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It is very important for generating an orthonormal multiwavelet system to construct a conjugate quadrature filter (CQF). In this
paper, a general method of constructing a length-J + 1 CQF with multiplicity r and scale a from a length-J CQF is obtained. As
a special case, we study generally the construction of a length-J + 1 CQF with multiplicity 2 and scale 2 which can generate a
compactly supported symmetric-antisymmetric orthonormal multiwavelet system from a length-J CQF.

1. Introduction and Preliminaries

Wavelet analysis has been proven to be a very powerful tool
in harmonic analysis, neural networks, numerical analysis,
and signal processing, especially in the area of image
compression [1]. Symmetry is a crucial property in signal
processing. It is well known that the scalar orthonormal
wavelet bases with compact support have no symmetry.
Multiwavelets initiated by Goodman et al. [2] overcome
the drawback. In practice, orthonormal multiwavelets are
of interest because they can be real, compactly supported,
continuous, and symmetric. The advantages of multiwavelets
and their promising features in applications have attracted
a great deal of interest and effort to extensively study them.
For example, the advances about multiwavelets can be seen
in [3–11]. Yang [9] provided a method of deriving a length-
J + 1 conjugate quadrature filter with multiplicity r from a
length-J conjugate quadrature filter. In this paper, we extend
the results of [9] and get a general method of constructing
a length-J + 1 conjugate quadrature filter with multiplicity
r and scale a from a length-J conjugate quadrature filter.
The corresponding results in [9] are special cases of our
results.

Function vectors Ψl(x)=(ψl,1(x),ψl,2(x), . . . ,ψl,r(x))
T, l=

1, 2, . . . , a − 1 are called orthonormal multiwavelets with
scale a associated with an orthonormal multiscaling function
vector Φ(x) = (φ1(x),φ2(x), . . . ,φr(x))

T if they generate a

multiresolution analysis (MRA) {Vj} j∈Z of L2(R) and satisfy
the following orthonormal conditions:

〈Φ(· − k),Φ(· − l)〉 = δk,lIr ,

〈Ψk(· −m),Ψl(· − n)〉 = δk,lδm,nIr ,
(1)

and the following refinement equations:

Φ(x) = 1
a

∑

k∈Z
PkΦ(ax − k),

Ψl(x) = 1
a

∑

k∈Z
Ql,kΦ(ax − k), l = 1, 2, . . . , a− 1,

(2)

where {Pk}k∈Z and {Ql,k}k∈Z , l = 1, 2, . . . , a − 1 are r × r
matrix sequences. The sequence {Pk}k∈Z is called low-pass
filter, and the sequences {Ql,k}k∈Z , l = 1, 2, . . . , a − 1 are
called high-pass filters. {Φ(x),Ψ1(x),Ψ2(x), . . . ,Ψa−1(x)} is
an orthonormal multiwavelet system generated by these
filters. The Fourier transforms of these filters, that is, P(ω) =
(1/a)

∑
k∈Z Pke−ikω are Ql(ω) = (1/a)

∑
k∈Z Ql,ke−ikω, l =

1, 2, . . . , a − 1, and i = √−1 are called refinement mask
and multiwavelet masks, respectively. The orthonormal
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conditions (1) imply the following conditions called the
perfect reconstruction (PR) conditions [2, 6]:

a−1∑

k=0
P
(
ω + 2kπ

a

)
P∗
(
ω + 2kπ

a

)
= Ir , (3)

a−1∑

k=0
P
(
ω + 2kπ

a

)
Q∗l

(
ω + 2kπ

a

)
= 0r ,

l = 1, 2, . . . , a− 1,

(4)

a−1∑

k=0
Ql

(
ω + 2kπ

a

)
Q∗m

(
ω + 2kπ

a

)
= δl,mIr ,

l,m = 1, 2, . . . , a− 1.

(5)

If the sequence {Pk}k∈Z satisfies (3), it is called a matrix
conjugate quadrature filter (CQF). In this paper, we suppose
Pk = 0r for all k < 0 or k > J , where J ∈ Z+. For the matrix
CQF {Pk}Jk=0 with multiplicity r = 2 and scale a = 2, the
following conditions:

P0,PJ are nonzero matrices (6)

Pk = APJ−kA, k = 0, 1, . . . , J , where A =
⎡
⎣
1 0

0 −1

⎤
⎦,

(7)

P(0) =
⎡
⎣
1 0

0 α

⎤
⎦, for some number |α| < 1 (8)

are called SA conditions [8]. The condition (7) implies
that the corresponding multiscaling function vector forms a
symmetric-antisymmetric pair as shown in the following [5]:

Pk = APJ−kA, k = 0, 1, . . . , J

⇐⇒ P(ω) = AP(−ω)Ae−iJω

⇐⇒ φi(x) = (−1)i−1φi(J − x), i = 1, 2.

