ
pi , (45)

R
(
pi
) ≈ αW

M
E

[
hll pl

βilhil pi + λ′

]

+ (1− α)
W

Mλ′
E
[
hll pl

]
. (46)

Consequently, the utility function ui(pi,hii) is the same as
the upper bound Ξi(pi,hii) obtained in (31), when n → ∞.
Thus, the optimum power allocation strategy for (9) is the
same as the optimumpower allocation policy that maximizes
Ξi(pi,hii).

Step 5 (Maximum Average Network Sum-rate). Using (8),
the average utility function of each user i, E[ui( p̂i,hii)], i ∈
C j , is the same as the average sum-rate of the links in cluster
C j represented by

R
( j)
ave �

∑

i∈C j

E
[

Ri

(

P̂( j),L
( j)
i

)]

, j = 1, . . . ,M. (47)

where P̂( j) is the on-off powers vector of the links in cluster
C j . In this case, the network average sum-rate defined in (4)
can be written as

Rave =
M∑

j=1
R
( j)
ave, (48)

(a)≈ Wτ̂n
α̂

, (49)

where (a) follows from (D.14) of Appendix D. Using (41),
and noting that n = K/M, we have

Rave ∼ W

α̂
log

K

M
. (50)

Step 6 (Optimum Spectrum Allocation). According to (49),
the network average sum-rate is a monotonically increasing
function of τ̂n. Rewriting (D.10) of Appendix D, which gives
the optimum threshold value for the on-off scheme,

−e−τ̂n log
(

1 +
τ̂neτ̂n

nα̂

)

+
1 + τ̂n

nα̂ + τ̂neτ̂n
= 0, (51)

it can be shown that

τ̂2ne
τ̂n ≈ nα̂, (52)

which implies that τ̂n is an increasing function of n. In deriv-
ing (52), we have used the fact that τ̂neτ̂n /nα̂ � 1, which is
feasible based on the solution given in (41). Therefore, the
average sum-rate of the network is an increasing function of
n and consequently, noting that n = K/M, is a decreasing
function ofM. Hence, the maximum average sum-rate of the
network for large K and 0 < α < 1 is obtained at M = 1 and
this completes the proof of the theorem.

Motivated by Theorem 3.3, we describe the proposed
threshold-based on-off power allocation strategy for single-
hop wireless networks. Based on this scheme, all users
perform the following steps during each block.

(i) Based on the direct channel gain, the transmission
policy is

p̂i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if hii > τn

0 Otherwise.

(53)

(ii) Knowing its corresponding direct channel gain, each
active user i transmits with full power and rate

Ri = log
(

1 +
hii

(n− 1)α̂e−τn + (N0W)/M

)

. (54)

(iii) Decoding is performed over sufficiently large number
of blocks, yielding the average rate of (W/α̂K) logK
for each user, and the average sum-rate ofW/α̂ logK
in the network.

Remark 1. Theorem 3.3 states that the average sum-rate of
the network for fixed M depends on the value of α̂ = α�
and scales as (W/α̂) log(K/M). Also, for values of M such
that logM = o(logK), the network average sum-rate scales
as (W/α̂) logK .

Remark 2. Let mj denote the number of active links in C j .
Lemma 3.5 states that the optimum selection of the threshold
value yields E[mj] = nqn = Θ(log2n). More precisely, it can
be shown that the optimum number of active users scales as
Θ(log2n), with probability one.

Theorem 3.6. Let us assume that K is large and M is fixed.
Then,

(i) for the moderate interference, that is, E[Ii] = Θ(1),
the network average sum-rate is bounded by Rave ≤
Θ(logn);

(ii) for the weak interference, that is, E[Ii] = o(1),
the network average sum-rate is bounded by Rave ≤
o(logn).

Proof. (i) From (4), we have

Rave =
M∑

j=1

∑

l∈C j

E

⎡

⎢
⎢
⎣
W

M
log

⎛

⎜
⎜
⎝1 +

hll p̂l

Il +
N0W
M

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ (55)

(a)≤
M∑

j=1

∑

l∈C j

W

M
E

[

log

(

1 +
p̂lc logn

Il + (N0W)/M

)]

(56)

≤
M∑

j=1

∑

l∈C j

W

M
E

[

log

(

1 +
p̂l c logn
(N0W)/M

)]

(57)
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(b)≤
M∑

j=1

∑

l∈C j

W

M
log

(

1 +
cqn logn
(N0W)/M

)

(58)

(c)≤ cM

N0
nqn logn (59)

where (a) follows from Lemma 3.2, which implies that the
realizations in which hll > c logn for some c > 1 have
negligible contribution in the network average sum-rate, (b)
results from the Jensen’s inequality, E[log x] ≤ log(E[x]),
x > 0. Also, (c) follows from the fact that log(1+x) ≤ x, x ≥ 0.
Since for the moderate interference, E[Ii] = α̂nqn = Θ(1),
and using the fact that M is fixed, we come up with the
following inequality:

Rave ≤ cM

α̂N0
Θ(1) logn

= Θ
(
logn

)
.

(60)

(ii) For the weak interference scenario, where E[Ii] = α̂nqn =
o(1), and similar to the part (i), it is concluded from (59) that

Rave ≤ cM

α̂N0
o(1) logn

= o
(
logn

)
.

(61)

Remark 3. It is concluded from Theorems 3.3 and 3.6 that
the maximum average sum-rate of the proposed network is
scaled as Θ(logK).

So far, we have assumed that M is fixed, that is, it does
not scale with K . In the following, we present some results
for the case that M scales with K . Obviously, we consider
the values of M which are in the interval [1,K]. It should
be noted that the results for M = o(K) are the same as the
results in Theorem 3.3.

Theorem 3.7. In the network with the on-off power allocation
strategy, if M = Θ(K) and 0 < α < 1, then the maximum
network average sum-rate in (4) is less than that of M = 1.
Consequently, the maximum average sum-rate of the network
for every value of 1 ≤M ≤ K is achieved atM = 1.

Proof. See Appendix E.

