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Segmentation and motion estimation are two problems that require accurate estimation for many applications in computer vi-
sion and image analysis. This work presents a solution to these two problems simultaneously. Both the segmentation and motion
fields are integrated and estimated in parallel to reduce computation time. The presented algorithm is based on producing mo-
tion estimates and restored pixel intensity values through an optimization process that uses deterministic mean-field annealing
(MFA) framework. The MFA results at different temperature values are used to run a segmentation process using the concept of
region-growing-based algorithm. The segmentation process starts at high temperatures and continues in parallel to the annealing
process to refine the segmentation process at lower temperatures. The algorithm results are good and dependent on the annealing
parameters. Several experimental results from synthetic and real-world sequences are presented.
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1. INTRODUCTION

Accurate estimation of motion information and scene seg-
mentation is the focus of investigators in many discipline
areas for a variety of applications. Visual motion analysis is
necessary for applications such as target tracking, video cod-
ing, automatic surveillance, remote sensing, image compres-
sion, and many other real-life applications. The estimation
of the motion (displacement) fields is the first step in many
applications. The methods of estimating the motion fields
can be categorized into three groups: the gradient methods
(known also as the optical flow); the correspondence meth-
ods; and block-matching methods. Each group has its own
advantages, disadvantages, and limitations. In this work, the
algorithm incorporates themethods of the first category. One
of the main advantages of this category is the ability to pro-
vide dense displacement fields at subpixel accuracy as op-
posed to the algorithms in the other two categories that pro-
duce displacement vectors for blocks or for predetermined
tokens (sparse motion fields) [1, 2]. Segmentation on the
other hand aims to segment the scene into different objects
or into objects and background. In general terms, image
segmentation can be described as the process of generating

pixel labels at each pixel. These labels are intended to group
pixels into different segments, objects, or partitions. Algo-
rithms can be categorized as spatial segmentation, temporal
segmentation, or combination of temporal-spatial segmen-
tation. Some algorithms are based on simple tools such as the
histograms and others are very computationally expensive
such as MRF-label modeling. Optimization algorithms such
as mean-field annealing (MFA), stochastic simulated anneal-
ing (SSA), and iterative conditional mode (ICM) [3, 4, 5]
among others are used to solve segmentation problems in
general. MFA has proven its superiority on others in two
ways, computational complexity and optimality of the solu-
tion [6], and thus was chosen for this work. In all, algorithms
are based on energy functions that are using image attributes
in one part or two and iterative minimization is used to reach
an optimum global solution. A review of segmentation liter-
ature can be found in [7, 8].

To combine these two problems, segmentation of dy-
namic scenes and motion estimation algorithms have been
investigated. In some algorithms, the segmentation would be
a preprocess for motion estimation while in others motion
estimation would be a preprocess for segmentation [9, 10,
11]. Most algorithms used edge-based motion detection to
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decide on the different segments or vice versa such as [12,
13]. Others do not estimate motion as much as use somemo-
tion information to perform the segmentation [14, 15] or to
identify moving objects in a sequence of frames [16]. Detect-
ing boundaries and simultaneously computing motion have
been reported in [7]. The work presented in [9, 10] is based
on Bayesian decision associated with MRF models, but their
models need line processors to represent motion discontinu-
ity. These algorithms depend totally on line processors that
are a significant disadvantage due to the increase of compu-
tational complexity.

MFA was previously used to produce dense motion esti-
mates without considering any segmentation models [17]. In
this work, MFA is used to generate estimates of motion vec-
tors and restored pixels at different temperature values. At
each temperature value, the estimates are used to generate
a segmented scene by integrating the segmentation model
within the MFA framework. Further, the optical flow com-
putation assumes that the displacement field is smooth over
segments that belong to one object. Hence, the merging of a
segmentation process with the displacement estimation will
enhance the results and reduce the computations. It is impor-
tant to point out the major differences between those models
and the work presented here. All had the segmentation as a
by-product resulting from motion computation as opposed
to simultaneously estimating both. Moreover, the noise ef-
fects on the algorithm’s performance were not considered
nor were any noise models investigated. Furthermore, algo-
rithms reported are heavily dependent on initial values of
segments or motion vectors. This algorithm does not require
any prior information. Indeed, this algorithm begins with
zeromotion for every pixel and each pixel is a region by itself.

