
EURASIP Journal on Applied Signal Processing 2005:1, 37–49
c© 2005 Hindawi Publishing Corporation

Direct Position Determination of Multiple Radio Signals

Anthony J. Weiss
Department of Electrical Engineering – Systems, Tel Aviv University, Tel Aviv 69978, Israel
Email: ajw@eng.tau.ac.il

Alon Amar
Department of Electrical Engineering – Systems, Tel Aviv University, Tel Aviv 69978, Israel
Email: amar@eng.tau.ac.il

Received 25 December 2003; Revised 8 June 2004

The most commonmethods for position determination of radio signal emitters such as communications or radar transmitters are
based on measuring a specified parameter such as angle of arrival (AOA) or time of arrival (TOA) of the signal. The measured pa-
rameters are then used to estimate the transmitter’s location. Since the measurements are done at each base station independently,
without using the constraint that the AOA/TOA estimates at different base stations should correspond to the same transmitter’s
location, this is a suboptimal location determination technique. Further, if the number of array elements at each base station is
M, and the signal waveforms are unknown, the number of cochannel simultaneous transmitters that can be localized by AOA is
limited toM − 1. Also, most AOA algorithms fail when the sources are not well angularly separated. We propose a technique that
uses exactly the same data as the common AOAmethods but the position determination is direct. The proposed method can han-
dle more thanM−1 cochannel simultaneous signals. Although there are many stray parameters, only a two-dimensional search is
required for a planar geometry. The technique provides a natural solution to the measurements sources association problem that is
encountered in AOA-based location systems. In addition to new algorithms, we provide analytical performance analysis, Cramér-
Rao bounds and Monte Carlo simulations. We demonstrate that the proposed approach frequently outperforms the traditional
AOA methods for unknown as well as known signal waveforms.
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1. INTRODUCTION

The problem of emitter location attracts much interest in the
signal processing, communications, and underwater acous-
tics literature. Defense oriented location systems have been
reported since World War I. Civilian systems are now in
use for the localization of cellular phone callers, spectrum
monitoring, and law enforcement. Perhaps the first paper
on the mathematics of emitter location, using angle of ar-
rival (AOA), is due to Stansfield [1]. Many other publica-
tions followed including a fine review paper by Torrieri [2].
The papers by Krim and Viberg [3] and Wax [4] are com-
prehensive review papers on antenna array processing for
location by AOA. Recently, Van Trees [5] published a book
that is fully devoted to array processing. Positioning by time
of arrival (TOA) and its derivatives (DTOA, EOTD) is used
extensively in cellular phone localization [6], radar systems
[7], and underwater acoustics [8]. In underwater acoustics,
matched-field processing (MFP) is often proposed for source
localization [9]. MFP can be interpreted as the maximum
a posteriori (MAP) estimate of location given the observed

signal at the output of an array of sensors [9, 10]. Other
interpretation of MFP is the well-known beamforming ex-
tended to wide bandwidth signals, nonplanar wave fields,
and unknown environmental parameters [11]. The majority
of the literature on MFP focuses on single source localiza-
tion.

In this correspondence, we discuss a method that solves
the localization problem using the data collected at all sen-
sors at all base stations together, in contradiction to the tra-
ditional AOA/TOA approach that is composed of two sepa-
rate steps: (1) AOA/TOA independent estimates and (2) tri-
angulation based on the results of the first step. The tradi-
tional techniques can be classified as decentralized process-
ing methods [12, 13, 14, 15]. Wax and Kailath [12] discussed
eigenstructure algorithms for narrowband signals observed
by multiple arrays, assuming perfect spatial coherence across
each array but no coherence between arrays. In [13], Sto-
ica et al. proposed variants of the method of direction esti-
mation (MODE) algorithm for decentralized processing. In
[14], Weinstein discussed pairwise processing as an alterna-
tive for centralized processing of a wideband single array.
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The results indicate that pairwise processing may be used
at high signal-to-noise ratio (SNR) without significant loss
of performance. Recently, Kozick and Sadler [15] presented
performance analysis for localization of a single wideband
source using multiple distributed arrays. They assume per-
fect spatial coherence over each array and frequency-selective
coherence between arrays. The proposed method is based on
bearing estimation at each array and delay estimation using
the signal observed by a single element at each array.

As indicated in [16], it is rather obvious that measuring
AOA/TOA at each base station separately and independently
is suboptimal since this approach ignores the constraint that
the measurements must correspond to the same source po-
sition. Moreover, the base stations are geographically sepa-
rated, and therefore the desired signal often appears weak or
absent in some of the base stations. Thus, the system must
somehow ensure that all AOA/TOA measurements used to
locate a specific source correspond to the same source. In the
case of cochannel simultaneous sources, the localization sys-
tem confronts an association problem of deciding which of
the multiple AOA/TOA estimates reported by the base sta-
tions correspond to which source.

The direct position determination (DPD) method that
we propose takes advantage of the rather simple propaga-
tion assumptions that are usually used for radio frequency
(RF) signals. We assume a line of sight propagation with un-
known complex attenuation at each base station. We also as-
sume that all base stations are time synchronized to the level
provided by GPS (approximately 50 nanoseconds). The pro-
posed method may implicitly use both the array response
at each station and the TOA at each station. We derive the
maximum likelihood estimate (MLE) of the sources position.
However, the cost function associated with MLE requires a
multidimensional search in the multiple sources case. Thus,
for multiple signals with unknown waveforms we resort to a
method based on the ideas of Schmidt [17] also known as
the MUSIC (multiple signals classification) algorithm. For
multiple signals with known waveforms, we use the ideas of
[18] to simplify the cost function. We show that for a planar
geometry of sources and base stations, a two-dimensional
search is sufficient to localize all sources. For a general ge-
ometry, only a three-dimensional search is needed. A side
benefit of the DPD is its ability to determine the positions of
more sources than the number of sensors at each base station
in contrast to AOA. The DPD technique requires the trans-
mission of the received signals (possibly sampled) to a central
processing location, in contrast to AOA and TOA that require
only the transmission of the measured parameters to the cen-
tral processing location. This is the cost of employing DPD.
The paper focuses on the multiple signals case.

In Section 2, we define the models that we use, Section 3
describes potential algorithms for known and unknown
waveforms, Section 4 includes some numerical examples that
demonstrate the potential of the advocated approach, and
Section 5 contains our conclusions. The appendices include
derivations of the Cramér-Rao bounds, the performance
analysis of the algorithms, and a discussion of the frequency-
domain model.