Remark 4. According to the shadow-fading model proposed
in (1), it is seen that for α = 0, with probability one,
Lki = 0, k /= i. This implies that no interference exists in
each cluster. In this case, the maximum average sum-rate of
the network is clearly achieved by all users in the network
transmitting at full power. It can be shown that for every
value of 1 ≤ M ≤ K , the maximum network average sum-
rate for α = 0 is achieved at M = 1 (See Appendix F for the
proof).

Remark 5. Noting that forM = K only one user exists in each
cluster, all the users can communicate using an interference
free channel. It can be shown that forM = K and every value

of 0 ≤ α ≤ 1, the network average sum-rate is asymptotically
obtained as

Rave ≈W
(
logK − logN0W − γ

)
, (62)

where γ is Euler’s constant (See Appendix G for the proof).
Therefore, for every value of 0 < α < 1, it is observed that the
average sum-rate of the network in (62) is less than that of
M = 1 obtained in (18).

Remark 6. Note that forM = 1, in which the average number
of active links scales as Θ(log2K) (in the optimum on-off
scheme), we have significant energy saving in the network
as compared to the case of M = K , in which all the users
transmit with full power.

3.1. Numerical Results. So far, we have analyzed the average
sum-rate of the network in terms of M and α̂, in the
asymptotic case of K → ∞. For finite number of users,
we have evaluated the network average sum-rate versus the
number of clusters (M) through simulation. For this case, we
assume that all the users in the network follow the threshold-
based on-off power allocation policy, using the optimum
threshold value. In addition, the shadowing effect is assumed
to be lognormal distributed with mean � ≤ 1 and variance
1. Figure 1 shows the average sum-rate of the network versus
M for K = 20 and K = 40 and different values of α and �.
It is observed from this figure that the average sum-rate of
the network is a monotonically decreasing function ofM for
every value of (α,�), which implies that the maximum value
of Rave is achieved at M = 1. This result confirms our claim
in Theorem 3.7.

Based on the above arguments, we have plotted the
average sum-rate of the network versus K for M = 1 and
different values of (α,�). It is observed from Figure 2 that the
network average sum-rate depends strongly on the values of
(α,�). In addition, we can see that the average sum-rate of
the network increases logarithmically in terms of n.

In addition, Figure 3 illustrates the average sum-rate
of the network with the optimized on-off power allocation
strategy compared to the centralized power allocation algo-
rithm and the case that all the links transmit with full power.
In the centralized scheme, it is assumed that the central
node knows all the network information. For each channel
realization and through exhaustive search, the central node
selects the optimum powers for all the links such that
the maximum average sum-rate is achieved. It is seen that
the performance of the proposed on-off power allocation
strategy is better than that of the full power scheme. Also,
the highest average sum-rate is achieved by the centralized
scheme. However in the network with a large number
of links, deploying centralized power allocation schemes
becomes computationally intractable, while in the on-off
power scheme, the average sum-rate is achieved without
coordination among the links.



EURASIP Journal on Advances in Signal Processing 9

0
2

4

6

8

10

12 14 16 18 202

3

4

5

6

7

8

9

10

Number of clustersM

α = 1
α = 0.5
α = 0.1

N
et
w
or
k
av
er
ag
e
su
m
-r
at
e
(b
it
s/
se
c/
H
z)

(a)

0 5 10 15 20 25 3035 40
3

4

5

6

7

8

9

10

11

12

13

Number of clustersM

ϖ = 1
ϖ = 0.4
ϖ = 0.1

N
et
w
or
k
av
er
ag
e
su
m
-r
at
e
(b
it
s/
se
c/
H
z)

(b)

Figure 1: Network average sum-rate versusM for (a) K = 20, α = 1, 0.5, 0.1, and shadowing model with � = 0.5 and variance 1 and for (b)
K = 40, α = 0.5, and shadowing model with � = 1, 0.4, 0.1 and variance 1.
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Figure 2: Network average sum-rate versus K forM = 1, (a) shadowing model with � = 0.5 and variance 1 and α = 1, 0.7, 0.4, 0.1, and b)
shadowing model with � = 1, 0.7, 0.4, 0.1, variance 1, and α = 0.5.

4. Network Guaranteed Sum-Rate

Recalling the definition of the network guaranteed sum-rate
in (5), in this section we aim to find themaximum achievable
guaranteed sum-rate of the network, as well as the optimum
power allocation scheme and the optimum value ofM.

Theorem 4.1. The guaranteed sum-rate of the underlying
network in the asymptotic case of K → ∞ is obtained by

Rg ∼ W

α̂
logK , (63)
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Figure 3: Average sum-rate of the network versus the number of
links K for different power allocation schemes.

which is achievable by the decentralized on-off power allocation
scheme.

Proof. In order to compute the guaranteed rate for link l ∈
C j , we first define the corresponding outage event as follows:

O
( j)
l ≡

{

Rl

(

P( j),L
( j)
l

)

< R(hll)
}

≡
{

log
(

1 +
plhll

Il + (N0W)/M

)

< R(hll)
}

.

(64)

In the following, we give an upper bound and a lower-bound
for Rg and show that these bounds converge to each other as
K → ∞ (or equivalently, n → ∞).

Upper Bound. An upper bound on the guaranteed sum-rate
can be given by lower-bounding the outage probability as
follows:

P
{

O
( j)
l

}

≥ P
{

plhll
Il +N0W/M

< R(hll)
}

(65)

= P
{

plhll − N0W
M

R(hll) < IlR(hll)
}

, (66)

in which we have used the fact that log(1 + x) ≤ x. Denoting
ν = hll , we can write

P
{

O
( j)
l

} (a)≥ P
{

e−Il ξ(ν)R(ν) ≤ eξ(ν)((N0W/M)R(ν)−plν)
}

(67)

(b)≥ 1− e−ξ(ν)((N0W/M)R(ν)−plν)E
[

e−Il ξ(ν)R(ν)
]

, (68)

for some positive ξ(ν). In the above equation, (a) results from
(66), noting that ξ(ν) > 0, and (b) follows from Markov’s
inequality [29, page 77], and the expectation is taken with
respect to Il. The above equation implies that finding an
upper bound for E[e−Il ξ(ν)R(ν)] is sufficient for the lower-
bounding the outage probability. For this purpose, using (2),
we can write