The integrated framework is presented in the next sec-
tion over three subsections, the motion model, the annealing
process describing the process of estimating motion, and the
segmentation model. Section 3 introduces the experimen-
tal results, while the concluding remarks are presented in
Section 4.

2. MOTION AND SEGMENTATION INTEGRATED
FRAMEWORK

This framework attempt to employ the local interactions be-
tween a pixel and its neighbors and the temporal information
over two frames to estimate each pixel’s displacement and
true intensity values, and further, to identify which segments
would a pixel belong to, all in a parallel manner. The dis-
placement variable and the true intensity values are modeled
as a MRF. Then, it uses the equivalence of Gibbs distribution
toMRF to implement the solution [18]. Amaximum a poste-
riori (MAP) is determined by solving for a global minimum
of the energy function instead of solving for the most prob-
able state in the a posteriori probability distribution, which
is usually a very hard task to achieve. In the following sec-
tion, a description of the algorithm and the different param-
eters considered for bothmodels (motion and segmentation)
is presented. The fact that this model [17] accounts for the
noise is very useful to the segmentation since it will allow the

segmentation process to use the restored pixel values. The
motion estimation process is summarized in the following
section for the completion of this paper.

2.1. Displacement fieldsmodel

The displacement field is modeled under the assumptions
of smooth and piecewise constant fields. The posterior dis-
tribution of the displacement field and the true underlying
image intensities of the two frames under consideration are
modeled explicitly. In these, the displaced pixel differences
were strictly required to have exact numerical identity be-
tween displaced pixels wherever possible. In this work, the
displaced pixel differences are modeled as observation noise
in the pixels themselves. This is achieved explicitly by mod-
eling the noise observation in the noise fields, which will sig-
nificantly improve the results. Also, in this work, the motion
field is expected to vary smoothly spatially. Thus one would
expect to find smooth displacement fields in the image plane.
In other words, pixels close to each other and within the same
object tend to have the same displacement, that is, a piecewise
constant displacement field.

Mathematically, the displacement energy model Hd(d)
can be written as

Hd(d) = lim
τ→0

∑

i

∑

j∈ℵ

−αi√
2πτ

e−‖di−dj‖2/2τ , (1)

where αi is a weighting factor, and di and dj are the dis-
placement vectors for pixel i and j, respectively, such that
di = [dxi dyi]t, where dxi is the horizontal component of the
displacement vector of pixel i, and dyi is the vertical compo-
nent of the displacement of pixel i. ℵ is the neighborhood of
pixel i (denoting the image as N2 × 1 vector). The ‖ · ‖ des-
ignates the norm of the difference between the two displace-
ment vectors. Taking the limit of Hd in (1) as τ approaches
zero would make the energy function approximates a differ-
entiable Dirac delta function (notice that it is a Dirac func-
tion at the correct displacement). Also, it shows that a min-
imum can be approached when di = dj which satisfies the
constant displacement field.

To capture the temporal attributes in a model suitable for
annealing algorithms, this model is generated which captures
the intensity gradient,

Hg(d) = lim
τ→0

∑

i

−βi√
2πτ

e−(It1 [i]−It2 [i+di])
2/2τ , (2)

where It1 (i) is the intensity at location i in frame t1, It2 (i +
di) is the intensity at location i + di in frame t2, and βi is
the weighting coefficient for this part of the energy function.
This function assumes that the intensity is preserved under
motion [17]. This model leads to the minimization of the
following function using Taylor’s series expansion to express
the model as a function of the displacement directly:

Hg(d) =
∑

i

−βi√
2πτ

e−(dI/dt+(dIt2 /dx)dxi+(dIt2 /dy)dyi)
2/2τ . (3)



An Integrated Segmentation and Motion Estimation Algorithm 1847

Notice that from (2), one can conclude that noise will have
strong impact on the results. It is worth to note that the
model developed is using the restored data, that is, the con-
tribution of the restoration model and not the actual noisy
image data is used simultaneously with the segmentation
model. The noisy data will be denoted by g1 and g2, for frame
1 and frame 2, respectively. The noise model adapted in this
framework is the Gaussian additive noise. This is the most
common type of independent noise [19] and it is typical in
video frames, leading to the following model:

g = I + n, (4)

where I is the restored signal, g is the noisy data, and n is
the additive Gaussian random noise with variance of σ2n . The
noise energy function is modeled as

Hn(I) = 1
2σ2n

∑

i

[(
I1i − g1i

)2
+
(
I2i − g2i

)2]
. (5)

2.2. The annealing process

After joining all parts of the energy function, the algorithm
seeks an estimate of the following vector for each pixel in the
image:

fk =
[
dxk dyk I1k I2k

]
, (6)

where dxk is the horizontal component of the displacement
vector of pixel k; dyk is the vertical component of the dis-
placement vector of pixel k; I1k is the true intensity value of
pixel k; I2k is the true intensity value of pixel k. The noisy data
will be denoted by gt1 and gt2, for frame 1 and frame 2.

The mean-field vector µ is given by

µk =
[
µxk µyk µI1k µI2k

]t
, (7)

where µxk and µyk are themean-field parameters for the hori-
zontal and the vertical components of the displacement field,
respectively. The parameters µI1k and µI2k are the mean-field
parameters for the true intensity value of pixel k in both
frames. The energy function consists of three parts, the dis-
placement function, Hd, the intensity function, Hg , and the
noise function,Hn. The energy function is now a function of
the vector f :

H( f ) = Hd( f ) +Hg( f ) +Hn( f ). (8)

The energy function H( f ) is in general a function that is
rich in local minima and may be ill-behaved in other ways
as well. Instead of minimizing H( f ), MFA approximates H
by another function H0, called mean-field energy function.
H0 is assumed to resemble H , but it is simpler in form and
easier tominimize. Therefore, the first step in usingMFA is to
chooseH0. For many image processing problems, a quadratic

function forH0 has been shown to be suitable [20] and Gibbs
distribution has been used in similar optimization. These are

H0( f ,µ) =
∑

k

∥∥ fk − µk
∥∥2,

p0( f ,µ) = 1
Z0

e−H0( f ,µ)/T .

(9)

Gradient descent is used for its simplicity only. The algorithm
performance is dependent on many factors and parameters
and not just on the choice of energy function models. The
choice of parameters values α and β is very crucial to the per-
formance. The different choices for their ratios shift the em-
phasis in the optimization on the different components of
the energy function model. Annealing schedule is important
as the simulations results show in the following section. The
results are the displacement fields displayed as optical flow
over the scene and the different segments displayed with dif-
ferent gray values. Also, the algorithm continues for a final
partitioning process based on the estimates of the vector fk.

2.3. Segmentation fieldsmodel

Visually, it is agreed on that different segments in an im-
age are of different colors or of different gray-scale tones,
sizes, shapes, textures, patterns, and/or shadows [7]. The seg-
mentation process developed in this work is based on em-
ploying spatial (gray-scale values) and motion information
at different temperatures in a region-growingmanner to gen-
erate the segmented scene. Other image characteristics that
stem from certain applications may be incorporated in the
models. In [21, 22], a framework is generated using MFA
based on homogeneity measure for the purpose of segment-
ing images only. In general, models may include any charac-
teristics such as homogenous regions in the image, objects of
certain shapes, speeds, or of specific texture. The more con-
straints are imposed, the more the algorithm is application
dependent. Thus, this work employed general characteristics
in order for the algorithm to be suitable for many applica-
tions with motion.