(9)

The condition (8) is a necessary condition [7] for a low-
pass filter satisfying (6) and (7) to generate a multiresolution
analysis.

The paper is organized as follows. In Section 2, we
provide a general method of constructing a length-J + 1
CQF with complicity r and scale a from a length-J CQF. In
Section 3, as the application of Section 2, we study generally
the construction of a length-J + 1 CQF with multiplicity
2 and scale 2 which can generate a compactly supported
symmetric-antisymmetric orthonormal multiwavelet system
from a length-J CQF. In Section 4, we give two numerical
examples.

2. A Study onMatrix Conjugate Quadrature
Filters with Arbitrary Multiplicity and
Arbitrary Scale

Lemma 1. Let M(ω) be a r × r matrix whose entries are
linear polynomials of e−iω with real coefficients, thenM(ω) is a
unitary matrix if and only if

M(ω) =M(0)
(
Ir −H +He−iω

)
, (10)

where the r × r matrixM(0) satisfies

M(0)MT(0) = Ir , (11)

and the r × r matrix H satisfies

HT = H , H2 = H. (12)

Proof. It is obvious that the right side of (10) is a unitary
matrix. We only prove the forward direction. Assume that
M(ω) is a unitary matrix, then M(0) satisfies (11), and then
we have

M(ω) =M(0)
(
F +He−iω

)
, (13)

where F,H are r×r matrices whose entries are real numbers.
Let ω = 0, then we have

F = Ir −H. (14)

Then

M∗(ω)M(ω)

=
(
Ir −HT +HTeiω

)
MT(0)M(0)

(
Ir −H +He−iω

)

= Ir −H −HT + 2HTH +
(
H −HTH

)
e−iω

+
(
HT −HTH

)
eiω = Ir ,

(15)

which implies

H = HTH = HT. (16)

Hence H satisfies (12).

Theorem 1. Suppose that the r × r matrix sequence {PO,k}J−1k=0
is a length-J CQF,M is an r × r matrix satisfying (11), and H
is an r × r matrix satisfying (12). Let

PN,k =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PO,0M(Ir −H), k = 0,

PO,k−1MH + PO,kM(Ir −H), 0 < k < J

PO,J−1MH , k = J ,

, (17)
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then the r× r matrix sequence {PN,k}Jk=0 is a length-J +1 CQF.

Remark 1. We adopt the subscript “O” in {PO,k}J−1k=0 to
indicate that it is an old CQF, and adopt the subscript “N”
in {PN ,k}Jk=0 to indicate that it is a new CQF.

Proof. Let

M(ω) =M
(
Ir −H +He−iω

)
. (18)

By Lemma 1,M(ω) is a unitary matrix. Using (17), we have

PN (ω) = PO(ω)M(ω). (19)

Then

a−1∑

k=0
PN

(
ω + 2kπ

a

)
P∗N
(
ω + 2kπ

a

)
= Ir . (20)

Therefore, {PN ,k}Jk=0 satisfies (3). Hence {PN ,k}Jk=0 is a
length-J + 1 CQF.

3. Some Results onMatrix Conjugate
Quadrature Filters withMultiplicity 2
and Scale 2

Lemma 2 (see [5]). Let{Pk}Jk=0 be a 2 × 2 matrix sequence,
then the following two statements are equivalent:

(i) Pk = APJ−kA, k = 0, 1, . . . , J , where A = [ 1 0
0 −1

]
.

(ii) P(ω) = AP(−ω)Ae−iJω, where P(ω) is the Fourier
transform of {Pk}Jk=0.