E
[

e−Il ξ(ν)R(ν)
]

= E

⎡

⎣e
−ξ(ν)R(ν) ∑

k∈C j ,k /= l
Lkl pk

⎤

⎦, (69)

(a)=
∏

k ∈ C j

k /= l

E
[

e−ξ(ν)R(ν)Lkl pk
]

, (70)

(b)=
∏

k ∈ C j

k /= l

E
[

e−ξ(ν)R(ν)uklβklhkl pk
]

, (71)

(c)=
(

E
[

e−ξ(ν)R(ν)uklβklhkl pk
])n−1

, k /= l. (72)

In the above equation, (a) follows from the fact that
{Lkl}k∈C j with k /= l, and {pk}k∈C j are mutually indepen-
dent random variables, (b) results from writing Lkl as
uklβklhkl (from (1)), in which ukl is an indicator variable
which takes zero when Lkl = 0 and one, otherwise. (c)
follows from the symmetry which incurs that all the terms
E[e−ξ(ν)R(ν)uklβklhkl pk ], k ∈ C j , are equal. Noting that ukl, βkl ,
hkl , and pk are independent of each other, we have

E
[

e−ξ(ν)R(ν)uklβklhkl pk
]

= Eβkl

[

Ehkl

[

Eukl

[

Epk

[

e−ξ(ν)R(ν)uklβklhkl pk
]]]]

,
(73)

(a)≤ Eβkl

[

Ehkl

[

Eukl

[(
1− qn

)
+ qne−ξ(ν)R(ν)uklβklhkl

]]]

, (74)

(b)= Eβkl

[

Ehkl

[(
1− qn

)
+ qn

(

1− α + αe−ξ(ν)R(ν)βklhkl
)]]

,

(75)

(c)= Eβkl

[

1− αqn +
αqn

1 + βklξ(ν)R(ν)

]

(76)

= Eβkl

[

1− αqnβklξ(ν)R(ν)
1 + βklξ(ν)R(ν)

]

(77)

(d)≤ 1− αqn�ξ(ν)R(ν)
1 + βmaxξ(ν)R(ν)

, (78)

(e)≤ e
−

α̂qnξ(ν)R(ν)
1 + βmaxξ(ν)R(ν) . (79)

In the above equation, (a) follows from the fact that e−θx ≤
(1 − x) + xe−θ , ∀θ ≥ 0, and 0 ≤ x ≤ 1, noting that
E[pk] = qn . (b) results from the definition of ukl, which
is an indicator variable taking zero with probability 1 − α
and one, with probability α. (c) follows from the fact that as
hkl is exponentially distributed, we have Ehkl[e

−ξ(ν)R(ν)βklhkl] =
1/(1 + βklξ(ν)R(ν)). (d) results from the facts that βkl ≤ βmax

and E[βkl] = �. Finally, (e) follows from the fact that 1−x ≤
e−x , ∀x, and noting that α� = α̂.Combining (72) and (79)
and substituting into (68) yields
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P
{

O
( j)
l

}

≥ 1− e−ξ(ν)((N0W/M)R(ν)−plν)e−((n−1)α̂qn ξ(ν)R(ν))/(1+βmax ξ(ν)R(ν))

= 1− e−ξ(ν)R(ν)(((n−1)α̂qn)/(1+βmax ξ(ν)R(ν))+(N0W)/M)(1−(t(ν)/R(ν))), (80)

where t(ν) � (plν)/(((n − 1)α̂qn)/(1 + βmaxξ(ν)R(ν)) +
(N0W)/M).

Consider the cases of E{Il} = ω(1) (strong interfer-
ence) or E{Il} = Θ(1) (moderate interference). Let us

define γ � min(1, (M(n − 1)qnα̂)/N0W). Setting ξ(ν) �
(γ/2)(N0W/M)/(βmaxR(ν)((n− 1)α̂qn − γ/2 (N0W)/M)), we
have ((n − 1)α̂qn)/(1 + βmaxξ(ν)R(ν)) + (N0W)/M = (n −
1)α̂qn + (1− γ/2)(N0W/M), and as a result,

P
{

O
( j)
l

}

≥ 1− e−((γ/2)N0W)/M[(n−1)α̂qn+(1−γ/2)(N0W/M)])/(βmax[(n−1)α̂qn−((γ/2)N0W)/M])(1−(t(ν)/R(ν))

≥ 1− e−(γN0W)/(2Mβmax) (1−(t(ν))/(R(ν))).
(81)

Since (γN0W)/(2Mβmax) = Θ(1), it follows that the

necessary condition to have P{O( j)
l } → 0 is having R(ν) �

t(ν) = (plν)/((n−1)α̂qn+(1−γ/2)(N0W/M). In other words,

R∗(ν) �
plν

(n− 1)α̂qn +
(
1− γ/2

)
(N0W/M)

, (82)

which implies that Rg defined in (5) is upper bounded by

Rg � nWEν

[
plν

(n− 1)α̂qn +
(
1− γ/2

)
(N0W/M)

]

(83)

= nWEν

[
plν

]

(n− 1)α̂qn +
(
1− γ/2

)
(N0W/M)

. (84)

Now, defining Ψn � logn + 2 log logn, we have

E
[
plν

] ≤ E
[
plν | ν ≤ Ψn

]
P{ν ≤ Ψn}

+ E
[
plν | ν > Ψn

]
P{ν > Ψn},

(85)

(a)≤ qnΨn + E[ν | ν > Ψn]P{ν > Ψn}, (86)

(b)= qnΨn + (Ψn + 1)e−Ψn , (87)

(c)∼ qn logn. (88)

In the above equation, (a) comes from the facts that

E
[
plν | ν ≤ Ψn

]
P{ν ≤ Ψn} ≤ ΨnE

[
pl | ν ≤ Ψn

]
P{ν ≤ Ψn}

≤ ΨnE
[
pl
] = Ψnqn,

(89)

and 0 ≤ pl ≤ 1. (b) results from the fact that ν is
exponentially distributed. (c) follows from the facts that (i)
as we are considering the strong and moderate interference
scenarios, it yields that (n − 1)α̂qn = Ω(1), or equivalently,
qn = Ω(1/n), and (ii) the term (Ψn+1)e−Ψn scales as 1/n logn

(due to the definition of Ψn) which is negligible with respect
to the first term qnΨn. Combining (84) and (88) yields

Rg �
Wnqn logn

(n− 1)α̂qn +
(
1− γ/2

)
(N0W/M)

(90)

�
W
α̂

logn (91)

�
W

α̂
logK. (92)

In the case of weak interference, we have

Rg ≤ nW
E
[
plν

]

(N0W/M)

= Mn
N0

E
[
plν

]
.