The algorithm is initiated by adapting the results of the
MFA algorithm at low temperatures to identify objects or
segments that are larger than one pixel. All parts of the
Hamiltonian model will merge their computational contri-
butions to identify those segments that are most likely to be-
long to the same object. At the end of each iteration (tem-
perature reduction), the segmentation process utilizes cur-
rent displacement and intensity information of a pixel. The
algorithm proceeds in parallel to the MFA computations as
described in Figure 1.

(1) Initially, assume that each pixel is a separate partition.
Assign labels for them from 1 to N2 × 1 (the image size).

(2) Compute displacement fields and apply a selective fil-
ter to increase homogeneity of displacement fields at the very
first iteration. Such a process can be achieved by using

µke =
8µk +

∑
l∈ℵke µl

8 + nke
, (10)
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Figure 1: Description of the integrated algorithm.

where ℵke represents the eligible neighborhood of pixels k
and nke represents the number of its eligible neighbors. The
measure for eligibility is the threshold of the restored true
intensity of two neighbors in the underlying frame.

(3) Segmentation decision is made in the region-growing
procedure based on both current motion information (mag-
nitude and direction) and underlying restored intensity of
each pixel. Once a cycle of iterations is performed, a pixel
will take over the least label, which is appearing in its eli-
gible neighborhood. The regions are growing from the pixels
with the lower current label toward the pixels with the higher
one. Pixel kmotion information is switched form µxk and µyk
(the horizontal and vertical displacement values) to the pha-
sor form of magnitude µk and direction θk.

(4) Regions can be labeled as scene background ob-
jects (stationary) or scene moving objects. When the energy

function reaches its first minimum, the pixels with motion
information under a given magnitude level (seed threshold)
in it and its neighborhood will be assigned as the seeds of the
background (no intensity change between the frames).

(5) Identifying different segments is performed using dif-
ferent divergence formulas for the scene background and
moving objects. These are as follows.

(i) Scene background is recognized as the partitions with
“small or zero” motion magnitude. Background partition is
growing from the seed points defined by

8µk +
∑

l∈ℵk µl
16

≤ seed threshold, (11)

where µk is the magnitude in the seed point (pixel k) and µl
are the magnitudes over all 8 neighbors of the seed point (the
neighborhood ℵk of the pixel k).

The distance Db
k,l between any two neighbor-pixels k and

l, using the formula applicable for small motion magnitude,
is defined as

Db
k,l = γbµ

(
∆�µk,l

)2
+ γbI

(
∆Ik,l

)2

= γbµ
(
µ2k + µ2l − 2γbθµkµl cos

(
θk − θl

))
+ γbI

(
Ik − Il

)2
,

(12)

where Db
k,l is the distance between two pixels, ∆�µk,l and ∆Ik,l

are motion and restored underlying intensity distance, and
γbµ, γ

b
θ , and γbI are parameters that enable equal or similar

contributions of both motion information and underlying
intensity in the formula. Also, these neighborhood param-
eters are associated with the displacement magnitude µ, the
displacement direction θ, and the restored data µk and µI for
pixels k and l. The parameters w1 and w2 decrease contri-
bution of motion magnitude and underlying intensity in the
distance formula since this is for nonmoving objects, respec-
tively, as follows:

Db1
k,l =

γbµ
w1

(
∆�µk,l

)2
+ γbI

(
∆Ik,l

)2

= γbµ
w1

(
µ2k + µ2l − 2γbθµkµl cos

(
θk − θl

))
+ γbI

(
Ik − Il

)2
,

Db2
k,l = γbµ

(
∆�µk,l

)2
+

γbI
w2

(
∆Ik,l

)2

= γbµ
(
µ2k + µ2l − 2γbθµkµl cos

(
θk − θl

))
+

γbI
w2

(
Ik − Il

)2
.