2. PROBLEM FORMULATION

Consider Q transmitters and L base stations intercepting the
transmitted signals. Each base station is equipped with an an-
tenna array consisting of M elements. The bandwidth of the
signal is small compared to the inverse of the propagation
time over the array aperture. Denote the qth transmitter’s
position by the D×1 vector of coordinates pq (obviously, for
planar geometry D = 2 and for the general case D = 3). The
complex envelopes of the signals observed by the �th base
station array are given by

r�(t) =
Q∑
q=1

b�qa�
(
pq
)
sq
(
t−τ�

(
pq
)−t(0)q

)
+n�(t), 0 ≤ t ≤ T ,

(1)
where r�(t) is a time-dependent M × 1 vector, b�q is an un-
known complex scalar representing the channel attenuation
between the qth transmitter and the �th base station, a�(pq)
is the �th array response to a signal transmitted from posi-

tion pq, and sq(t − τ�(pq) − t(0)q ) is the qth signal waveform,

transmitted at time t(0)q and delayed by τ�(pq). The vector
n�(t) represents noise and interference observed by the ar-
ray. The observed signal can be partitioned into K sections,
each of length T/K � max{τ�(pq)}. The maximum propa-
gation time of interest is the propagation time between the
base stations. For example, if the largest separation between
the base stations is 10 Km then T/K � 34microseconds and
T/K of about 7milliseconds will satisfy the requirement (see
Van Trees [5, chapter 5] and Appendix D for further discus-
sion of this model). When the total observation time T is
long, the sources are assumed to be stationary. Otherwise,
the location accuracy might be degraded. Each section can
be Fourier transformed and the result of this process is given
by the following equation:

r�( j, k) =
Q∑
q=1

b�qa�
(
pq
)
sq( j, k)e−iωj [τ�(pq)+t

(0)
q ] + n�( j, k),

j = 1, 2, . . . , J ; k = 1, 2, . . . ,K ,

(2)

where r�( j, k) is the Fourier coefficient of the kth section of
the observed signal corresponding to frequency ωj , s( j, k) is
the jth Fourier coefficient of the kth section of the signal,
and n�( j, k) represents the jth Fourier coefficient of the kth
section of the noise waveform.

For easy exhibition, we define the following vectors and
scalars:

s̄q( j, k) � sq( j, k)e−iωj t
(0)
q ,

ā�
(
j,pq, b�q

)
� b�qa�

(
pq
)
e−iωjτ�(pq).

(3)

We observe that all information about the transmitter’s posi-
tion is embedded in the vector ā�( j,pq, b�q). This leads to the
following representation of (2):

r�( j, k) =
Q∑
q=1

ā�
(
j,pq, b�q

)
s̄q( j, k) + n�( j, k). (4)
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In matrix notation, (4) becomes

r�( j, k) = A� s̄( j, k) + n�( j, k),

A�( j) �
[
ā�
(
j,p1, b�1

)
, . . . , ā�

(
j,pQ, b�Q

)]
,

s̄( j, k) �
[
s̄1( j, k), . . . , s̄Q( j, k)

]T
.

(5)

Since the vector s̄( j, k) is the same at all base stations, we can
concatenate the observed vectors at all base stations and form
the following equation that encompasses all the data and all
the information of the location system at hand:

r( j, k) = A( j)s̄( j, k) + n( j, k),

r( j, k) �
[
rT1 ( j, k), . . . , r

T
L( j, k)

]T
,

n( j, k) �
[
nT
1 ( j, k), . . . ,n

T
L( j, k)

]T
,

A( j) �
[
AT
1 ( j), . . . ,A

T
L( j)

]T
.

(6)

Remarks

(1) Note in passing that (6) is based on the assumption that
the envelopes of the signals are the same at all base stations,
up to delay and amplitude caused by the propagation chan-
nel. Although this assumption is realistic in most cases of in-
terest, we can solve the L sets of equations represented by (5)
without relying on this assumption, and still get improved
localization with respect to (w.r.t.) traditional AOA. We do
not proceed along this line in this work. This approach was
adopted in [12].

(2) If we assume that the signals’ waveforms are un-
known, then it is impossible to uniquely determine the com-
plex attenuation coefficients at all base stations and the signal
waveforms. We therefore assume that the attenuation coeffi-
cients at one of the arrays (e.g., the first array) are all real and∑L

�=1 |b�q|2 = 1.
The problem that we address now is how to efficiently

estimate the locations of the emitters under various assump-
tions.

3. LOCATION ALGORITHMS

In this section, we discuss potential location algorithms for
the common case of signals with unknown waveforms and
for the less common case of signals with known waveforms.
Wemake use of results presented in the literature for the AOA
case by introducing modifications as necessary.

3.1. Signals with unknownwaveforms

In this section, we assume that the receivers do not know
the waveforms a priori. This is the case in most of the ap-
plications. It is straightforward to write the probability den-
sity function, under appropriate assumptions, of the obser-
vations presented in (6), as a function of the unknown pa-
rameters.

The unknown parameters include the QJK snapshots of
the complex signals {s̄( j, k)}, the (L − 1)Q complex attenu-
ation factors of the signals at the base stations {b�q}, and the
two-dimensional real-valued location vector of each trans-
mitter {pq} overall 2QJK + 2(L− 1)Q + 2Q real parameters.
The MLE will therefore require a complex multidimensional
search over the parameter space.

For a single source an MLE was presented in [19], where
the multidimensional search is replaced by a D-dimensional
search. In order to avoid the multidimensional search for the
multisource case, we can follow the steps leading to the MU-
SIC algorithm [17]. First note that

R( j) � E
{
r( j, k)rH( j, k)

} = A( j)Λ( j)AH( j) + ηI,

Λ( j) � E
{
s̄( j, k)s̄H( j, k)

}
,

E
{
n( j, k)nH( j, k)

} = ηI,

(7)

where we assumed that the noise is temporally and spatially
white, uncorrelated between sensors and between frequen-
cies, uncorrelated with the signals and is zero-mean with
variance η. The column vectors of A are orthogonal to the
noise subspace of R( j) and contained in the signal sub-
space.

