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1. INTRODUCTION

Many audio communication and entertainment applications
deal with acoustic signals that contain combinations of sev-
eral acoustic sources in a mixture that overlaps in time and
frequency. In the recent years, there has been a growing in-
terest in methods that are capable of separating audio signals
frommicrophone arrays using blind source separation (BSS)
techniques [1]. In contrast to most of the research works
in BSS that assume multiple microphones, the audio data
in most practical situations is limited to stereo recordings.
Moreover, the majority of the potential applications of BSS
in the audio realm consider separation of simultaneous au-
dio sources in reverberant or echo environments, such as a
room or inside a vehicle. These applications deal with convo-
lutive mixtures [2] that often contain long impulse responses
that are difficult to estimate or invert.

In this paper, we consider a simpler but still practical
and largely overlooked situation of mixtures that contain a
combination of source signals in weak reverberation envi-
ronments, such as speech or music recorded with close mi-
crophones. The main mixing effect in such a case is direct
path delay and possibly a small combination of multipath
delays that can be described by convolution with a relatively
short impulse response. Recently, several works proposed
separation of multiple signals when additional assumptions

are imposed on the signals in the time-frequency (TF) do-
main. In [3, 4] an assumption that each source occupies sep-
arate regions in short-time Fourier transform (STFT) rep-
resentation using an analysis window W(t) (so-called W-
disjoint assumption) was considered. In [5] a source sepa-
ration method is proposed using so-called single-source au-
toterms of a spatial ambiguity function. In the W-disjoint
case the amplitude and delay estimation of the mixing pa-
rameters of each source is performed based on the ratio of
the STFTs of signals between the two microphones. Since the
disjoint assumption appears to be too strict for many real-
world situations, several improvements have been reported
that only allow an approximate disjoint situation [6]. The
basic idea in such a case is to use some sort of a detection
function that allows one to determine the TF areas where
each source is present alone (we will refer to such an area
as a single-source TF cell, or single-TF for short) and use
only these areas for separation. Detection of single-source
autoterms is based on detecting points that have only one
nonzero diagonal entry in the spatial time-frequency distri-
bution (STFD). The STFD generalizes the TF distribution for
the case of vector signals. It can be shown that under a lin-
ear data model, the spatial TF distribution has a structure
similar to that of the spatial correlation matrix that is usually
used in array signal processing. The benefits of the spatial
TF methods is that they directly exploit the nonstationary



2 EURASIP Journal on Applied Signal Processing

property of the signals for purposes of detecting and sepa-
rating the individual sources. Recent reported results of BSS
using various single-TF detection functions show excellent
performance for instantaneous mixtures.

In this paper, we propose a new method for source sepa-
ration in the echoic or slightly reverberant case that is based
on estimating and clustering the spatial signatures (trans-
fer functions) between the microphones and the sources
at different frequencies and at multiple times. The trans-
fer functions for each source-microphone pair are derived
from eigenvectors of correlationmatrices between themicro-
phone signals at each frequency, and are determined through
a selection and clustering process that creates disjoint sets of
eigenvector candidates for every frequency at multiple times.
This requires solving the permutation problem [7], that is,
association of transfer function values across different fre-
quencies into a single transfer function. Smoothing and asso-
ciation are achieved by simultaneous Kalman filtering of the
noisy amplitude and phase estimates along different frequen-
cies for each source. This differs from association methods
that assume smoothness of spectra of the separated signals,
rather than smoothness of the transfer functions. Even when
notches in room response occur due to signal reflections,
these are relatively rare compared to the inherent sparseness
of the source signals, which is inherent in the W-disjoint as-
sumption.

Our approach allows estimation of the transfer functions
between each source and everymicrophone, and is capable of
operating for both wideband and narrowband sources. The
proposed method can be used for approximate signal sepa-
ration in undercomplete cases (more than two sources in a
stereo recording) using filtering or time-frequency masking
[8], in a manner similar to that of the W-disjoint situation.

This paper is structured in the following manner: in the
next section, we review some recent state-of-the-art algo-
rithms for BSS, specifically considering the nonstationary
methods of independent component analysis (ICA) and the
W-disjoint approaches. Section 3 presents our model and the
details of the proposed algorithm. Specifically, we will de-
scribe the TF analysis and representation and its associated
eigenvector analysis of the correlation matrices at different
frequencies and multiple times. Then, we proceed to derive a
criterion for identification of the single-source TF cells and
clustering the spatial transfer functions. Details of the ex-
tended Kalman filter (EKF) tracking, smoothing, and across-
frequency association of the transfer function amplitudes
and phases conclude this section. The performance of the
proposed method for source separation is demonstrated in
Section 5. Finally, our conclusions are presented in Section 6.