(13)

Applying a weighing formula, we choose a set of the neigh-
bors that are similar to the pixel k: Db1

k,l ≤ Threshold 1, and

Db2
k,l ≤ Threshold 1. Among the eligible neighbors we assign

labels L1k = minℵk (Ll) and L2k = minℵk (Ll). Finally, the parti-
tion label is chosen using Lbk = max(L1k,L

2
k), which generally

follows both motion and underlying intensity conditions.
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(a) (b)

Figure 2: (a) Frame 2 of synthetic sequence with two overlapping objects moving in the same direction on a stationary background with
different speeds. (b) The segmented image.

(ii)Moving objects divergence formula is employed to en-
able growing of a partition in motion. In the case of the ob-
jects in motion, the motion magnitude is larger and relative
motion magnitude is applicable:

Do1
k,l = γoµ

(
∆�µk,l

)2

exp
(∣∣µk

∣∣) + γoI
(
∆Ik,l

)2

= γoµ
µ2k + µ2l − 2γoθµkµl cos

(
θk − θl

)

exp
(∣∣µk

∣∣) + γoI
(
Ik − Il

)2
.

(14)

The parameters k3 and k4 decrease contribution of mo-
tion magnitude and underlying intensity in the divergence
formula, respectively, as follows:

Do1
k,l =

γoµ
w3

(
∆�µk,l

)2

exp
(∣∣µk

∣∣) + γoI
(
∆Ik,l

)2

= γoµ
w3

µ2k + µ2l − 2γoθµkµl cos
(
θk − θl

)

exp
(∣∣µk

∣∣) + γoI
(
Ik − Il

)2
,

Do2
k,l = γoµ

(
∆�µk,l

)2

exp
(∣∣µk

∣∣) +
γoI
w4

(
∆Ik,l

)2

= γoµ
µ2k + µ2l − 2γoθµkµl cos

(
θk − θl

)

exp
(∣∣µk

∣∣) +
γoI
w4

(
Ik − Il

)2
.

(15)

Among the eligible neighbors, we assign L3k = minℵk (Ll)
and L4k = minℵk (Ll), respectively.

Finally, Lok = max(L3k,L
4
k), which follows both motion

and underlying intensity conditions. Following both condi-
tions is important particularly at the higher temperatures
of the cooling process, when there is no significant motion
information (algorithm starts with zero motion for every
pixel).

(6) Repeat region-growing procedure for every anneal-
ing iteration up to the freezing point. One can speed up the
process and reduce the computational complexity and time

by processing background pixels and moving-object pixels in
parallel and independent from each other. Also, both pro-
cesses are ongoing in parallel, leading to reduction of com-
putation time in half.

It is clear that the algorithm forces the math to rely on the
motion information more than on intensity changes over the
moving segments while it does the opposite for the stationary
segments.

3. EXPERIMENTAL RESULTS ANDDISCUSSION

Synthetic and real scenes are used in the simulations. Also,
simulations were executed to cover several possibilities of
the motion estimation parameter values, annealing sched-
ules, number of iterations, and the segmentation parame-
ters. The simulations were performed using Matlab and did
not consider real-time applications. The code was not opti-
mized. However, fast annealing implementations of MFA or
hardware are available in literature [23, 24, 25], and an in-
vestigation of such implementations may be an interesting
extension of this work. The following is a sample of the sim-
ulation results.

3.1. Experimentingwith synthetic images

Simulated sequences were generated with different motion
magnitudes and motion directions. In Figure 2a, two over-
lapping objects in motion in similar directions but with dif-
ferent motion magnitudes are shown. Figure 3a is showing
objects in different directions. The resulted segmented scene
is shown in Figures 2b and 3b, respectively. Parameter values
used in both simulations are α = 6.8, β = 5.4, temperatures
are ti = 20, t f = 1. Segmentation process parameters for
stationary objects are Threshold 1 = 0.05, Threshold seed
= 0.1, w1 = 1000, w2 = 2, γbµ = 30, γbθ = 1, and γbI =
0.001. Moving objects parameters are Threshold 2 = 800,
w3 = 1000, w4 = 10, γoµ = 1200, γoθ = 1, and γoI = 12. Both
synthetic sequences produced correct results for bothmotion
and segmentation.
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(a) (b)

Figure 3: (a) Frame 2 of synthetic sequence with two overlapping objects moving in different directions and different speeds on a stationary
background. (b) The segmented image.