Following the MUSIC algorithm, we propose the cost
function

F(p,b) �
∑
j

āH( j,p,b)Us( j)UH
s ( j)ā( j,p,b),

ā( j,p,b) �
[
āT1
(
j,p, b1

)
, . . . , āTL

(
j,p, bL

)]T
,

b �
[
b1, . . . , bL

]T
,

(8)

where Us( j) is an ML × Q matrix consisting of the eigen-
vectors of R( j) corresponding to the Q largest eigenval-
ues. Here, p and b are variable vectors representing the
unknown position and unknown attenuations. Recall that
the vectors ā( j,p,b) contain the L unknown complex at-
tenuation coefficients in addition to the unknown loca-
tion. The minimum points of F(p,b) depend on all un-
knowns and therefore require a 2(L − 1) + D dimensional
search.

In order to reduce this search, we propose to represent
ā( j,p,b) as follows:

ā( j,p,b) = Γ( j)Hb,

Γ( j) � diag
{
aT1 (p)e

−iωj τ1(p), . . . , aTL(p)e
−iωjτL(p)

}
,

H � IL ⊗ 1M ,

(9)

where Γ( j) is a diagonal matrix whose elements are the ele-
ments of the response vectors of the arrays at all base stations,
IL stands for the L×L identity matrix, 1M stands for anM×1
column vector of ones, and finally⊗ stands for the Kronecker
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product. Substituting (9) in (8), we get

F(p,b) = bHHH

∑
j

ΓH( j)Us( j)UH
s ( j)Γ( j)

Hb. (10)

Recall that we assumed that the norm of b is one in order
to facilitate a unique solution. Hence, for any assumed posi-
tion p, the maximum of F(p,b) corresponds to the maximal
eigenvalue of the matrix D(p) defined by

D(p) � HH

∑
j

ΓHUs( j)UH
s ( j)Γ

H. (11)

Therefore, (10) reduces to

F(p) = λmax
[
D(p)

]
, (12)

where the right-hand side of (12) denotes the largest eigen-
value of D(p), and the matrix D(p) is a function of the ob-
served data (i.e., Us( j)) and the array response at each base
station to an emitter located at p. It is clear that the maxi-
mization of (12) requires only a D-dimensional search. It is
interesting to note that the dimensions of the matrix D(p)
are L× L which are usually rather small.

Obviously, one can adjust many known algorithms to
handle the problem at hand including conventional beam-
forming, Capon’s method, min-norm, and so forth.

3.2. Signals with knownwaveforms

In certain applications, the transmitted waveforms are
known to the location system. For example, in cellular sys-
tems synchronization and training sequences are transmitted
periodically and are known a-priori. Moreover, it is possible
to detect the data sequence of a digitally modulated signal
and then restore the complex signal envelope based on the
known modulation scheme. In this section, we examine the
position determination problem for known waveforms. We
start by following the algebraic steps taken in [18].

We assume that the noise n( j, k) is circularly symmet-
ric complex Gaussian random vector with zero-mean and
second-orders statistic given by

E
{
n(i, k)nH( j, �)

} = ηIδi jδk� ,

E
{
n(i, k)nT( j, �)

} = 0.
(13)

Define the signal sample covariance:

R̂ss( j) � 1
K

K∑
k=1

s̄( j, k)s̄H( j, k). (14)

We further assume that asymptotically as K →∞, the signals
sample covariance is diagonal.

The log-likelihood function of the array output vectors
r( j, k) is proportional to

F =
J∑
j=1

1
K

K∑
k=1

∥∥r( j, k)− A( j)s̄( j, k)
∥∥2

=
J∑
j=1

1
K

K∑
k=1

[
r( j, k)− A( j)s̄( j, k)

]H[
r( j, k)− A( j)s̄( j, k)

]

=
J∑
j=1

1
K

K∑
k=1

rH( j, k)r( j, k)− rH( j, k)A( j)s̄( j, k)

− s̄H( j, k)AH( j)r( j, k)

+ s̄H( j, k)AH( j)A( j)s̄( j, k).
(15)

Define

R̂sr( j) � 1
K

K∑
k=1

s̄( j, k)rH( j, k). (16)

Substituting (14) and (16) in (15) and ignoring the first term,
which is constant, we get

F1 = tr


J∑
j=1

1
K

K∑
k=1
−s̄( j, k)rH( j, k)A( j)

− AH( j)r( j, k)s̄H( j, k)

+ AH( j)A( j)s̄( j, k)s̄H( j, k)


= tr


J∑
j=1
−R̂sr( j)A( j)− AH( j)R̂H

sr ( j)+A
H( j)A( j)R̂ss( j)


= tr


J∑
j=1
−R̂ss( j)R̂−1ss ( j)R̂sr( j)A( j)

− AH R̂H
sr ( j)R̂

−1
ss ( j)R̂ss( j) + AH( j)A( j)R̂ss( j)

.
(17)

Note that

tr
{
R̂ss( j)R̂−1ss ( j)R̂sr( j)A( j)

} = tr
{
R̂−1ss ( j)R̂sr( j)A( j)R̂ss( j)

}
.

(18)
And therefore (17) can be displayed as follows:

F1 = tr


J∑
j=1

[
− R̂−1ss ( j)R̂sr( j)A( j)− AH( j)R̂H

sr ( j)R̂
−1
ss ( j)

+ AH( j)A( j)
]
R̂ss( j)

.
(19)

Define

Â( j) = R̂H
sr ( j)R̂

−1
ss ( j). (20)
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Then, minimizing F1 is equivalent to minimizing

F2 = tr


J∑
j=1

[
ÂH( j)Â( j)− ÂH( j)A( j)− AH( j)Â( j)

+ AH( j)A( j)
]
R̂ss( j)


= tr


J∑
j=1

[
A( j)− Â( j)

]H[
A( j)− Â( j)

]
R̂ss( j)

.
(21)

Obviously, the term ÂH( j)Â( j) is constant and can be added
to the cost function.

Since we assumed that the signals are uncorrelated, R̂ss( j)
is asymptotically diagonal and the cost function can be de-
coupled:

F3 =
Q∑
q=1

F3(q),

F3(q) �
J∑
j=1

∥∥ā( j,pq,bq)− âq( j)
∥∥2,

(22)

where ā( j,pq,bq) and âq( j) represent the qth column of A( j)

and Â( j), respectively.
The minimization of F3(q) can be done as follows:

F3(q) =
J∑
j=1

∥∥ā( j,pq,bq)−âq( j)∥∥2 = J∑
j=1

∥∥Γq( j)Hbq−âq( j)
∥∥2.