2. BACKGROUND

The problem of multiple-acoustic-source separation using
multiple microphones has been intensively investigated dur-
ing the last decade, mostly based on independent compo-
nent analysis (ICA) methods. These methods, largely driven
by advances in machine learning research, treat the separa-
tion issue broadly as a density estimation problem. A com-
mon assumption in ICA-based methods is that the sources

have a particular statistical behavior, such that the sources
are random stationary statistically independent signals. Us-
ing this assumption, ICA attempts to linearly recombine the
measured signals so as to achieve output signals that are as
independent as possible.

The acoustic mixing problem can be described by the
equation

x(t) = As(t), (1)

where s(t) ∈ RM denotes the vector of M source signals,
x(t) ∈ RN denotes the vector ofN microphone signals, andA
stands for the mixing matrix with constant coefficients Anm

describing the amplitude scaling between source m and mi-
crophone n. Naturally, this formulation describes only an in-
stantaneous mixture with no delays or convolution effects. In
a multipath environment, each source m couples with sen-
sor n through a linear time-invariant system. Using discrete
time t and τ, and assuming impulse responses not exceeding
length L, the microphone signals are

xn(t) =
M∑

m=1

L∑

τ=1
Anm(τ)sm(t − τ). (2)

Note that the mixing is now a matrix convolution between
the source signals and the microphones, where Anm(·) rep-
resents the impulse response between source n and micro-
phone m. We can rewrite this equation by applying the dis-
crete Fourier transform (DFT):

x̃(ω) = Ã(ω)s̃(ω), (3)

where ˜denotes the DFT of the signal. This notation assumes
that either the signals and the mixing impulse responses are
of short duration (shorter than the DFT length), or that an
overlap-add formulation of the convolution process is as-
sumed, which allows infinite duration for s(t) and x(t), but
requires a short duration of the Anm(·) responses. From now
on we will consider the convolutive problem by assuming
separate instantaneous mixing problems x̃(ω) = Ã(ω)s̃(ω) at
every frequency ω. The aim of the convolutive BSS is to find
filtersWmn(t) that when applied to x(t) result in new signals
y(t) that are approximately independent. In the frequency-
domain formulation we have

ỹ(ω) = W̃(ω)x̃(ω), (4)

so that y(t) corresponds to the original sources s(t), up to
some allowed transformation such as permutation, that is,
not knowing which source sm(t) appears in which output
ym′(t), and amplitude scaling (relative volume).

This problem can be reformulated in statistical terms as
follows: for each frequency, given a multivariate distribution
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of vectors x̃ = (x̃1, x̃2, . . . , x̃N )T , whose coordinates or com-
ponents correspond to the signals at the N microphones, we
seek to find a matrix W̃ and vector ỹ = ( ỹ1, ỹ2, . . . , ỹM)T ,
whose components are “as independent as possible.” Saying
so, it is assumed that there exists a multivariate process with
independent components s, which correspond to the actual
independent acoustic sources, such as speakers or musical
instruments, and a matrix Ã = W̃−1 that corresponds to
the mixing condition (up to permutation and scaling), so
that x̃ = Ãs̃. Note that here and in the following we will
at times drop the frequency parameter ω from the problem
formulation.

Since the problem consists of finding an inverse matrix
to the model x̃ = Ãs̃, any solution of this problem is possible
only by using some prior information of Ã and s̃. Consider-
ing a pairwise independence assumption, the relevant crite-
rion can be described by considering the following:

∀t, k, l, τ, i �= j : E
[
ski (t)s

l
j(t + τ)

] = E
[
ski (t)

]
E
[
smj (t + τ)

]
.

(5)

The parameterization of different ICA approaches can be
written now as different conditions on the parameters of the
independence assumption. For stationary signals, the time
indices are irrelevant and higher-order statistical criteria in
the form of independence conditions with k, l > 1 must be
considered. For stationary colored signals, it has been shown
that decorrelation of multiple times t for k = l = 1 allows
recovery of the sources in the case of an instantaneous mix-
ture, but is insufficient for the general convolutive case. For
nonstationary signals, decorrelation at multiple times, t, can
be used (for k = l = 1) to perform the separation.

The idea behind decorrelation at multiple times t is basi-
cally an extension of decorrelation at two time instances. In
the case of nonmoving sources and microphones, the same
linear model is assumed to be valid at different time instances
with different signal statistics, with the same orthogonal sep-
arating matrixW:

Wx
(
t j ,ω

) = y
(
t j ,ω

)
, j = 1, . . . , J , (6)

where the additional index ω of W implies that we are deal-
ing with multiple separation problems for different values of
ω. The same formulation can be used without ω for a time-
domain problem, which gives a solution to the instantaneous
mixture problem. Considering autocorrelation statistics at
time instances t1, . . . , tJ we obtain J sets of matrix equations:

Rx,t j =W−1Λy,t jW
−T , j = 1, . . . , J , (7)

where we assume that {Λy,t j}Jj=1 are diagonal since the com-
ponents of y are independent. This problem can be solved
using a simultaneous diagonalization of {Rx,t j}Jj=1, without
knowledge of the true covariances of y at different times.
A crucial point in implementation of this method is that
it works only when the eigenvalues of the matrices Rx,t are

all distinct. This case corresponds in physical reality to suf-
ficiently unequal powers of signals arriving from different
directions, a situation that is likely to be violated in prac-
tical scenarios. Moreover, since the covariance matrices are
estimated in practice from short time frames, the averaging
time needs to correspond to the stationarity time. An addi-
tional difficulty occurs specifically for the TF representation:
independence between two signals in a certain band around
ω corresponds to independence between narrowband pro-
cesses, which can be revealed at time scales that are signifi-
cantly longer than the window size or the effective impulse
response of the bandpass filter used for TF analysis. This in-
herently limits the possibility of averaging (taking multiple
frames or snapshots of the signal in one time segment) with-
out exceeding the stationarity interval of the signal. In the
following we will show how ourmethod solves the eigenvalue
indeterminacy problem by choosing those time segments
where only one significant eigenvalue occurs. Our “segmen-
tal” approach actually reduces the generalized (or multiple)
eigenvalue problem into a set of disjoint eigenvalue problems
that are solved separately for each source. The details of our
algorithm will be described in the next section. In the fol-
lowing, we will consider the “directionally-disjoint” sources
case in which the local covariance matrices Rx,t j have a single
large eigenvalue at sufficiently many time instances t j . The
precise definition and the amount of times that are sufficient
for separation will be discussed later.

3. PROPOSED SOURCE SEPARATIONMETHOD

Consider an N-channel sensor signal x(t) that arises from
M unknown scalar source signals sm(t), corrupted by zero-
mean, white Gaussian additive noise. In a convolutive en-
vironment, the signals are received by the array after delays
and reflections. We consider the case where each one of the
sources has a different spatial transfer function. Therefore,
the signal at the nth microphone is given by

xn(t) =
M∑

m=1

L∑

l=1
anmlsm(t − τnml) + vn(t), n = 1, . . . ,N ,

(8)

in which τnml and anml are the delay and gain of the lth path
between source signal m and microphone n, and vn(t) de-
notes the zero-mean white Gaussian noise. The STFT of (8)
gives

Xn(t,ω) =
M∑

m=1
Anm(ω)Sm(t,ω) +Vn(t,ω), n = 1, . . . ,N ,

(9)

where Sm(t,ω) and Vn(t,ω) are the STFT of sm(t) and vn(t),
respectively, and the transfer function between themth signal
to the nth sensor is defined as

Anm(ω) =
L∑

l=1
anmle

− jωτnml . (10)
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In matrix notation, the model (9) can be written in the form

X(t,ω) = A(ω)S(t,ω) +V(t,ω). (11)

Our goal here is to estimate the spatial transfer function
matrix, A(ω), and the signal vector, s(t), from the measure-
ment vector x(t). For estimation of the signal vector, we will
assume that the number of sources, M, is not greater than
the number of sensors, N . This assumption is not required
for estimation of the spatial transfer function matrix, A(ω).

The proposed approach seeks time-frequency cells in
which only one source is present. At these cells, it is pos-
sible to estimate the unstructured spatial transfer function
matrix for the present source. Therefore, we will first iden-
tify the single-source TF cells and calculate the spatial trans-
fer functions for the sources present in those cells. In the
second stage, the spatial transfer functions are clustered
using a Gaussian mixture model (GMM). The frequency-
permutation problem is solved by considering the spatial
transfer functions as a frequency-domainMarkov model and
applying an EKF to track it. Finally, the sources are separated
by inverse filtering of the measurements using the estimated
transfer function matrices.

The autocorrelation matrix at a given time-frequency cell
is given by

Rx(t,ω) = E
[
X(t,ω)XH(t,ω)

]

= A(ω)Rs(t,ω)AH(ω) + Rv(t,ω),
(12)

where Rx, Rs, and Rv are the time-frequency spectra of the
measurements, source signals, and sensor noises, respec-
tively. We assume that the noise is stationary, and there-
fore its covariance matrix is independent of time t, that is,
Rv(t,ω) = Rv(ω). Furthermore, the noise spectrum is usually
known, so (12) can be spatially prewhitened by left multiply-
ing (11) by R−1/2v (ω). Thus, we can assume Rv(ω) = σ2v IN for
all ω where IN is the identity matrix of size N .