(93)

Rewriting (87), we obtain

E
[
plν

] ≤ qnΨn + (Ψn + 1)e−Ψn , ∀Ψn > 0. (94)

Selecting Ψn = log(q−2n ) and defining ε � nqn , we have

Rg �
2Mε

N0

(
logn− log

(
ε−1

))
. (95)

As in the weak interference scenario we have ε = o(1), it
follows from the above equation that Rg = o(W logn) in this
scenario. Comparing with (92), it follows that

Rg �
W

α̂
logK. (96)

Lower Bound. For the lower-bound, we consider the on-off
power allocation scheme with τn = logn − 2 log logn. Also,
assume that M = 1 (or equivalently, n = K). Noting qn =
e−τn , we obtain

E[Il] = (n− 1)α̂qn = Θ
(

log2n
)

. (97)
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Therefore, using the result of Lemma 3.1, it is realized that
with probability one (n−1)α̂qn(1−ε) ≤ Il ≤ (n−1)α̂qn(1+ε),
for some ε = o(1). In other words, defining

Φ(ν) � log

(

1 +
plν

(n− 1)α̂qn(1 + ε) + (N0W/M)

)

, (98)

it follows that

P
{

Rl

(

P( j),L
( j)
l

)

< Φ(ν)
}

= o(1), (99)

which implies that R∗(ν) ≥ Φ(ν). As a result,

Rg ≥ nWE[Φ(ν)]

= nWE

[

log

(

1+
plν

(n−1)α̂qn(1+ε)+(N0W/M)

)]

(a)= nW

∫∞

τn
log

(

1+
ν

(n−1)α̂qn(1+ε)+(N0W/M)

)

e−νdν

≥nW
∫ Ψn

τn
log

(

1+
ν

(n−1)α̂qn(1+ε)+ (N0W/M)

)

e−νdν,

(100)

where Ψn � logn + 2 log logn and (a) follows from the on-
off power allocation assumption. As (n − 1)α̂qn(1 + ε) =
Θ(log2n), it follows that ν/((n−1)α̂qn(1+ε)+ (N0W)/M) =
o(1) in the interval [τn,Ψn], which implies that

log

(

1 +
ν

(n− 1)α̂qn(1 + ε) + (N0W/M)

)

∼ ν

(n− 1)α̂qn(1 + ε) + (N0W/M)
,

(101)

in the interval of integration [τn,Ψn]. Hence,

Rg � nW
∫ Ψn

τn

ν

(n− 1)α̂qn(1 + ε) + (N0W/M)
e−νdν

= nW
(n− 1)α̂qn(1 + ε) + (N0W/M)

∫ Ψn

τn
νeνdν

= nW
(n− 1)α̂qn(1 + ε) + (N0W/M)

×
(

(τn + 1)e−τn − (Ψn + 1)e−Ψn

)

(a)∼ nWτnqn
(n− 1)α̂qn(1 + ε) + (N0W/M)

∼ W

α̂
logn

= W

α̂
logK ,

(102)

where (a) results from the facts that (Ψn + 1)e−Ψn � (τn +
1)e−τn and e−τn = qn. Combining the above equation with
(96), the proof of Theorem 4.1 follows.

Remark 7. Similar to the proof steps of Theorem 3.3, it
can be shown that the optimum value of M is equal to
one. In fact, since the maximum guaranteed sum-rate of the
network is achieved in the strong interference scenario in
which the interference term scales as nα̂qn with probability
one, it follows that the maximum network average sum-rate
and the network guaranteed sum-rate are equal. Therefore,
the optimum spectrum sharing for maximizing the network
guaranteed sum-rate is the same as the one maximizing the
average sum-rate of the network (M = 1).

5. Conclusion

In this paper, a distributed single-hop wireless network with
K links was considered, where the links were partitioned
into a fixed number (M) of clusters each operating in a
subchannel with bandwidth W/M. The subchannels were
assumed to be orthogonal to each other. A general shadow-
fading model, described by parameters (α,�), was consid-
ered, where α denotes the probability of shadowing and
� (� ≤ 1) represents the average cross-link gains. The
maximum achievable network throughput was studied in the
asymptotic regime of K → ∞. In the first part of the paper,
the network throughput is defined as the average sum-rate of
the network, which is shown to scale as Θ(logK). Moreover,
it was proved that the optimum power allocation strategy
for each user was a threshold-based on-off scheme, when
K is large. To achieve this performance metric, each user
chooses a noniterative power allocation strategy based on
its direct channel gain as a local information. This approach
prevents imposing more interference on the other links when
the channel condition is poor. The main advantage of this
virtual cooperation is that the network nodes cooperate
unselfishly to improve the network throughput instead of
solely increasing their rates. In the second part, the network
throughput is defined as the guaranteed sum-rate, when
the outage probability approaches zero. In this scenario, it
was demonstrated that the on-off power allocation scheme
maximizes the network guaranteed sum-rate, which scales as
(W/α̂) logK . Moreover, the optimum spectrum sharing for
maximizing the average sum-rate and guaranteed sum-rate
is achieved atM = 1.