(23)

The vector b that minimizes the cost function is given by

b̂q =
∑

j

HHΓHq ( j)Γq( j)H

−1HH
∑
j

ΓHq ( j)âq( j). (24)

Replacing b with b̂ in (23), we get a cost function that de-
pends on p only. The cost function can be simplified by rely-
ing on the assumption that∥∥a�( j)∥∥ = 1 ∀ j, �,p, (25)

which immediately leads to∑
j

HHΓHq ( j)Γq( j)H = IL. (26)

Define the vector

wq �
∑
j

ΓHq ( j)âq( j). (27)

Substituting (27) and(26) in (24) and, in turn, in (23) yields

F3(q) =
J∑
j=1

∥∥Γq( j)HHHwq − âq( j)
∥∥2. (28)

It is easy to verify that minimizing (28) is equivalent to max-
imizing

F4(q) = wH
q HHHwq =

∥∥HHwq

∥∥2
=

L∑
�=1

∣∣∣∣∣∣
J∑
j=1

eiωjτ�(p)aH� (p)â
(�)
q ( j)

∣∣∣∣∣∣
2

,
(29)

where â(�)q ( j) is the �th subvector of âq( j) (i.e., the subvector
associated with the �th base station).

Note that (29) indicates that the cost function is in fact a
sum of L distinct cost functions, each associated with a dis-
tinct base station. This is the reason that DPD outperforms
methods that maximize the cost function at each base station
independently.

Thus, we can locate each of the emitters by a simple D-
dimensional search.

4. NUMERICAL RESULTS

In order to examine the performance of the advocated meth-
ods and compare it with the traditional AOA approach, we
performed extensive Monte Carlo simulations. Some exam-
ples are shown here.

We applied two different techniques in order to locate the
transmitter:

(1) AOA estimation using MUSIC or Beamforming at
each base station independently;

(2) DPD according to the algorithms described in the pre-
vious section.

The performance evaluation is based on the RMS error de-
fined as follows:

RMS =

√√√√√ 1
N

N∑
i=1

(
x̂i − xt

)2
+
(
ŷi − yt

)2
, (30)

where (xt, yt) is the emitter location, (x̂i, ŷi) is the ith location
estimate, and N is the number of experiments.

Test Case 1

Consider three base stations placed at coordinates (2,−2),
(2, 0), and (2, 2) and a single emitter located at (0, 1.5).
All coordinates are in km. The transmitted signal is a car-
rier amplitude modulated by a narrowband random Gaus-
sian waveform. The signal is unknown to the receivers. Each
base station is equipped with a uniform linear array (ULA)
of only three antenna elements. Each location determina-
tion is based on 200 snapshots each of 4.5milliseconds at
a single frequency (i.e., K = 200, J = 1). The snap-
shot length ensures that the errors introduced by the finite-
length FFT are 30 dB below the signal level. The SNR (at
the base station receiving the strongest signal) is varied be-
tween 3 dB and 23 dB using 2 dB steps. At each SNR value,



42 EURASIP Journal on Applied Signal Processing

300

250

200

150

100

50

0
0 5 10 15 20 25

SNR (dB)

R
M
S
er
ro
r
(m

)

DPD
AOA

PA
CRB

Figure 1: RMS error of DPD and traditional AOA, Cramér-Rao
bound, and performance analysis results for three base stations, a
single source, and unknown waveforms (L = 3, M = 3, Q = 1,
K = 200, J = 1, and b = [1, 0.8, 0.4]).

we performed 100 experiments in order to obtain the statis-
tical properties of the performance. The attenuation vector is
selected as b = [1, 0.8, 0.4]T.

Figure 1 shows the experimental results, using (12), the
Cramér-Rao bound, derived in Appendix B, and the per-
formance analysis results described in Appendix C. The
plots indicate that DPD is superior to the traditional ap-
proach of independent AOA estimates at each base sta-
tion. The advantage of DPD is at low SNR. At high SNR,
both methods give results that coincide with the theoretical
bound.

Test Case 2

In a second experiment, we kept the base stations at the
same locations and we used two emitters placed at (0, +1.5)
and (0,−1.5). The results for each of the sources are shown
in Figure 2. It is again clear that the DPD outperforms
AOA at low SNR while both methods are equivalent at
high SNR. At very high SNR, modeling errors will dominate
the performance. Modeling errors include finite-length FFT,
calibration errors, synchronizations errors, propagation er-
rors, and so forth.

Test Case 3

In a third experiment, we kept the base stations at the same
locations and we used two emitters placed at (0, +Y) and
(0,−Y) and 100 snapshots, and SNR = 20 dB. The chan-
nel attenuation to all base stations is equal. We changed Y
from 200 meters to 1200 meters and the results are plotted
in Figure 3. It can be seen, as expected, that the traditional
AOA accuracy is very sensitive to sources that are not well
separated as opposed to the DPD method.
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Figure 2: RMS error of DPD and traditional AOA, Cramér-Rao
bound, and performance analysis results for three base stations, two
sources, and unknown waveforms (L = 3,M = 3, Q = 2, K = 200,
J = 1, and b = [1, 0.8, 0.4]).
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Figure 3: RMS error of DPD and traditional AOA, Cramér-Rao
bound, and performance analysis results for three base stations, two
sources with increasing separation, and unknown waveforms (L=3,
M = 3, Q = 2, K = 200, J = 1, SNR = 20 dB, and b = [1, 1, 1]).

Test Case 4

In a fourth experiment, we kept the base stations at the same
location and placed three transmitters at (0, 1.5), (0,−1.5),
and (−1, 0). Each base station collects 1000 snapshots and
the attenuation is equal at all base stations. Since each base
station is equipped with an array of only three elements of
traditional AOA based onMUSIC fails. However, DPDworks
fine as shown in Figure 4.
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Figure 4: RMS error of DPD, Cramér-Rao bound, and performance
analysis results for three base stations, three sources, and unknown
waveforms (L = 3, M = 3, Q = 3, K = 1000, J = 1, and b =
[1, 1, 1]).

Test Case 5

In a fifth experiment, we used four base stations located at
(−2,−2), (−2, +2), (2,−2), and (2, +2) and a single source
at (1, 1). Each base station is equipped with a circular array
of five elements. The waveforms are known. The number of
snapshots is 1000. The attenuation to two base stations is
0 dB and for the other two is −10 dB. The accuracy results
are plotted in Figure 5.

In Figure 6, we show how the cost function looks for
unknown waveforms, four base stations, each equipped
with an array of only three elements, and three transmit-
ters. Common AOA methods cannot handle three trans-
mitters with three-element array contrary to the advocated
method.