3.1. Identification of single-source TF cells

Each time-frequency window is tested in order to identify the
time-frequency windows in which a single signal is present.
In these cells, the unstructured spatial transfer function can
be easily estimated. Consider a time segment consisting of
T time cells in which the signals are stationary. Then, (12)
becomes time-independent:

Rx(ω) = A(ω)Rs(ω)AH(ω) + σ2v IN . (13)

If only themth source is present, (13) becomes

Rxm(ω) = am(ω)aHm(ω)σ
2
sm(ω) + σ2v IN , (14)

where am(ω) is the mth column of the matrix A(ω) and
σ2sm(ω) denotes the mth signal power spectrum. In this case,
the rank of the (noiseless) signal covariance matrix is 1 and
am(ω) is proportional to the eigenvector of the autocorre-

lation matrix Rxm(ω) associated with the maximum eigen-
value: λ1,m(ω) = σ2sm(ω)‖am(ω)‖2 + σ2v . This property allows
us to derive a test for identification of the single-source seg-
ments and estimate the corresponding spatial transfer func-
tion am(ω). We will denote the eigenvector corresponding to
the maximum eigenvalue of the matrix Rx(ω) by u(ω), disre-
garding the source indexm.

The three hypotheses for each time-frequency cell in a
stationary segment, which indicate the number of active
sources in this segment, are

H0 : X(t,ω) ∼ N c(0, σ2v IN
)
,

H1 : X(t,ω) ∼ N c[0,u(ω)uH(ω)σ2s (ω) + σ2v IN
]
,

H2 : X(t,ω) ∼ N c[0,Rx(ω)
]
,

(15)

where H0, H1, H2 indicate noise-only, single-source, and
multiple-source hypotheses, respectively, with X ∼ N c(·, ·)
denoting the complex Gaussian distribution. Under hypoth-
esis H0, the model parameters are known. Under hypoth-
esis H1, the vector u(ω) is the normalized spatial transfer
function of the present source in the segment (i.e., one of
the columns of the matrix A(ω)) and σ2s (ω) represents the
corresponding signal power spectrum. We assume that u(ω)
and σ2s (ω) are unknown. In hypothesisH2, it is assumed that
the data model is complex Gaussian-distributed and spatially
colored with unknown covariance matrix Rx(ω), which rep-
resents the contribution of several mixed sources. Usually,
the Gaussian distribution assumption for hypothesesH1 and
H2 does not hold, and in fact leads to suboptimal solutions.
However, this assumption enables obtaining a simple and
meaningful result for source separation.

In order to identify the case of a single source, two tests
are performed. In the first, the hypotheses H0 and H1 are
tested, while in the second, hypotheses H1 and H2 are tested.
A time-frequency cell is considered as a single-source cell if
in both tests it is decided that a single source is present. These
tests are carried out between hypotheses with unknown pa-
rameters, and therefore the generalized likelihood ratio test
(GLRT) is employed, that is,

H1

GLRT1 = max
u,σ2s

log fX|H1;u,σ2s − log fX|H0 ≷ γ1,

H0

H2

GLRT2 = max
Rx

log fX|H2;Rx −max
u,σ2s

log fX|H1;u,σ2s ≷ γ2,

H1

(16)

where fX|H0 , fX|H1;u,σ2s , and fX|H2;Rx denote the probability
density functions (pdf ’s) of each time-frequency segment
under the three hypotheses.

Now, we will derive the GLRTs for identification of
single-source cells. Consider T independent samples of the
data vectors X(ω) � [X(1,ω), . . . ,X(T ,ω)] for which the
data vector is stationary. Then, under the three hypothe-
ses described above, X(t,ω) is complex Gaussian-distributed



Shlomo Dubnov et al. 5

X(t,ω) ∼ N c[0,Rx(ω)]. The model of Rx(ω) differs between
the three hypotheses. The log-likelihood of the dataX(ω) un-
der the joint model is

log fX|Rx = −T log
∣∣πRx(ω)

∣∣−
T∑

t=1
XH(t,ω)R−1x (ω)X(t,ω)

= −T{ log∣∣πRx(ω)
∣∣ + tr

[
R̂x(ω)R−1x (ω)

]}
,

(17)

where R̂x(ω) is the sample covariance matrix R̂x(ω) �
1/T

∑T
t=1X(t,ω)XH(t,ω). For simplicity of notation, we will

drop the dependence on frequency ω.
Under hypothesis H0, Rx = σ2v I, and therefore the log-

likelihood from (17) becomes

log fX|H0 = −T
{
N log

(
πσ2v

)
+

1
σ2v

tr
(
R̂x
)}

. (18)

Under hypothesis H1, Rx = σ2s uu
H + σ2v IN , for which the

following equations are satisfied:

R−1x = 1
σ2v

(
IN − SNR

1 + SNR
uuH

)
,

∣∣Rx
∣∣ = σ2Nv (1 + SNR),

(19)

where SNR � σ2s /σ
2
v . Substitution of (19) into (17) yields

log fX|H1,u,σ2s = −T
{
log
[(
πσ2v

)N
(1 + SNR)

]

+
1
σ2v

tr
[
R̂x

(
IN − SNR

1 + SNR
uuH

)]}

= −T
[
N log

(
πσ2v

)
+

1
σ2v

tr
(
R̂x
)
+ log(1 + SNR)

− SNR
σ2v (1 + SNR)

uH R̂xu
]
.