The optimum power allocation policy proposed in this
paper maximizes the throughput of the network under the
assumption of a Rayleigh fading channel with the shadowing
effect, while ignoring the effect of the distance-based propa-
gation loss. The proposed channel model can be considered
as a special case of a multiple access channel, where the
distance between each user and its corresponding receiver
(or with an access point) is the same as that of the other
links. In this case, the distance-based propagation loss only
changes the scaling factor in the throughput maximization,
and we have the same scaling Θ(K) for the average sum-rate
of the network. Our future research involves considering the
effect of the path-loss channel model on the optimum power
allocation policy and the throughput maximization, where
we assume that the distance between nodes in each link is
not necessarily the same.
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Appendices

A. Proof of Lemma 3.1

Let us define χk � Lki pk , where Lki is independent of pk ,
for k /= i. Under a quasi static Rayleigh fading channel model,
it is concluded that χk’s are independent and identically
distributed (i.i.d.) random variables with

E
[

χk
]

= E
[
Lki pk

] = α̂qn,

Var
[

χk
]

= E
[

χ2k
]

− E2
[

χk
]

(a)≤ 2ακqn −
(
α̂qn

)2,

(A.1)

where E[h2ki] = 2 and α̂ � α�. Also, (a) follows from the fact
that p2k ≤ pk . Thus, E[p2k] ≤ E[pk] = qn. The interference
Ii =

∑
k∈C j ,k /= i χk is a random variable with mean μn and

variance ϑ2n, where

μn � E[Ii] = (n− 1)α̂qn,

ϑ2n � Var[Ii] ≤ (n− 1)
(

2ακqn −
(
α̂qn

)2
)

≤ (n− 1)
(
2ακqn

)
.

(A.2)

Using the Central Limit Theorem [30, page 183] we obtain

P
{∣
∣Ii − μn

∣
∣ < ψn

} ≈ 1−Q
(
ψn

ϑn

)

(a)≥ 1− e−(ψ
2
n)/(2ϑ

2
n)

(A.3)

for all ψn > 0 such that ψn = o(n1/6ϑn). In the above equation,
the Q(·) function is defined as Q(x) � 1/

√
2π

∫∞
x e−u2/2du,

and (a) follows from the fact that Q(x) ≤ e−x2 /2, ∀x > 0.
Selecting ψn = (nqn)

1/8√2ϑn, we obtain
P
{∣
∣Ii − μn

∣
∣ < ψn

} ≥ 1− e−(nqn)
1/4

. (A.4)

Therefore, defining ε � ψn/μn = O((nqn)
−3/8), we have

P
{
μn(1− ε) ≤ Ii ≤ μn(1 + ε)

} ≥ 1− e−(nqn)
1/4

. (A.5)

Noting that nqn → ∞, it follows that Ii ∼ μn, with
probability one. Now, we show a stronger statement, which
is, the contribution of the realizations in which |Ii − μn| >
ψn in the network average sum-rate is negligible. For this
purpose, we give a lower-bound and an upper bound for
the network average sum-rate and show that these bounds
converge to each other when nqn → ∞. A lower-bound

denoted by R
(L)
ave, can be given by

R
(L)
ave � nWE

[

log

(

1 +
p̂ihii

Ii + (N0W/M)

)

| ∣∣Ii − μn
∣
∣ < ψn

]

× P
{∣
∣Ii − μn

∣
∣ < ψn

}

≥ nWE

[

log

(

1 +
p̂ihii

μn(1 + ε) + (N0W/M)

)]

×
[

1− e−(nqn)
1/4
]

,

(A.6)

which scales as W/α̂ logn (as shown in the proof of
Theorem 3.3, by optimizing the power allocation function).
An upper bound for the network average sum-rate, denoted

by R
(U)
ave , can be given as

R
(U)
ave = nWE

[

log

(

1 +
p̂ihii

Ii + (N0W/M)

)

| ∣∣Ii − μn
∣
∣ < ψn

]

× P
{∣
∣Ii − μn

∣
∣ < ψn

}

+ nWE

[

log

(

1 +
p̂ihii

Ii + (N0W/M)

)

| ∣∣Ii − μn
∣
∣ ≥ ψn

]

× P
{∣
∣Ii − μn

∣
∣ ≥ ψn

}

≤ R
(L)
ave + nWE

[

log

(

1 +
p̂ihii

(N0W/M)

)]

e−(nqn)
1/4

(a)≤ R
(L)
ave + nWE

[
p̂ihii

(N0W/M)

]

e−(nqn)
1/4

(b)= R
(L)
ave +WO

(
nqn logn

)
e−(nqn)

1/4

(c)∼ R
(L)
ave

(A.7)

In the above equation, (a) follows from the fact that log(1 +
x) ≤ x, ∀x ≥ 0, (b) comes from the facts that E{pihii} �
qn logn (this is shown in the proof of Theorem 4.1) and
(N0W)/M is fixed, and finally, (c) results from the fact that
as nqn → ∞, nqne−(nqn)

1/4 → 0. The above equation implies
that substituting Ii by itsmean ((n−1)α̂qn) does not affect the
analysis of the network average sum-rate in the asymptotic
case of K → ∞.

B. Proof of Lemma 3.2

Denoting T j � {l ∈ C j | hll > hTh}, the cardinality of the
set T j is a binomial random variable with the mean nP{hll >
hTh}. From (4), we have

Rave =
M∑

j=1
E

⎡

⎢
⎣

∑

l∈C j

Rl

(

P̂( j),L
( j)
l

)

⎤

⎥
⎦, (B.1)

where

E

⎡

⎢
⎣

∑

l∈C j

Rl

(

P̂( j),L
( j)
l

)

⎤

⎥
⎦ = E

⎡

⎢
⎣

∑

l∈T j

Rl

(

P̂( j),L
( j)
l

)

⎤

⎥
⎦

+ E

⎡

⎢
⎣

∑

l∈TC
j

Rl

(

P̂( j),L
( j)
l

)

⎤

⎥
⎦,

(B.2)
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in which TC
j denotes the complement of T j . Note that

E

⎡

⎢
⎣

∑

l∈T j

Rl

(

P̂( j),L
( j)
l

)

⎤

⎥
⎦

= n
W

M
E

[

log

(

1 +
hll p̂l

Il + (N0W)/M

)

| hll > hTh

]

