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Instantaneous Spectrum Estimation
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We present a method for obtaining a time-varying spectrum that is particularly suited when the data are in event-based form.
This form arises in many areas of science and engineering, and especially in astronomy, where one has photon counting detectors.
The method presented consists of three procedures. First, estimating the density using the kernel method; second, highpass
filtering the manifestly positive density; finally, obtaining the time-frequency distribution with a modified Welch’s method. For
the sake of validation, event-based data are generated from a given distribution and the proposed method is used to construct the
time-frequency spectrum and is compared to the original density. The results demonstrate the effectiveness of the method.
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1. INTRODUCTION

An important problem in many fields is the study of densi-
ties and spectra where the data are event-based. We illustrate
with a specific example of the study of a signal coming from
the X-ray binary system XTE-J1550. The signal is made by a
sequence ti of the photon arrival times, measured by an X-
ray detector orbiting the Earth [1, 2]. The more concentrated
are the photons in a given time interval, the higher will be the
intensity of the radiation (in the X-ray region) for that partic-
ular time interval. Hence the density f(t) of the sequence ti
is here intended as the normalized intensity of the radiation
underlying the arriving photons.

Since a fundamental property of such a density is its in-
stantaneous spectrum [3, 4], because it is believed to carry
important physical information on the system that generated
the events, we present here a method that enables us to per-
form this estimation in an effective way. We want to build an

estimation algorithm that performs the following operation

ti −→ P(t,ω), (1)

where P(t,ω) is the estimated instantaneous spectrum of the
(normalized) density f(t) underlying the sequence of events
ti. The astronomy case mentioned earlier and described in
detail in [1, 2] can be considered as an excellent paradigm for
instantaneous spectrum estimation of event-based densities.
Here the main physical quantity is time, but the identical
method can be applied to any quantity x (with associated
density f(x)).

The method consists of three steps. First, a density esti-
mation is accomplished by using the kernel method, namely
sliding a window that makes a weighted count of the events
in the window support. Then highpass filtering allows one
to eliminate the low frequency components that are always
present in a density due to its positivity, but are often of no
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interest. Finally, the estimation of the time-frequency spec-
trum is performed by using a sliding Welch’s estimator to re-
cover instantaneous spectral components even in very noisy
environments. The method is tested on simulated event-
based data, and the results show its robustness and effec-
tiveness in estimating the time-varying spectral features of
the initial density f(t).

2. METHOD

We now describe the basic steps of the method for the instan-
taneous spectrum estimation of event-based densities.

2.1. Density estimation

The original data represent a sequence of events ti that is typ-
ically recorded as a sequence of the time instants when the
events occurred. This sequence of events has a densityf(t). In
the physical example that we mentioned in the introduction,
the events are the photon arrival times in the X-ray detector
mounted on the satellite, and the density is proportional to
the strength of the incident radiation field. If no prior infor-
mation is given on the stochastic process that underlies the
events, the first step is to estimate the density f(t) underlying
the data.

To accomplish such estimation we use the kernel method
[5]. This method consists in sliding a function h(t) called
kernel on the event data ti, and then operating a summation
of the events in the kernel support using the kernel itself as
weighting function. The kernel must be a positive function
with integral equal to one. The estimated density f̂ (t) at a
certain value t is the weighted summation obtained when the
kernel is centered at that analysis value t. The kernel method
generates a continuous estimated density. The shape and an-
alytic properties of the kernel can control the properties of
the estimated density. For example, differentiability of f̂ (t)
holds if the kernel is differentiable.

In [1, 2] we used a Hanning kernel, whereas in this paper
results are obtained using a rectangular kernel. In general,
the kernel must be chosen according to the nature of the
data.1 Also, in [7] a filter design approach has been discussed
for kernel choice. Some general rules that we can follow in
choosing an appropriate kernel are:

• If we want the estimated density f̂ (t) to have certain
analytical properties, these properties must be imposed
on the kernel h(t).

• As is the case in selecting a window for generating a
spectrogram, tracking of fast variations in f(t) is better
accomplished by more concentrated kernels, such as
rectangular kernels.

• The kernel method can be written as a convolution
where the kernelh(t)plays the role of a filter [7]. In this
sense one can choose the kernel by noting the effect on

1The issue of what is choosing a kernel has a long history. See [6] for a
discussion of this issue.

the spectrum of the estimated density (noise reduction,
resolution, etc.).