(20)

Maximization of (20) with respect to σ2s can be replaced
by maximization with respect to SNR. This operation can

be performed by calculating the derivative of (20) with re-
spect to SNR and equating it to zero, resulting in �SNR(u) =
uH R̂xu/σ2v − 1 or σ̂2s (u) = uH R̂xu− σ2v . Thus,

max
σ2s

log fX|H1,u,σ2s

= −T
[
N log

(
πσ2v

)
+

1
σ2v

tr
(
R̂x
)
+ 1 + logη − η

]
,

(21)

where η � uH R̂xu/σ2v . We seek to maximize (21) with re-
spect to u, where u is constrained to unity norm. Since (21)
is monotonically increasing with η, for η > 1, then the log-
likelihood is maximized when η is maximized. Let λ1 ≥
· · · ≥ λN denote the eigenvalues of R̂x. Then, maxu uH R̂xu =
λ1, and

max
u,σ2s

log fX|H1,u,σ2s = −T
[
N log

(
πσ2v

)
+ 1 +

1
σ2v

tr
(
R̂x
)

+ log
λ1
σ2v
− λ1

σ2v

]

= −T
[
N log

(
πσ2v

)
+ 1 +

N∑

i=2

λi
σ2v

+ log
λ1
σ2v

]
.

(22)

Under hypothesis H2, the matrix Rx is unstructured and
assumed to be unknown. Equation (17) is maximized for
Rx = R̂x [9]. The resulting log-likelihood under this hypoth-
esis is

max
Rx

log fX|H2,Rx = −T
(
log
∣∣πR̂x

∣∣ +N
)

= −T
(
N logπ +

N∑

i=1
log λi +N

)
.

(23)

Now, the two GLRTs for decision between (H0,H1) and
(H1,H2) can be derived by subtracting the corresponding
log-likelihood functions:

H1

GLRT1 = max
u,σ2s

log fX|H1;u,σ2s − log fX|H0 = T
(
λ1
σ2v
− log

λ1
σ2v
− 1
)

≷ γ′1,

H0

H2

GLRT2 = max
Rx

log fX|H2;Rx −max
u,σ2s

log fX|H1;u,σ2s = T

[ N∑

i=2

(
λi
σ2v
− log

λi
σ2v

)
−N + 1

]
≷ γ′2.

H1

(24)
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Finally, after dropping the constants, and modifying the
thresholds accordingly, the two tests can be stated as

H1

T1 =
(
λ1
σ2v
− log

λ1
σ2v

)
≷ γ1,

H0

H2

T2 =
N∑

i=2

(
λi
σ2v
− log

λi
σ2v

)
≷ γ2.

H1

(25)

The thresholds γ1 and γ2 in the two tests should be set
according to the following considerations. Large values for
γ1 and small values for γ2 will lead to missed detections of
single-source TF cells, and therefore lead to a lack of data
for calculation of the spatial transfer function. On the other
hand, small values for γ1 or large values for γ2 will lead to
false detections of single-source TF cells, which can cause er-
roneous estimation of the spatial transfer function. Gener-
ally, larger amounts of data will enable us to increase γ1 and
decrease γ2.

In the case of stereo signals (N = 2), both tests could be
expressed for i = 1, 2 and λ2 ≥ λ1 ≥ σ2v as

Hi

Ti =
(
λi
σ2v
− log

λi
σ2v

)
≷ γi.

Hi−1

(26)

3.2. Spatial transfer function estimation

In the TF cells that are identified to be single-source cells, the
ML estimator for the normalized spatial transfer function of
the present source at the given frequency ω is given by the
eigenvector associated with the maximum eigenvalue of the
autocorrelationmatrixRxm. It is important to note that a sin-
gle amplitude-delay pair is sufficient to describe the spatial
transform for a sufficiently narrow frequency band represen-
tation and assuming a linear spatial system. We can rewrite
the model (11) for the case of two sources and two micro-
phones as

[
X1(ω)
X2(ω)

]
=
[

1 1
a1e− jωδ1 a2e− jωδ2

][
S1(ω)
S2(ω)

]
(27)

in which case, the mixing matrix column, corresponding to
one of the sources, say source m, can be directly estimated
from the eigenvector, am(ω), associated with the maximum
eigenvalue of the autocorrelation matrix Rxm under hypoth-
esis T1, that is, a single-sourcem is present in this TF region.
Thus,

ame
− jωδm = am,2(ω)

am,1(ω)
, (28)

where am,i denotes the ith component of am, or more specif-
ically

am =
∣∣∣∣
am,2(ω)
am,1(ω)