Figure 4: Frame 1 of the real-world scene (moving object(s)).

3.2. Experimentingwith real images

Figure 4 is showing the real-scene sequences used in simula-
tion of this algorithm. Results are presented in the following
figures with the zoom into the different scene parts to show
the segmentation results clearly. Figure 5 is showing the mid-
dle car with the motion vectors superimposed on the scene.

The algorithm parameters values used are as follows:
α = 6.8, β = 5.4, and t f = 1. The stationary parameters
are Threshold 1 = 0.1, Threshold seed = 0.1, w1 = 1000,
w2 = 2, γbµ = 30, γbθ = 1, and γbI = 0.001. Moving ob-
ject parameters are Threshold 2 = 800, γoµ = 1000, γoθ = 1,
γoI = 4, w3 = 1000, and w4 = 10; real scene segmentation
results are shown in Figures 6, 7, and 8. It is worth noting
that the thresholding parameters were selected based on the
values of the neighborhood intensity averages, which make
these thresholding values have dependency on the texture of
the object.

Also, to show robustness of the algorithm, several simu-
lations on real data were used. Figure 9 shows two segmented
images for the same scene using different parameter values.
In Figure 10, the famous ping-pong ball sequence is used in

Figure 5: Zoom into the scene with the motion vectors superim-
posed on the scene (optical flow vectors with block size of 8 and
σ = 0.5).

simulations. Figure 10a is showing a zoom in on the first
quarter of the frame while the rotating ball segmentation is
shown in Figure 10b.

4. CONCLUSION

A general framework is generated to accomplish more than
one result. The framework can be tailored to target any spe-
cific data by adding more constraints to the energy function.
The algorithm is based on Markov random fields (MRFs)
modeling and Gibbs distribution equivalence that allowed
the use of MFA algorithm to estimate motion fields and re-
stored pixel values. To generate a segmented scene of the im-
age, the mean-field values were incorporated into growing-
region segmentation process over several iterations. The al-
gorithm produces accurate segmentations and displacement
fields of the moving objects. Generally, procedure of com-
putation of the displacement fields of two (or more) differ-
ent objects may be done independently of each other, be-
cause total energy function of the motion of the image is a
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(a) (b)

Figure 6: Segmentation results for different annealing schedules for the real scene shown in Figure 5. The algorithm is robust against
parameter value changes. In (b), the final temperature value is 0.1.

(a) (b)

Figure 7: (a) The original scene and (b) the optic flow results superimposed on the car leaving the scene on the right-hand side of the frame
as shown in Figure 4.

Figure 8: Segmentation results of the scene in Figure 7a.

combination of the energy functions of each object individ-
ually andmay not be with just onemaximum. It is significant
to emphasize that there was no preprocessing of any data nor
there is any postprocessing of results. This algorithm is ef-
ficient when both motion estimates and segmentations are

needed simultaneously. That is when the application requires
that both motion information and segmentation be calcu-
lated, then an integrated algorithm as presented in this paper
would be the best because of the savings in time and com-
putations. Future extension of this work is to incorporate the
segmentation labels in the MRF model and use the same an-
nealing schedule.
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(a) (b)

Figure 9: Two segmentation results for the same real scene. (a) Object displacement abs(µxs), t f = 10, K = 10. (b) Object displacement
abs(µys), t f = 10, K = 10.

(a) (b)

Figure 10: (a) A zoom-in on the rotating ball [26] and (b) the segmentation results.
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