5. CONCLUSIONS

We have proposed a direct position determination technique
for localizing multiple narrowband radio frequency sources.
The technique can locate more sources than the traditional
AOA approach. Moreover, DPD provides better accuracy
than traditional AOA and it does not encounter the associ-
ation problem of independent AOA measurements at each
base station. The proposed technique uses the MUSIC ap-
proach in order to reduce the complexity of the algorithm in
the case of unknown waveforms. The advantages of DPD do
not come without a price. While in traditional methods only
AOA estimates must be transferred to a central processing lo-
cation for triangulation, the DPD requires raw signal data to
be transferred to a common processor.
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Figure 5: RMS error of DPD and traditional AOA for known wave-
forms. Four base stations each equipped with five-element circular
arrays are used (L = 4, M = 5, Q = 1, K = 1000, J = 1, and
b = [1, 0.1, 0.1, 1]).
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APPENDICES

A. CRB FOR KNOWN SIGNALS

We start with (6) repeated here for easy reference:

r( j, k) = A( j)s̄( j, k) + n( j, k). (A.1)
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The unknown parameters are the entries of P and B defined
as follows:

P �
[
p1,p2, . . . ,pQ

]
,

B �
[
b1,b2, . . . ,bQ

]
,

bq �
[
b1,q, b2,q, . . . , bL,q

]T
.

(A.2)

The log-likelihood function is given by

lnL = const− 1
η

∑
j,k

∥∥r( j, k)− A( j)s̄( j, k)
∥∥2. (A.3)

It is easy to verify the derivatives

∂ lnL
∂Pnq

= 2
η
Re

∑
j,k

s̄∗q ( j, k)
∂aHq ( j)

∂Pnq
n( j, k)

, (A.4)

where Pnq is the n, q element of the matrix P, and aq( j) is the
qth column of A( j). Define the matrices

Dn( j) �
[
∂a1( j)
∂Pn1

,
∂a2( j)
∂Pn2

, . . . ,
∂aQ( j)
∂PnQ

]
,

X( j, k) � diag
{
s̄( j, k)

}
.

(A.5)

Now (A.4) can be written as follows:

∂ lnL
∂Pn

= 2
η
Re

∑
j,k

XH( j, k)DH
n ( j)n( j, k)

, (A.6)

where Pn is the nth row of P.
Define now the following variables:

C̄n( j) �
[
∂a1( j)

∂b̄n1
,
∂a2( j)

∂b̄n2
, . . . ,

∂aQ( j)

∂b̄nQ

]
,

C̃n( j) �
[
∂a1( j)

∂b̃n1
,
∂a2( j)

∂b̃n2
, . . . ,

∂aQ( j)

∂b̃nQ

]
= iC̄n( j).

(A.7)

We can now write

∂ lnL
∂B̄n

= 2
η
Re

∑
j,k

XH( j, k)C̄H
n ( j)n( j, k)

,
∂ lnL
∂B̃n

= 2
η
Im

∑
j,k

XH( j, k)C̄H
n ( j)n( j, k)

,
(A.8)

where B̄n, B̃n are the real and imaginary parts of the nth row
of B, respectively.

The blocks of the Fisher information matrix (FIM) are
given by

FIM11(n,m) � E
[
∂ lnL
∂B̄n

][
∂ lnL
∂B̄m

]T

= 2
η
Re

∑
j,k

XH( j, k)C̄H
n ( j)C̄m( j)X( j, k)

,
FIM12(n,m) � E

[
∂ lnL
∂B̄n

][
∂ lnL
∂B̃m

]T

= −2
η
Im

∑
j,k

XH( j, k)C̄H
n ( j)C̄m( j)X( j, k)

,
FIM22(n,m) � E

[
∂ lnL
∂B̃n

][
∂ lnL
∂B̃m

]T

= 2
η
Re

∑
j,k

XH( j, k)C̄H
n ( j)C̄m( j)X( j, k)

,
(A.9)

where FIMi, j(n,m) stands for the n,m subblock of the FIMi, j

block.

FIM31 � E
[
∂ lnL
∂Pn

][
∂ lnL
∂B̄m

]T

= 2
η
Re

∑
j,k

XH( j, k)DH
n ( j)C̄m( j)X( j, k)

,
FIM32 � E

[
∂ lnL
∂Pn

][
∂ lnL
∂B̃m

]T

= −2
η
Im

∑
j,k

XH( j, k)DH
n ( j)C̄m( j)X( j, k)

,
FIM33 � E

[
∂ lnL
∂Pn

][
∂ lnL
∂Pm

]T

= 2
η
Re

∑
j,k

XH( j, k)DH
n ( j)Dm( j)X( j, k)

.
(A.10)

The CRB bound is obtained by inverting the FIM.

B. CRB FOR UNKNOWNGAUSSIAN SIGNALS

It is well known that the FIM for zero-mean Gaussian signals
is given by

[FIM]i, j = tr

{
R−1

∂R
∂θi

R−1
∂R
∂θj

}
, (B.1)

where R is the observations covariance and θi is the ith pa-
rameter. The covariance matrix for a given frequency is

R = AΛAH + ηI. (B.2)

The unknown parameters are the entries of P, B,Λ defined in
(A.2). We will frequently use the notation en for nth column
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vector of the identity matrix. First note that

tr

{
R−1

∂R
∂Λi

R−1
∂R
∂Λ j

}
= tr

{
R−1AeieTi A

HR−1Ae jeTj A
H
}

= (eTj AHR−1Aei
)(
eTi A

HR−1Ae j
)

= (eTj AHR−1Aei
)(
eTj A

HR−1Aei
)∗
.

(B.3)

Thus, the FIM related to the diagonal elements of the signal
covariance is given by

FIMΛΛ =
(
AHR−1A

)× (AHR−1A
)∗
, (B.4)

where × denotes element-by-element multiplication.
We can write

tr
{
R−1

∂R
∂b̄q�

R−1
∂R
∂b̄km

}
= tr

{
R−1

[
C̄�eqeTqΛA

H + AΛeqeTq C̄
H
�

]
× R−1

[
C̄mekeTkΛA

H + AΛekeTk C̄
H
m

]}
.

(B.5)

Rearranging the terms, we get

tr

{
R−1

∂R
∂b̄q�

R−1
∂R
∂b̄km

}
= tr

{
R−1C̄�eqeTqΛA

HR−1C̄mekeTkΛA
H
}

+ tr
{
R−1C̄�eqeTqΛA

HR−1AΛekeTk C̄
H
m

}
+ tr

{
R−1AΛeqeTq C̄

H
� R

−1C̄mekeTkΛA
H
}

+ tr
{
R−1AΛeqeTq C̄

H
� R

−1AΛekeTk C̄
H
m

}
.