∣∣∣∣,

δm = 1
ω
	
[
log

am,2(ω)
am,1(ω)

]
,

(29)

where 	 denotes taking the imaginary part.
Having different amplitude and delay values for each

source at every frequency, we need to associate the different
amplitude and delay values across frequency to their corre-
sponding source. If we assume that the amplitude and de-
lay are constant over different frequencies, occurring in the
case of a direct path effect only, the association can be per-
formed by clustering the amplitude and phase values around
their mean value. In the case of multipath, the amplitude and
delay values may differ across frequencies. Using smooth-
ness considerations, one could try to associate the parame-
ters across different frequencies by assuming proximity of pa-
rameter values across frequency bins for the same source. It
should be also noted that smoothness of delay values requires
unwrapping of the complex logarithm before dividing by ω.
This is limited by spatial aliasing for high frequencies, that is,
if the spacing d between the sensors is too large, the delay d/c
where c is the speed of sound, might be larger than the max-
imum permissible delay 2π/ωs, with ωs denoting the sam-
pling frequency. In other words, it might not be possible to
uniquely solve the permutation problem if the delay between
two microphones is more than one sample. Moreover, sepa-
rate clustering or associating amplitude and delay parameters
also looses information about the relations between the real
and imaginary components of the spatial transfer function
vector. In the following section, we will describe an optimal
tracking and frequency association based on Kalman mod-
eling, which addresses these problems assuming smoothness
of the amplitude and phase of the spatial transfer function
across frequency.

4. TRACKING AND FREQUENCY ASSOCIATION
ALGORITHM

A common problem in frequency-domain convolutive BSS
is that the mixing parameter estimation is performed sep-
arately for each frequency. In order to reconstruct the time
signal, the frequency-separated channels must be combined
together in a consistent manner, that is, one must insure
that the different frequency components correspond to the
same source. This problem is sometimes referred to as
the frequency-permutation or association problem. In our
method we perform the association in two steps. First, we
reduce the number of points at every frequency by finding
clusters of the points am,2(ω)/am,1(ω) in the complex plane
at different time segments. This clustering is performed us-
ing a two-dimensional GMMof the real and imaginary parts.
The number of clusters is determined a priori according to
the number of sources. When the number of sources is un-
known, additional methods for determining the number of
clusters may be considered. Next, association of the mixing
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parameters across frequency is performed by operating sep-
arate EKFs on the cluster means, one for each source.

4.1. Gaussianmixturemodel and extended
Kalman filter

The GMM assumes that the observations z are distributed
according to the following density function

pz(z) =
M∑

m=1
πmN

(
z | Θm

)
, (30)

where πm are the weights of the Gaussian distribution N(· |
Θm), andΘm = {μm,Σm} are its mean and covariance matrix
parameters, respectively. In our case, the observations, z, are
estimates of the real and imaginary parts of the transfer func-
tion over frequency (see previous section). The parameters of
the GMM are obtained using an expectation-maximization
(EM) procedure. The estimated mean and covariance matrix
at each frequency are used for tracking the spatial transfer
function.

An EKF is used for tracking and association of the trans-
fer functions, whose mean and variance are estimated by the
EM algorithm. The idea here is that the spatial transfer func-
tion between each source and microphone is smooth over
frequency. Notches that occur in the transfer function due to
signal reflections will be smoothed by the EKF, causing errors
in the estimation (29), which color the signal but do not in-
terfere with the association process since one of the sources
in this case has small or zero amplitude. Therefore, the spa-
tial transfer functions are modeled as first-order Markov se-
quences. It is natural to use the magnitude and phase of each
spatial transfer function for the state vector, because in sim-
ple scenarios with no multipath, the absolute value of the
transfer function is constant over frequency, while its phase
linearly varies with frequency. Thus, the state vector of each
EKF includes the magnitude (ρ), phase (α), and phase rate
(α̇) of the transfer function. The presence of multipath causes
deviation from this model, which can be represented by a
noise model. Thus, the state vector dynamics across neigh-
boring frequencies (frequency smoothness constraint) are
modeled as

φk =
⎛
⎜⎝
ρk
αk
α̇k

⎞
⎟⎠ =

⎛
⎜⎝
1 0 0
0 1 1
0 0 1

⎞
⎟⎠

⎛
⎜⎝
ρk−1
αk−1
α̇k−1

⎞
⎟⎠ + nφk,

μk =
(

(am

(
ωk
))

	(am
(
ωk
))
)
=
(
ρk cosαk
ρk sinαk

)
+ nμk,

(31)

in which the noise covariance of nμk is taken from the above-
mentioned clustering algorithm, and the model noise covari-
ance of nφk is set according to the expected dynamics of the
spatial transfer function.

For tracking the M transfer functions, M independent
EKFs are implemented in parallel. At each frequency step,
the data is associated with the EKFs according to the criterion
of minimum-norm distance between the clustering estimates
and theM Kalman predictions.