Theorem 2. Let {PO,k}J−1k=0 be a CQF with multiplicity r = 2
and scale a = 2 satisfying SA conditions and let M,H be two
2 × 2 matrices satisfying (11) and (12), respectively. Then the
new CQF {PN,k}Jk=0 constructed by (17) satisfies SA conditions
if and only if

M =
⎡
⎣

1 0

0 ±1

⎤
⎦, H =

⎡
⎢⎢⎣

1
2

±1
2

±1
2

1
2

⎤
⎥⎥⎦. (21)

Proof. We first prove the reverse direction. Let

M =
⎡
⎣
1 0

0 1

⎤
⎦, H =

⎡
⎢⎢⎣

1
2

1
2

1
2

1
2

⎤
⎥⎥⎦, (22)

then

M(ω) =

⎡
⎢⎢⎣

1
2
+
1
2
e−iω −1

2
+
1
2
e−iω

−1
2
+
1
2
e−iω

1
2
+
1
2
e−iω

⎤
⎥⎥⎦, (23)

which satisfies

AM(ω) =M(−ω)Ae−iω. (24)

Using Lemma 2 as well as (19) and (23), we have

PN (ω) = PO(ω)M(ω) = APN (−ω)Ae−iJω. (25)

Hence {PN ,k}Jk=0 satisfies (7) by Lemma 2. Because {PO,k}J−1k=0
satisfies (8), we have

PN (0) = PO(0)M(0) = PO(0) =
⎡
⎣
1 0

0 α

⎤
⎦,

for some number |α| < 1.

(26)

Hence {PN ,k}Jk=0 satisfies (8). It is obvious that {PN ,k}Jk=0
satisfies (6). So {PN ,k}Jk=0 satisfies SA conditions. The proof
of the other cases of M,H in (21) is similar.Then we prove
the forward direction. Suppose that the new CQF {PN ,k}Jk=0
constructed by (17) satisfies SA conditions. LetM =

[
a b
c d

]
,

then

PN (0) = PO(0)M =
⎡
⎣
a b

αc αd

⎤
⎦, (27)

which satisfies (8). Noting thatM satisfies (11), we can get

a = 1, d = ±1, b = c = 0. (28)

Hence

M =
⎡
⎣
1 0

0 ±1

⎤
⎦. (29)

Because H satisfies (12), we have

H =
⎡
⎣

a ±√a− a2

±√a− a2 1− a

⎤
⎦, or H = Ir , a > 0.

(30)

Hence

M(ω)

=M

⎡
⎢⎢⎢⎣

1− a + ae−iω ∓√a− a2±√a− a2e−iω

√
a− a2±√a− a2e−iω

a + (1− a)e−iω

⎤
⎥⎥⎥⎦,

or M(ω) =Me−iω.
(31)

Because {PN ,k}Jk=0 satisfies (7), by Lemma 2 and (19), we
have

PN (ω) = APN (−ω)Ae−iJω = APO(−ω)AM(ω)e−i(J−1)ω .
(32)

Hence

AM(ω) =M(−ω)Ae−iω. (33)
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Figure 1: The scaling functions on interval [0, 2] generated by the new lengh-5 low-pass filter.

Using (31) and (33), we have

H =

⎡
⎢⎢⎣

1
2

±1
2

±1
2

1
2

⎤
⎥⎥⎦. (34)

Similarly to the above theorem, we can get the following
theorem.

Theorem 3. Suppose that {PO,k}J−1k=0 and {QO,l,k}L−1k=0, l =
1, 2, . . . , a − 1, L ∈ Z+ generate a symmetric-antisymmetric
orthonormal multiwavelet system with multiplicity r = 2 and
scale a = 2. {PN,k}Jk=0 and {QN,l,k}Lk=0, l = 1, 2, . . . , a − 1
are given by (17) from {PO,k}J−1k=0 and {QO,l,k}L−1k=0 , respectively.
Then {PN,k}Jk=0 and {QN,l,k}Lk=0, l = 1, 2, . . . , a − 1 generate
a new symmetric-antisymmetric orthonormal multiwavelet
system.

4. Numerical Examples

Example 1. The following CQF was constructed in [3] by
fractal interpolation:

P0 = 1
20

⎡
⎣

12 16
√
2

−√2 −6

⎤
⎦, P1 = 1

20

⎡
⎣
12 0

9
√
2 20

⎤
⎦,

P2 = 1
20

⎡
⎣

0 0

9
√
2 −6

⎤
⎦, P3 = 1

20

⎡
⎣

0 0

−√2 0

⎤
⎦.