× P{hll > hTh}

(B.3)

≤ n
W

M
E
[

log
(

1 +
hll

(N0W)/M

)

| hll > hTh

]

× P{hll > hTh}
(B.4)

(a)≤ n

N0
e−hThE[hll | hll > hTh] (B.5)

= n

N0
e−hTh(1 + hTh), (B.6)

where (a) follows from log(1+x) ≤ x, for x ≥ 0. It is observed
that for hTh = c logn, where c > 1, the right hand side of (B.6)
tends to zero as n → ∞. Thus,

lim
n→∞E

⎡

⎢
⎣

∑

l∈T j

Rl

(

P̂( j),L
( j)
l

)

⎤

⎥
⎦ = 0. (B.7)

Consequently,

lim
n→∞

M∑

j=1
E

⎡

⎢
⎣
∑

l∈T j

Rl

(

P̂( j),L
( j)
l

)

⎤

⎥
⎦ = 0, (B.8)

and this completes the proof of the lemma.

C. Proof of Lemma 3.4

Using (31), we have

E
[
Ξi

(
p̂i,hii

)] ≈ W

Mλ
E
[
hii p̂i

]
+ n

αWμ

Mλ′

×
(

1− �

λ′
E
[
p̂i
]
+
2κ
λ′2

E
[
p̂2i

]− 6η
λ′3

E
[

p̂3i
])

+ n(1− α)
Wμ

Mλ′
,

(C.1)

(a)= W
Mλ

(1 + τn)qn − nα̂W
Mλ′2

(1 + τn)q2n

+
nαW2κ
Mλ′3

(1 + τn)q2n

− nαW6η
Mλ′4

(1 + τn)q2n +
nW

Mλ′
(1 + τn)qn

(C.2)

(b)≈ W
Mα̂

(

1+τn+
ξ1
n2

(1+τn)eτn − ξ2
n3

(1+τn)e2τn
)

,

(C.3)

where ξ1 � 2κ/(�α̂) and ξ2 � 6η/(�α̂2). In the above
equation, (a) follows from the fact that E[hii p̂i] = μ = (1 +
τn)qn, and (b) results from (i) λ = (n− 1)α̂qn + (N0W/M) ≈
nα̂qn and λ′ ≈ nα̂qn incurred by the fact that λ � 1 and
(ii) qn = e−τn . Since nα̂qn → ∞, it follows that the right
hand side of (C.3) is a monotonically increasing function of
τn, which attains its maximum when τn takes its maximum
feasible value. The maximum feasible value of τn, denoted as
τ̂n, can be obtained as

nα̂e−τn −→ ∞ =⇒ τ̂n ∼ logn. (C.4)

Thus, the maximum achievable value for E[Ξi( p̂i,hii)] scales
asW/(Mα̂) logn.

D. Proof of Lemma 3.5

(i) Using (8) and assuming that all users follow the on-off
power allocation policy, E[ui( p̂i,hii)] can be expressed as

E
[
ui
(
p̂i ,hii

)] =
∑

l∈C j

E
[

Rl

(

P̂( j),L
( j)
l

)]

, j = 1, . . . ,M,

(D.1)

where the expectation is computed with respect to hll and Il.
Noting that qn = P{hll > τn}, we have

E
[

Rl

(

P̂( j),L
( j)
l

)]

= E
[

Rl

(

P̂( j),L
( j)
l

)

| hll > τn
]

× P{hll > τn}

+ E
[

Rl

(

P̂( j),L
( j)
l

)

| hll ≤ τn
]

× P{hll ≤ τn}

= qnE
[

Rl

(

P̂( j),L
( j)
l

)

| hll > τn
]

+
(
1− qn

)
E
[

Rl

(

P̂( j),L
( j)
l

)

| hll ≤ τn
]

.

(D.2)

Since for hll ≤ τn, p̂l = 0, it is concluded that

E
[

Rl

(

P̂( j),L
( j)
l

)]

= qnW

M
E
[

log
(

1 +
hll

Il + (N0W)/M

)

| hll > τn

]

.
(D.3)
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For large values of K , we can apply Lemma 3.1 to obtain

E
[

Rl

(

P̂( j),L
( j)
l

)]

≈ qnW

M
E

[

log

(

1 +
hll

(n− 1)α̂qn + (N0W)/M

)

| hll > τn

]

(D.4)

= qnW

M
E
[

log
(

1 +
hll
λ

)

| hll > τn

]

, (D.5)

where the expectation is computed with respect to hll . Using
the Taylor series for log(1 + x), (D.5) can be written as

E
[

Rl

(

P̂( j),L
( j)
l

) ]

≈ qnW

M

∞∑

k=1

(−1)k−1
kλk

E
[

hkll | hll > τn
]

(a)≈ qnW

M

∞∑

k=1

(−1)k−1
k
(
nα̂qn

)k E
[

hkll | hll > τn
]

(b)≈ qnW

M

∞∑

k=1

(−1)k−1τkn
k
(
nα̂qn

)k

= qnW

M
log

(

1 +
τn

nα̂qn

)

(c)= e−τnW
M

log
(

1 +
τneτn

nα̂

)

,

(D.6)

where (a) follows from the fact that for large values of n, λ ≈
nα̂qn. Also, (b) results from the fact that under a Rayleigh
fading channel model,

E[hll | hll > τn] = 1 + τn,

E
[

hkll | hll > τn
]

= τkn + kE
[

hk−1ll | hll > τn
]

.
(D.7)

Since λ � 1, the term E[h(k−1)ll | hll > τn]/λk � E[hk−1ll |
hll > τn]/λk−1 , which implies that we can neglect this term
and simply write E[hkll|hll > τn] ≈ τkn . (c) results from qn =
e−τn . Thus, (D.1) can be simplified as

E
[
ui
(
p̂i,hii

)] ≈ ne−τnW
M

log
(

1 +
τneτn

nα̂

)

. (D.8)

In order to find the optimum threshold value:

τ̂n = argmax
τn

E
[
ui
(
p̂i ,hii

)]
, (D.9)

we set the derivative of the right hand side of (D.8) with
respect to τn to zero

−e−τ̂n log
(

1 +
τ̂neτ̂n

nα̂

)

+
1 + τ̂n

nα̂ + τ̂neτ̂n
= 0, (D.10)

which after some manipulations yields

τ̂n = logn− 2 log logn +O(1). (D.11)

(ii)Using (D.11), it is concluded that

qn = e−τn = δ
log2n
n

, (D.12)

where δ is a constant.
(iii)Using (D.11), we have

τ̂neτ̂n

nα̂
= Θ

(
1

logn

)

, (D.13)

which implies that the right hand side of (D.8) can be written
as

RH(D− 8) ≈ Wτ̂n
Mα̂

. (D.14)

Thus, the maximum value for E[ui( p̂i,hii)] in (D.8) scales as
W/(Mα̂) logn.