4.2. The separation algorithm

The various steps of the algorithm can be summarized as fol-
lows.

(i) Given a two-channel recording, perform a separate
STFT analysis for every channel, resulting in the sig-
nal model (11).

(ii) Perform an eigenvalue analysis of the cross-channel
correlation matrix at each frequency, as described in
Section 3, where (12) and (26) determine the transfer
function.

(iii) At each frequency, determine the cluster centers of the
set of amplitude ratio measurements using the GMM.

(iv) Perform EKF tracking of the cluster means across fre-
quency for each source to obtain an estimate of the
mixing matrix as a function of frequency.

(v) If the mixing matrix is invertible, recover the signals
by multiplying the STFT channels at each frequency
by the inverse of the estimated mixing matrix. In case
of more microphones than sources, the pseudoinverse
of the mixing matrix should be used. In case of more
sources than microphones, source separation can be
approximately performed using time-frequency mask-
ing method of [8].

(vi) Perform an inverse STFT using the associated frequen-
cies for each of the sources.

Since the mixing matrix can be determined only up to a
scaling factor, we assume a unit relative magnitude for one
of the sources and use the amplitude ratios to determine the
mixing parameters of the remaining source. This problem of
scale invariance may cause a “coloration” of the recovered
signal (over frequency) and is one of the possible sources of
error, being common to most convolutional source separa-
tion methods. Another typical problem is that the narrow-
band processing corresponds to circular convolution rather
than the desired linear convolution. This effectively restricts
the length of the impulse response between the microphones
to be less than half of the analysis window length, or in fre-
quency it restricts the spectral smoothness to that of the DFT
length. Since speech sources are sparse in frequency (at least
for the voiced segments), it is assumed that spectral peaks of
speech harmonics would not be seriously influenced by spec-
tral detail smaller than one FFT bin.

5. EXPERIMENTAL RESULTS

Separation experiments were carried out for simulated mix-
ing conditions. We tested the proposed algorithm under dif-
ferent conditions, such as relative amplitudes of the sources,
angles and amplitudes of the multipath reflections, and dif-
ferent types of sound sources.

In the first experiment, two female speakers were
recorded by two microphones with 4.5 cm spacing. Figure 1
shows the measured versus smoothed spatial transfer func-
tions for this difficult case of two female speaker sources
of 20-second length, sampled at a rate of 8 kHz, with
nearly equal amplitude mixing conditions. The separation
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Figure 1: Amplitude and phase of two female speaker sources with
nearly equal amplitude mixing conditions.

is possible due to the different phase behavior of the sig-
nals, which is properly detected using the EKF tracking.
The EKF parameters were set as follows. The system noise
covariance matrix was set according to standard deviation
(STD) of 0.1/sample in the transfer function amplitude and
0.1 rad/sample for phase. The measurement covariance ma-
trices were set based on the results of the EM algorithm for
GMM parameters estimation. The measurement STDs are in
fact the widths of the Gaussians. The EKF parameters were
also fixed in the following examples.

In Figure 2 the SNR improvement for different relative
positions of the sources with different relative amplitudes is
presented. The SNR improvement was calculated according
to the method described in [10]. The separation quality of
the mth source is evaluated by the ratio of the maximal en-
ergy output signal and sum of energies of the remaining out-
put signals when only sourcem is present at the input. One of
the sources was fixed at 0◦ while the other source was shifted
from −40◦ to 40◦. The amplitude ratio of the sources at the
microphones varied from 0.8 to equal amplitude ratios. The
multipath reflections occurred at constant angles of 60◦ and
−40◦ with relative amplitudes of a few percent of the orig-
inal. For equal amplitudes, we achieve up to 10 dB of im-
provement when the sources are 40◦ apart. The angle sensi-
tivity disappears when sufficient amplitude difference exists
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Figure 2: Improvement in SNR as a function of source angle for
different relative amplitudes under weak multipath conditions.

between the sources. For an amplitude ratio of 0.8 (i.e., each
microphone receives its main source at amplitude 1 and the
interfering source at amplitude 0.8), we achieved 20–30 dB
improvement. One should note that the above results con-
tain weak multipath components. Even better improvement
(50 dB or more) can be achieved for cases when nomultipath
is present.

The performance of the proposed method was tested
also under strong multipath conditions. In this test, the
two microphones measured signals from two sources. Each
source signal arrives at the microphones through six differ-
ent paths. The paths of the first source are from 0◦, −5◦,
−10◦, −20◦, −30◦, −40◦, with strengths 0, −6, −7.5, −9,
−11, and −13.5 dB. The paths of the second source are from
60◦, 50◦, 40◦, 30◦, 20◦, with strengths −7.5, −9, −11, −13.5,
and −17 dB, where the main path was at 0 dB with vary-
ing direction. The relative amplitude of the received paths at
the microphones was randomly chosen between 0.67–0.86.
Figure 3 shows the SNR improvement for both sources as a
function of the main path direction for different relative am-
plitudes.