(B.6)

Taking advantage of the trace operator, we can write

tr

{
R−1

∂R
∂b̄q�

R−1
∂R
∂b̄km

}

= (eTkΛAHR−1C̄�eq
)(
eTqΛA

HR−1C̄mek
)

+
(
eTk C̄

H
mR

−1C̄�eq
)(
eTqΛA

HR−1AΛek
)

+
(
eTkΛA

HR−1AΛeq
)(
eTq C̄

H
� R

−1C̄mek
)

+
(
eTk C̄

H
mR

−1AΛeq
)(
eTq C̄

H
� R

−1AΛek
)
.

(B.7)

Rearranging the terms again, we get

tr

{
R−1

∂R
∂b̄q�

R−1
∂R
∂b̄km

}

= (eTkΛAHR−1C̄�eq
)(
eTk C̄

H
mR

−1AΛeq
)∗

+
(
eTk C̄

H
mR

−1C̄�eq
)(
eTkΛA

HR−1AΛeq
)∗

+
(
eTkΛA

HR−1AΛeq
)(
eTk C̄

H
mR

−1C̄�eq
)∗

+
(
eTk C̄

H
mR

−1AΛeq
)(
eTkΛA

HR−1C̄�eq
)∗
.

(B.8)

Finally,

tr

{
R−1

∂R
∂b̄q�

R−1
∂R
∂b̄km

}

= 2Re
{(
eTkΛA

HR−1C̄�eq
)(
eTk C̄

H
mR

−1AΛeq
)∗}

+ 2Re
{(
eTk C̄

H
mR

−1C̄�eq
)(
eTkΛA

HR−1AΛeq
)∗}

.

(B.9)

Thus, the corresponding blocks of the FIM are given by

FIMB̄mB̄�
= 2Re

{(
ΛAHR−1C̄�

)× (C̄H
mR

−1AΛ
)∗

+
(
C̄H
mR

−1C̄�
)× (ΛAHR−1AΛ

)∗}
= 2Re

{(
AH
1 C̄�

)× (C̄H
mA1

)∗
+
(
C̄H
mR

−1C̄�
)× A∗2

}
,

FIMB̄mB̃�
= 2Re

{(
AH
1 C̃�

)× (C̄H
mA1

)∗
+
(
C̄H
mR

−1C̃�
)× A∗2

}
,

FIMB̃mB̃�
= 2Re

{(
AH
1 C̃�

)× (C̃H
mA1

)∗
+
(
C̃H
mR

−1C̃�
)× A∗2

}
,

FIMPmP� = 2Re
{(
AH
1 D�

)× (DH
mA1

)∗
+
(
DH

mR
−1D�

)× A∗2
}
,

FIMPmB̄�
= 2Re

{(
AH
1 C̄�

)× (DH
mA1

)∗
+
(
DH

mR
−1C̄�

)× A∗2
}
,

FIMPmB̃�
= 2Re

{(
AH
1 C̃�

)× (DH
mA1

)∗
+
(
DH

mR
−1C̃�

)× A∗2
}
,

(B.10)

where

A1 � R−1AΛ,

A2 � ΛAHR−1AΛ.
(B.11)

We can also obtain

tr

{
R−1

∂R
Λi

R−1
∂R
∂b̄km

}
= tr

{
R−1AeieTi A

HR−1
(
C̄mekeTkΛA

H + AΛekeTk C̄
H
m

)}
= tr

{
R−1AeieTi A

HR−1C̄mekeTkΛA
H

+ R−1AeieTi A
HR−1AΛekeTk C̄

H
m

}
= (eTkΛAHR−1Aei

)(
eTi A

HR−1C̄mek
)

+
(
eTk C̄

H
mR

−1Aei
)(
eTi A

HR−1AΛek
)

= (eTi AHR−1AΛek
)∗(

eTi A
HR−1C̄mek

)
+
(
eTi A

HR−1AΛek
)(
eTi A

HR−1C̄mek
)∗

= 2Re
{(
eTi A

HR−1AΛek
)∗(

eTi A
HR−1C̄mek

)}
.

(B.12)

Thus, the associated blocks of the FIM are given by

FIMΛB̄m
= 2Re

{(
AHR−1AΛ

)∗ × (AHR−1C̄m
)}

= 2Re
{(
AHA1

)∗ × (AHR−1C̄m
)}
,

FIMΛB̃m
= 2Re

{(
AHA1

)∗ × (AHR−1C̃m
)}
,

FIMΛPm = 2Re
{(
AHA1

)∗ × (AHR−1Dm
)}
.

(B.13)

The CRB is obtained by inverting the complete FIM.
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C. PERFORMANCE ANALYSIS FOR DPD FOR
UNKNOWN SIGNALS

In this appendix, we introduce a small error analysis of the
proposed algorithm for unknown signals. Although the al-
gorithm does not impose any requirements on the signals’
statistics, in order to facilitate the analysis, we assume that the
transmitted signals are statistically independent, zero-mean,
jointly Gaussian, and therefore satisfy

E
{
s̄q( j, k)s̄Hp (m, �)

} = Λq,q( j)δq,pδj,mδk,� . (C.1)

For analysis convenience, we review briefly some of the defi-
nitions of the proposed algorithm.

Recall that the algorithm is based on maximizing the
largest eigenvalue of D, where

D = HHTH,

T �
J∑
j=1

Q∑
q=1

ΓH( j)uq( j)uHq ( j)Γ( j),
(C.2)

and uq( j) denotes the qth eigenvector of the sample covari-

ance matrix R̂( j), corresponding to the qth eigenvalue γq,
where we assume that γ1 ≥ γ2 ≥ · · · ≥ γML. Using the eigen-
decomposition of the Hermitian matrix D, we have

D =WΦWH ,

W �
[
w1, . . . ,wL

]
,

Φ � diag
{
λ1, . . . , λL

}
,

(C.3)

wherew j , λj are the jth eigenvector/eigenvalue pair and λ1 ≥
· · · ≥ λL. Thus, we have λmax ≡ λ1.