E. Proof of Theorem 3.7

Let us define A j as the set of active links in cluster j. The
random variable mj denotes the cardinality of the set A j .
Noting that for M = Θ(K), limK→∞(M/K) is constant, it
is concluded that n and mj ∈ [1,n] do not grow with K . To
obtain the network average sum-rate, we assume that among
M clusters, Γ clusters have mj = 1 and the rest have mj > 1.
We first obtain an upper bound on the average sum-rate in
each cluster when mj = 1, 1 ≤ j ≤ M. Clearly, since only
one user in each cluster activates its transmitter, Ii = 0. Thus,
by using (47), the maximum achievable average sum-rate of
cluster C j is computed as

R
( j)
ave =

W

M
E
[

log
(

1 +
M

N0W
hmax

)]

, (E.1)

where hmax �max{hii}i∈C j
is a random variable. Since log x is

a concave function of x, an upper bound of (E.1) is obtained
through Jensen’s inequality, E[log x] ≤ log(E[x]), x > 0.
Thus,

R
( j)
ave ≤

W

M
log

(

1 +
M

N0W
E[hmax]

)

. (E.2)

Under a Rayleigh fading channel model and noting that {hii}
is a set of i.i.d. random variables over i ∈ C j , we have

Fhmax

(
y
) = P

{
hmax ≤ y

}
, y > 0

=
∏

i∈C j

P
{
hii ≤ y

}

= (1− e−y)n,

(E.3)

where Fhmax (·) is the cumulative distribution function (CDF)
of hmax. Hence,

E[hmax] =
∫∞

0
nye−y(1− e−y)n−1dy. (E.4)



16 EURASIP Journal on Advances in Signal Processing

Since (1− e−y)n−1 ≤ 1, we arrive at the following inequality:

E[hmax] ≤
∫∞

0
nye−ydy = n. (E.5)

Consequently, the upper bound of (E.2) can be simplified as

R
( j)
ave ≤

W

M
log

(

1 +
K

N0W

)

. (E.6)

For mj > 1 and due to the shadowing effect with
parameters (α,�), the average sum-rate of cluster C j can be
written as

R
( j)
ave =

∑

i∈A j

W

M
E

[

log

(

1 +
hii

∑

k∈A j ,k /= i ukβkihki + (N0W)/M

)]

,

(E.7)

where uk’s are Bernoulli random variables with parameter α.
Thus,

R
( j)
ave =

W

M

∑

i∈A j

mj−1∑

l=0

⎛

⎝
mj − 1

l

⎞

⎠αl(1− α)mj−1−l

× E
[

log
(

1 +
hii

Σl + (N0W)/M

)]

= W

M

∑

i∈A j

(1− α)mj−1E
[

log
(

1 +
hii

(N0W)/M

)]

+
W

M

∑

i∈A j

mj−1∑

l=1

⎛

⎝
mj − 1

l

⎞

⎠αl(1− α)mj−1−l

× E
[

log
(

1 +
hii

Σl + (N0W)/M

)]

,

(E.8)

where Σl is the sum of l i.i.d random variables {Zi}li=1,
where Zi � βkihki, k /= i. For mj > 1, Σl is greater than
the interference term caused by one interfering link. Thus,
an upper bound on the average sum-rate of cluster C j is
computed as

R
( j)
ave ≤

W

M
mj(1− α)mj−1E

[

log
(

1 +
Y

(N0W)/M

)]

+
W

M

∑

i∈A j

mj−1∑

l=1

⎛

⎝
mj − 1

l

⎞

⎠αl(1− α)mj−1−l

× E
[

log
(

1 +
Y

Zi + (N0W/M)

)]

,

(E.9)

where Y � hmax = max{hii}i∈C j
. According to binomial

formula, we have

mj−1∑

l=1

⎛

⎝
mj − 1

l

⎞

⎠αl(1− α)mj−1−l = 1− (1− α)mj−1. (E.10)

Thus,

R
( j)
ave ≤

W
M

mj(1− α)mj−1E
[

log
(

1 +
Y

(N0W/M)

)]

+
W

M
mj

(

1− (1− α)mj−1
)

× E

[

log

(

1 +
Y

βkihki + (N0W/M)

)]

.

(E.11)

We have

E

[

log

(

1 +
Y

βkihki + (N0W/M)

)]

≤ E

[

log

(

1 +
Y

βminhki

)]

.

(E.12)

Defining Z � βminhki and X � Y/Z, the CDF of X can be
evaluated as

FX(x) = P{X ≤ x}, x > 0

= P{Y ≤ Zx}

=
∫∞

0
P{Y ≤ Zx | Z = z} fZ(z)dz

=
∫∞

0
(1− e−zx)n

1
βmin

e−z/βmindz

=
∫∞

0

(

1− e−tβminx
)n
e−tdt.

(E.13)

Thus, the probability density function of X can be written as

fX (x) = dFX(x)
dx

= βmin

∫∞

0
nte−t(1+βminx)

(

1− e−tβminx
)n−1

dt

≤ βmin

∫∞

0
nte−t(1+βminx)dt

= nβmin
(
1 + βminx

)2 .