(35)

Let

M =

⎡
⎢⎢⎢⎣

1
2

−
√
3
2√

3
2

1
2

⎤
⎥⎥⎥⎦, H =

⎡
⎢⎢⎢⎣

1
4

−
√
3
4

−
√
3
4

3
4

⎤
⎥⎥⎥⎦, (36)

we get the following new length-5 CQF with (17):

P0 = 1
20

⎡
⎣
8
√
6 8

√
2

−3√3 −3

⎤
⎦,

P1 = 1
20

⎡
⎢⎣

6 −6√3

10
√
3−

√
2
2

10 +

√
6
2

⎤
⎥⎦,

P2 = 1
20

⎡
⎢⎣

6 −6√3

−3√3 + 9
√
2

2
−3− 9

√
6

2

⎤
⎥⎦,

P3 = 1
20

⎡
⎢⎣

0 0

9
√
2

2
−9
√
6

2

⎤
⎥⎦,

P4 = 1
20

⎡
⎢⎣

0 0

−
√
2
2

√
6
2

⎤
⎥⎦.

(37)

The scaling functions generated by the lengh-5 low-pass
filter are shown in Figure 1.

In signal processing, an original signal is decomposed by
the low-pass filters and the high-pass filters into different
frequency components, and then each component with a
resolution matched to its scale is studied. Given a test signal
which is the function

f (t) = sin t + sin 3t + sin 5t (38)

we decompose the test signal with the old lengh-4 low-pass
filter and the new lengh-5 low-pass filter of the example. The
results are shown in Figure 2.
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Figure 2: Decompositions of the test signal, prefiltered with Haar on interval [0, 40].
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Figure 3: The scaling functions on interval [0, 2] generated by the lengh-3 low-pass filter with θ = π/6.
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Figure 4: The wavelet functions on interval [0, 2] generated by the lengh-3 high-pass filter with θ = π/6.
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Figure 5: Decompositions of the test signal, prefiltered with Haar on interval [0, 40].
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Example 2. The following lengh-2 low-pass filter and
high-pass filter constructed in [8] generate a symmetric-
antisymmetric orthonormal multiwavelet system with mul-
tiplicity r = 2 and scale a = 2:

P0 =
⎡
⎣

1 0

cos θ sin θ

⎤
⎦, P1 =

⎡
⎣

1 0

− cos θ sin θ

⎤
⎦,

Q0 =
⎡
⎣

0 −1
− sin θ cos θ

⎤
⎦, Q1 =

⎡
⎣

0 1

sin θ cos θ

⎤
⎦,

(39)

where θ ∈ [0, 2π) \ {π/2, 3π/2}. Let M = [
1 0
0 −1

]
, H =[

1/2 1/2
1/2 1/2

]
, then we can get the following lengh-3 low-pass

filter and high-pass filter which generate a new symmetric-
antisymmetric orthonormal multiwavelet system using (17):

P0 =

⎡
⎢⎢⎢⎣

1
2

−1
2√

2
2

cos γ −
√
2
2

cos γ

⎤
⎥⎥⎥⎦, P1 =

⎡
⎣
1 0

0
√
2 sin γ

⎤
⎦,

P2 =

⎡
⎢⎢⎢⎣

1
2

1
2

−
√
2
2

cos γ −
√
2
2

cos γ

⎤
⎥⎥⎥⎦,

Q0 =

⎡
⎢⎢⎢⎣

−1
2

1
2√

2
2

sin γ −
√
2
2

sin γ

⎤
⎥⎥⎥⎦, Q1 =

⎡
⎣
1 0

0 −√2 cos γ

⎤
⎦,

Q2 =

⎡
⎢⎢⎢⎣

−1
2

−1
2

−
√
2
2

sin γ −
√
2
2

sin γ

⎤
⎥⎥⎥⎦,

(40)

where γ = π/4− θ, θ ∈ [0, 2π) \ {π/2, 3π/2}.
The scaling functions and the wavelet functions gener-

ated by the lengh-3 low-pass filter and high-pass filter with
θ = π/6 are displayed in Figures 3 and 4, respectively.

We compose the test signal of the above example with the
old lengh-2 low-pass filter and high-pass filter and the new
lengh-3 low-pass filter and high-pass filter with θ = π/6 of
this example. The results are shown in Figure 5.

5. Conclusion

In this paper, a general method of constructing a length-
J + 1 conjugate quadrature filter with multiplicity r and
scale a from a length-J CQF is presented. As an application
of this result, a method is proposed for constructing a
length-J + 1 CQF with multiplicity 2 and scale 2 which can
generate a compactly supported symmetric-antisymmetric
orthonormal multiwavelet system from a length-J CQF. The
proposed results are more general than the corresponding
results of [9]. Finally, two numerical examples are given to
verify our results.
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