The computation of the covariance of pq depends on the
estimated eigenvectors {ûq, 1 ≤ q ≤ Q}. In the ideal case,
ûq = uq, 1 ≤ q ≤ Q, and the local maxima of the cost func-

tion occur are at the true source locations {pq}Qq=1. In real-
ity, the eigenvectors ûq are perturbed, and therefore the local
maxima occur at locations p̂q that are not identical to the
true locations. The covariance of the perturbations of p̂q is
related to the covariance perturbations of the ûq by the fol-
lowing equation taken from [20, page 534, equation (15)]:

cov
{
p̂q
} = [∂2λ1

∂p2

]−1[
∂2λ1
∂p∂ξ

]
cov

{
ξ̂
}[ ∂2λ1

∂p∂ξ

]T[
∂2λ1
∂p2

]−T

,

ξ �
[
ξT1 , . . . , ξ

T
Q

]T
,

ξq �
[
ξTq (0), . . . , ξ

T
q (J)

]T
,

ξq( j) �
[
ūTq ( j), ũ

T
q ( j)

]T
,

(C.4)

where ūk( j) � Re{uk( j)}; ũk( j) � Im{uk( j)}.
We note that the right-hand side of (C.4) has to be eval-

uated at the true values of pq, uq( j).

The (k, �) submatrix cov{ξ̂k, ξ̂�} of the covariance matrix
cov{ξ̂} is given by [20, equation (22)]:

cov
{
ξ̂k, ξ̂�

} = 1
2

[
Re
(
cov

{
ûk , û�

}
+ cov

{
ûk , û∗�

}) − Im
(
cov

{
ûk, û�

}− cov
{
ûk, û∗�

})
Im
(
cov

{
ûk, û�

}
+ cov

{
ûk, û∗�

})
Re
(
cov

{
ûk, û�

}− cov
{
ûk , û∗�

}) ] , (C.5)

where cov{ûk, û�} and cov{ûk, û∗� } are block diagonal matri-
ces, where the jth block is given by [20, equations (23)-(24)]:

cov
{
ûk( j), û�( j)

} = γk( j)
K

δk�

ML∑
i=1
i 
=k

γi( j)(
γk( j)−γi( j)

)2 ui( j)uHi ( j),
cov

{
ûk( j), û∗� ( j)

}=−(1−δk�) γk( j)γ�( j)

K
(
γk( j)−γ�( j)

)2 u�( j)uTk ( j).
(C.6)

For convenience, we use the definitions

Ω �
[
∂2λ1
∂p2

]
,

Ψ �
[
∂2λ1
∂p∂ξ

]
cov

{
ξ̂
}[ ∂2λ1

∂p∂ξ

]T
.

(C.7)

Expressions forΩ
We first note that

∂λ1
∂pk

=
L∑

m,n=1

∂̄λ1
∂̄Dm,n

∂Dm,n

∂pk
=

L∑
m,n=1

Wn,1W∗
m,1

∂Dm,n

∂pk
, (C.8)

where pk is the kth element of the vector p, and ∂̄ f /∂̄α is the
Brandwood complex derivative [21] (i.e., the derivative of a
real-valued function of a complex variable and its conjugate
f (α,α∗) is taken w.r.t. α regarding α∗ as a constant) and we
used the results obtained in [22, equation (A.12)] to express
∂̄λ1/∂̄Dm,n.

Using (C.8), we can express the (k, �) element ofΩ as

∂2λ1
∂p�∂pk

=
L∑

m,n=1

∂Wn,1W∗
m,1

∂p�

∂Dm,n

∂pk
+Wn,1W∗

m,1
∂2Dm,n

∂p�∂pk
.

(C.9)
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Using (C.2) yields the following expressions for the deriva-
tives:

∂Dm,n

∂pk
= 2Re

{(
em ⊗ 1M

)T ∂T
∂pk

(
en ⊗ 1M

)}
,

∂2Dm,n

∂p�∂pk
= 2Re

{(
em ⊗ 1M

)T ∂T
∂p�∂pk

(
en ⊗ 1M

)}
,

(C.10)

∂W�,1

∂pk
=
∑
m,n

∂̄W�,1

∂̄Dm,n

∂Dm,n

∂pk

=
∑
m,n

 L∑
j=2

Wn,1W∗
m, jW�, j

λ1 − λj

∂Dm,n

∂pk
,

(C.11)

where ∂̄W�,1/∂̄Dm,n was expressed using the results of [22,
equation (A.18)].

Substituting (C.10) and (C.11) in (C.9) yields an explicit
expression for ∂2λ1/∂p�∂pk.

Expressions forΨ

We first note that

∂2λ1
∂ξ�∂pk

=
( ∂2λ1

∂ū�∂pk

)T

,

(
∂2λ1

∂ũ�∂pk

)T
T

. (C.12)

Using (C.8), we get

∂2λ1
∂ū�∂pk

=
∑
m,n

∂Wn,1W∗
m,1

∂ū�

∂Dmn

∂pk
+Wn,1W∗

m,1
∂2Dmn

∂ū�∂pk
,

∂2λ1
∂ũ�∂pk

=
∑
m,n

∂Wn,1W∗
m,1

∂ũ�

∂Dmn

∂pk
+Wn,1W∗

m,1
∂2Dmn

∂ũ�∂pk
,

(C.13)

where the derivatives in (C.13) are given by

∂W�,1

∂ūk
=
∑
m,n

∂̄W�,1

∂̄Dm,n

∂Dm,n

∂ūk
,

∂W�,1

∂ũk
=
∑
m,n

∂̄W�,1

∂̄Dm,n

∂Dm,n

∂ũk
,

∂Dm,n

∂ū�
=
[
∂Dm,n

∂ū�(0)
,
∂Dm,n

∂ū�(1)
, . . . ,

∂Dm,n

∂ū�(J)

]
,

∂Dm,n

∂ũ�
=
[
∂Dm,n

∂ũ�(0)
,
∂Dm,n

∂ũ�(1)
, . . . ,

∂Dm,n

∂ũ�(J)

]
,

(C.14)

and ∂̄W�,1/∂̄Dm,n can be found in (C.11).

We also have

∂Dmn

∂ū�( j)
= uH� ( j)Γ( j)En,mΓ

H( j) + uT� ( j)Γ
∗( j)Em,nΓ

T( j),

∂Dmn

∂ũ�( j)
= i
[
uH� ( j)Γ( j)En,mΓ

H( j)− uT� ( j)Γ
∗( j)Em,nΓ

T( j)
]
,

Enm �
(
en ⊗ 1M

)(
em ⊗ 1M

)T
,

∂2Dm,n

∂ū�∂pk
=
[

∂2Dmn

∂ū�(0)∂pk
, . . . ,

∂2Dmn

∂ū�(J)∂pk

]
,

∂2Dmn

∂ũ�∂pk
=
[

∂2Dmn

∂ũ�(0)∂pk
, . . . ,

∂2Dmn

∂ũ�(J)∂pk

]
.