The proposed method was also tested for separation of
three sources (female speakers) using three microphones.
Figure 4 shows the SNR improvement results with differ-
ent relative amplitudes as a function of the third source
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Figure 3: Improvement in SNR under strong multipath conditions
as a function of source angle for different relative amplitudes.

direction. The microphones were positioned within a linear,
equally spaced (LES) array with 4.5 cm intersensor spacing.
The performance in this case is slightly lower than the case of
two microphones versus two sources, mainly because there
are fewer TF cells in which a single source is present. Ob-
viously, longer data can significantly improve the results in
cases of multiple sources and multiple microphones.

As mentioned above, the proposed method is able to esti-
mate the spatial transfer function in the case of more sources
than sensors. Figure 5 shows the magnitude and phase of the
true and estimated channel transfer functions of the three
sources where only two microphones were used. The sources
were located at −40◦, −10◦, and 30◦ with relative amplitudes
of the different sources of 4, 2, and 0.5 between the micro-
phones.

Figure 6 shows the amplitude of the spatial transfer func-
tion obtained by the inverse mixing matrix over frequency
for the case of two sources located at 0◦ and 60◦, without
multipath. One can observe that the spatial pattern gen-
erated by the inverse of the estimated mixing matrix in-
troduces a null in the direction of the interfering source.
Figure 6(a) shows the null generated around 60◦ for recov-
ering the source at 0◦, while Figure 6(b) shows the null gen-
erated around 0◦ for recovering the source at 60◦.
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Figure 4: Improvement in SNR for the case of three microphones
and three sources as a function of the third source angle for different
relative amplitudes.

The proposed method for estimating the spatial transfer
functions using the correlation matrix of the TF representa-
tion can be compared to themethod for estimation of mixing
and delay parameters from the STFT, as reported in [3, 8].
The basic assumption of that approach is the orthogonality
of the “W-disjoint,” which requires that part of TF the cells
in the TF representation of the sources do not overlap. The
derivation of the relative amplitude and delay parameters as-
sociated with sourcem being active at (t,ω) is done using

(
am, δm

) =
[∣∣∣∣

X2(t,ω)
X1(t,ω)

∣∣∣∣,
1
ω

∠X2(t,ω)
X1(t,ω)

]
. (32)

Note that unlike the proposed method, in this case the mix-
ing parameters are estimated directly from the STFT rep-
resentation without taking into account the additive noise,
which affects both amplitude and phase estimates. Using spa-
tial correlation, it is possible to recover the relative amplitude
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Figure 5: Channel transfer function estimation for three sources
using two microphones.

and phase of the spatial transfer function for a single-source
TF cell containing additive white noise. A central step in the
W-disjoint approach is the clustering of the parameters in
amplitude and delay space so as to identify separate sources
in the mixtures. Usually this clustering step is performed un-
der the assumption of constant amplitude and delay over fre-
quency and is possible for speech signals when the sources are
distinctly localized both in amplitude and delay. It should be
noted that these methods can not handle multipath, that is,
when more than one peak in the amplitude and delay space
corresponds to a single source. Figure 7 shows the distribu-
tion of the ratio of spatial transfer function values a2/a1 in
the complex plane for two real sources over different fre-
quencies at TF points that have been detected as single-TFs.
It can be seen from the figure that these values have signifi-
cant overlap in amplitude and phase. It is evident that simple
clustering can not separate these sources and more sophisti-
cated methods are required.

6. CONCLUSIONS

In this paper, we presented a new method for speech source
separation based on directionally-disjoint estimation of the
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Figure 6: Spatial pattern obtained by the inverse of the mixing ma-
trix for each frequency in the case of two sources at 0◦ and 60◦.
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Figure 7: Distribution of the ratio of spatial transfer function values
a2/a1 in the complex plane for two real sources (indicated by circles
and asterisks) over different frequencies at TF points that have been
detected as single-TFs.

transfer functions between microphones and sources at dif-
ferent frequencies and at multiple times. We assume that the
mixed signals contain a combination of source signals in a
reverberant environment, such as speech or music recorded
with close microphones, where the mixing effect is a direct
path delay in addition to a combination of weak multipath
delays. The proposed algorithm detects the transfer functions
in the frequency domain using eigenvector analysis of the
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spatial correlation matrix at single-TF instances. The advan-
tage of our approach is that it allows transfer function esti-
mation even in difficult conditions where the amplitudes of
the mixed signals are approximately equal, and it can operate
for both wideband and narrowband sources. The current
work successfully extends common BSS methods that use a
single-TF detection criterion to the convolutive case. The pa-
per formulates single-TF detection and transfer function per-
mutation problems in a principled and optimal manner.
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