(E.14)

Using the above equation, the right hand side of (E.12) can
be upper bounded as

E

[

log

(

1 +
Y

βminhki

)]

=
∫∞

0
fX (x) log(1 + x)dx

≤ nβmin

∫∞

0

log(1 + x)
(
1 + βminx

)2 dx

= −n log βmin

1− βmin

= Θ(1),

(E.15)
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where the last line follows from the fact that 0 < βmin ≤ 1.
Substituting the above equation in (E.11) yields

R
( j)
ave ≤

W

M
mj(1− α)mj−1E

⎡

⎢
⎢
⎣log

⎛

⎜
⎜
⎝1 +

Y
N0W

M

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

+
W

M
mj

(

1− (1− α)mj−1
)

Θ(1)

(a)≤ W

M
mj(1− α)mj−1 log

(

1 +
K

N0W

)

+Θ
(
W

M

)

= W

M
mj(1− α)mj−1 log

(

1 +
K

N0W

)

[1 + o(1)],

(E.16)

where (a) follows from (E.6) and the fact that mj ∈
{2, . . . ,n} does not scale with K .

Let us assume, that among M clusters, Γ clusters have
mj = 1 and for the M − Γ of the rest, the number of active
links in each cluster is greater than one. By using (E.6) and
(E.16), an upper bound on the network average sum-rate is
obtained as

Rave ≤ ΓW

M
log

(

1 +
K

N0W

)

+ (M − Γ)
W

M
mj(1− α)mj−1

× log
(

1 +
K

N0W

)

[1 + o(1)].

(E.17)

To compare this upper bounded with the computed network
average sum-rate in the case ofM = 1, we note that as � ≤ 1
and α < 1, we have α̂ < 1, and consequently,

ΓW

M
log

(

1 +
K

N0W

)

<
ΓW

Mα̂
log

(

1 +
K

N0W

)

. (E.18)

To prove that the maximum network average sum-rate
obtained in (E.17) is less than that value obtained forM = 1
from (18), it is sufficient to show that

(M − Γ)
W

M
mj(1− α)mj−1 log

(

1 +
K

N0W

)

< (M − Γ)
W

Mα̂
log

(

1 +
K

N0W

) (E.19)

or

mj(1− α)mj−1 <
1
α̂
. (E.20)

Since α̂ ≤ α, it is sufficient to show that mj(1 − α)mj−1 <
1
α
.

Defining Λ(α) = αmj(1− α)mj−1, we have

∂Λ(α)
∂α

= mj(1− α)mj−2
(

1− αmj

)

. (E.21)

Thus, the extremum points of Λ(α) are located at α = 1 and
α = 1/mj , where mj ∈ {2, . . . ,n}. It is observed that

Λ(1) = 0 < 1,

Λ

(
1
mj

)

=
(
mj − 1

mj

)mj−1
< 1.

(E.22)

Since Λ(α) < 1, we conclude (E.19), which implies that the
maximum average sum-rate of the network forM = Θ(K) is
less than that ofM = 1. Knowing the fact that forM = o(K),
similar to the result of Theorem 3.3, one can show that the
maximum average sum-rate of the network is achieved at
M = 1, it is concluded that using the on-off allocation
scheme the maximum average sum-rate of the network is
achieved atM = 1, for all values of 1 ≤M ≤ K .

F. Proof of Remark 4

Using (3) and (4) and for every value of 1 ≤ M ≤ K and
α = 0, the average sum-rate of the network is simplified as

Rave =
M∑

j=1

∑

i∈C j

E
[
W

M
log

(

1 +
hii

(N0W)/M

)]

, (F.1)

where the expectation is computed with respect to hii. Under
a Rayleigh fading channel condition and using the fact that
n = K/M, (F.1) can be written as

Rave = nW

∫∞

0
e−x log

(

1 +
M

N0W
x
)

dx (F.2)

= KW

M
e(N0W)/ME1

(
N0W

M

)

(F.3)

= KW

M
e(N0W)/M

∫∞

1

e−t(N0W)/M

t
dt, (F.4)

where E1(x) = −Ei(−x) = ∫∞
1 (e−tx/t)dt , x > 0. Taking the

first-order derivative of (F.4) in terms ofM yields

∂Rave

∂M
= −KW

M2
e(N0W)/M

(

1 +
N0W

M

)

E1

(
N0W

M

)

+
KW

M2
.

(F.5)

Since for every value of N0W , (∂Rave)/∂M is negative,
it is concluded that the network average sum-rate is a
monotonically decreasing function of M. Consequently, the
maximum average sum-rate of the network for α = 0 and
every value of 1 ≤M ≤ K is achieved atM = 1.

G. Proof of Remark 5

From (3) and (4), the average sum-rate of the network is
given by

Rave = E

⎡

⎣
K∑

i=1
Ri

(

P̂( j),L
( j)
i

)
⎤

⎦

= W

K

K∑

i=1
E
[

log
(

1 +
hii

(N0W)/K

)]

,

(G.1)

where the expectation is computed with respect to hii. Under
a Rayleigh fading channel condition, we have a

Rave =W
∫∞

0
e−x log

(

1 +
K

N0W
x
)

dx (G.2)

=We(N0W)/KE1

(
N0W

K

)

. (G.3)
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To simplify (G.3), we use the following series representation
for E1(x),

E1(x) = −γ + log
(
1
x

)

+
∞∑

s=1

(−1)s+1xs
s · s! , x > 0, (G.4)

where γ is Euler’s constant and is defined by the limit [27]

γ � lim
s→∞

⎛

⎝
s∑

k=1

1
k
− log s

⎞

⎠ = 0.577215665 . . . . (G.5)

Thus, (G.3) can be simplified as

Rave =We(N0W)/K

×
⎛

⎝−γ + log
(

K

N0W

)

+
∞∑

s=1

(−1)s+1
s · s!

(
N0W

K

)s
⎞

⎠.

(G.6)

In the asymptotic case of K → ∞,

e(N0W)/K ≈ 1,

∞∑

s=1

(−1)s+1
s · s!

(
N0W

K

)s

≈ 0.
(G.7)

Consequently, the network average sum-rate for M = K is
asymptotically obtained by

Rave ≈W
(
logK − logN0W − γ

)
. (G.8)
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