(C.15)

Using (C.10), we can express each of the terms in the above
equation as

∂2Dm,n

∂ū�( j)∂pk
= uH� ( j)

[
Γ( j)Enm

∂ΓH( j)
∂pk

+
∂Γ( j)
∂pk

EnmΓH( j)

]

+ uT� ( j)

[
Γ∗( j)Emn

∂ΓT( j)
∂pk

+
∂Γ∗( j)
∂pk

EmnΓ
T( j)

]
,

∂2Dmn

∂ũ�( j)∂pk
= iuH� ( j)

[
Γ( j)Enm

∂ΓH( j)
∂pk

+
∂Γ( j)
∂pk

EnmΓH( j)

]

−uT� ( j)
[
Γ∗( j)Emn

∂ΓT( j)
∂pk

+
∂Γ∗( j)
∂pk

EmnΓ
T( j)

]
.

(C.16)

Substituting (C.14) and (C.16) in (C.13) and using straight-
forward algebraic manipulations yields

∂2λ1
∂ū�( j)∂pk

= uH� ( j)Zk + uT� ( j)Z
∗
k = 2Re

{
uH� ( j)Zk

}
,

∂2λ1
∂ũ�( j)∂pk

= i
(
uH� ( j)Zk − uT� ( j)Z

∗
k

) = −2 Im {uH� ( j)Zk
}
,

Zk �
L∑

m=1

L∑
n=1

Xk
n,m +Wn1(n)W∗

m1Y
k
n,m,

Xk
nm �

L∑
r=1

L∑
�=1

 L∑
j=2

W�1W∗
r j

[
WnjW∗

m1 +WmjWn1
]

λ1 − λj


×ΓElrΓH

(
em ⊗ JM

) ∂T
∂pk

(
en ⊗ JM

)T
,

Yk
nm � ΓEnm

∂ΓH

∂pk
+

∂Γ

∂pk
EnmΓH.

(C.17)
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Recalling that γk( j) = η for all Q + 1 ≤ k ≤ ML, we can
express the (m,n) element ofΨ using [20, equation (27)] as

Ψm,n

= ∂2λ1
∂ξm∂pk

cov
{
ξ̂k, ξ̂�

} ∂2λ1
∂ξn∂p�

= 2η
N

Re


J∑
j=1

Q∑
k=1

ML∑
j=Q+1

γk( j)(
γk( j)− η

)2
×uHk ( j)Zmu�( j)uH� ( j)Znuk( j)

.
(C.18)

In summary, using the result of (C.18) and (C.9), we can ex-
press the matrix cov{p̂i} in (C.4).

Special case: uniform linear array

So far, we have considered a general array configuration. In
this section, we obtain the required expressions for a ULA
withM elements. The coordinates of themth element, at the
�th base station, are x = (m−1)∆ cosφ� ; y = (m−1)∆ sinφ� ,
where ∆ is the elements spacing and φ� is the counterclock-
wise rotation of the array baseline with respect to the x-
axis.

The steering vector of the �th base station takes the form

a�(p) =
[
1 e jk∆ cos θ′� · · · e jk(M−1)∆ cos θ′�

]T
, (C.19)

where k = 2π/λ is the signal wave number, λ is the wave
length, and θ′� is the direction of arrival (relative to the ar-
ray baseline) of a signal emitted from (xt, yt) to the �th
base station located at (x� , y�). In addition, the delay be-
tween the emitter and the base station is τ� = d�/c, where
d� =

√
(xt − x�)2 + (yt − y�)2 is the distance between the

emitter and the �th base station and c is the speed of propa-
gation.

Note that the AOA with respect to the x-axis at the �th
base station is θ� = θ′� + φ� .

The steering vector derivatives with respect to the axis are

da�
dx
=− jk∆ sin θ′�

dθ′�
dx

aT� M̄,
da�
dy

= − jk∆ sin θ′�
dθ′�
dy

aT� M̄,

(C.20)

where M̄ � diag(0, 1, . . . ,M − 1) and

dθ′�
dx

= dθ�
dx

= − sin θ�
d�

,
dθ′�
dy

= dθ�
dy

= cos θ�
d�

.

(C.21)

We also have

d2a�
dx2

= − j
k∆

d2�
aT� M̄

[
sin
(
θ′� + θ�

)
sin
(
θ�
)
I

− jk∆ sin2 θ′� sin
2 θ�M̄

]
,

d2a�
dy2

= − j
k∆

d2�
aT� M̄

[
cos
(
θ′� + θ�

)
cos
(
θ�
)
I

− jk∆ sin2 θ′� cos
2 θ�M̄

]
,

d2a�
dx dy

= j
k∆

d2�
aT� M̄

[
sin
(
θ′� + θ�

)
cos
(
θ�
)
I

− j
1
2
k∆ sin2 θ′� sin 2θ�M̄

]
.

(C.22)

This concludes the performance analysis.

D. ON THE FREQUENCY-DOMAINMODEL
FOR FINITE-LENGTHOBSERVATIONS

Consider the observation s(t), 0 ≤ t ≤ T1, at a given base
station and the observation s(t−D), 0 ≤ t ≤ T1, at a different
base station, where D denotes the time difference of arrival.
The Fourier transform of these signals are given by

S1 =
∫ T1

0
s(t)e−iωtdt,

S2 =
∫ T1

0
s(t −D)e−iωtdt = e−iωD

T1−D∫
−D

s(σ)e−iωσdσ.
(D.1)

The relation between S1 and S2 is given by

S2 = e−iωD
(
S1 + ∆

)
,

∆ �
∫ 0

−D
s(σ)e−iωσdσ −

∫ T1

T1−D
s(σ)e−iωσdσ.

(D.2)

In the main text, we used the approximation S2 ∼= e−iωDS1
under the assumption that ∆  S1. It is easy to verify that
the energy relation between S1 and ∆ is given by

E
{∣∣S1∣∣2}
E
{|∆|2} = T1

2D
(D.3)

for a random signal with flat spectral density. Thus, in order
to get a ratio of 20 dB, the required observation length T1

should be 200D. In the body of the paper, each snapshot is of
length T1 = T/K .
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