2.2. Highpass filtering

The estimated density f̂ (t) is a positive function, and hence
its spectrum always shows strong low frequency components
and so will the time-frequency spectrum. Since the spectral
components near zero are often not of interest, we highpass
filter f̂ (t) to remove them. The digital filter used in the op-
eration can be a standard one, but care must be taken to
not introduce nonlinear phase distortion in the filter process.
This is particularly important in the time-frequency plane,
where instantaneous spectral components are connected to
the derivative of the instantaneous phase, and hence phase
distortion directly changes the instantaneous spectrum. A
forward-backward filtering is chosen, that consists in filtering,
reversing, and filtering again the signal. The output density
f̂h(t) can be proven to have zero phase distortion [8].

2.3. Time-frequency estimation

The last step is the estimation of the instantaneous spectrum
P(t,ω) from the estimated density f̂h(t) obtained from the
previous step. Since the density is always corrupted with noise,
we have to adopt noise reduction techniques. This is accom-
plished by using the sliding estimator, a time-frequency esti-
mation technique [9, 10, 11, 12] (see also [13]). The sliding
estimator is simply obtained by sliding a window on the signal
centered at every analysis time, and then taking the Welch’s
periodogram of the windowed signal at that time. The result
is the extension of the well-known periodogram to the non-
deterministic case of the time-frequency spectrum estimation
of a signal embedded in noise.

3. VALIDATION OF THE METHOD

To prove the validity of the method, we test it on event-based
densities generated by numerical algorithms. Since the gener-
ation of events with a fixed density is not a common problem
in signal analysis, we provide a description of the method
adopted for such purpose. After that we present and discuss
the results of the time-frequency estimation method applied
to the generated densities. We point out that our method has
been motivated primarily by timing problems arising in as-
tronomy as discussed in the introduction [1, 2, 14]. The only
current method (to the best of our knowledge) that allows
time-frequency spectrum estimation of event-based densi-
ties is the so-called “Dynamic Power Spectrum” [14, 15]. We
have already discussed this method and shown comparisons
with our algorithm in [1, 2] and hence we will not repeat
them here. Our method shows an improvement in the details
of the time-varying spectrum.

Before describing how to generate events, we first choose
a continuous density f(t) by fixing a signal with a given time-
frequency law. In particular, we generate a signal that has a
time-frequency behavior similar to the QPO (Quasi-Periodic
Oscillation, see [16]) that we investigated in [1, 2]. In Figure 1,
we show the time-frequency spectrum of the chosen density
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Figure 1: Time-frequency spectrum of a regularly sampled version
of f(t). The signal is similar to the QPO (Quasi-Periodic Oscilla-
tion) presented in [1, 2].

f(t) obtained with the sliding estimator technique described
in Section 2.3. The density in this example is still regularly
sampled as a standard digital signal. A better time-frequency
distribution could be used to represent the signal, for example
a Choi-Williams distribution [17] that exhibits greater reso-
lution, but here we use the sliding estimator because we will
compare against Figure 1 all the obtained results, and so we
need to compute them in a similar way.

3.1. Density generation

We now describe a method to generate a series of events, ti,
that fit the chosen density f(t). These, for example, may be
time of arrival events. Among the several methods available,
we choose the mixing method [18], for its simplicity and
reliability. The mixing method is based on the possibility of
writing the desired distribution f(t) as a linear combination
of distributions, that is,

f(t) = p1f1(t)+ p2f2(t)+ · · · + pnfn(t), pk > 0, (2)

where the constants p1, p2, . . . , pn play the role of weights
and, due to the density property of all the functions fk in-
volved, also probabilities. We generate the sequence ti by mix-
ing m sequences tki that are selected in the following way:

set ti = tki if p1 + · · · + pk−1 ≤ ui < p1 + · · · + pk, (3)

where ui is a sequence with uniform distribution between
0 and 1. This decomposition is useful if the basic densities
fk(t) are easier to generate by numerical algorithms. The
easiest case is, of course, when we choose the fk to be uni-
form distributions. By applying the mixing method one can
approximate any given distribution to any desired degree of
accuracy.

In particular, we choose the fk densities to be linear den-
sities. In this case we can approximate f(t) with greater con-
vergence speed than by using uniform distributions. Hence

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50 100 150 200 250 300 350 400 450
n

Figure 2: Estimated instantaneous spectrum of the density f(t)
when a sequence ti of events is given. The number of events is twice
the number of samples of the numerical version of f(t).

we approximate f(t) using N − 1 linear densities having
supports in the time intervals [kTs, (k+1)Ts),k = 0, . . . , N−
2, where N is the number of samples of f(t) (we con-
sider its sampled version). The weights p1, p2, . . . , pn are
computed as the N − 1 areas of f(t) in the N − 1 time
supports (their sum equals one because f(t) is a proper
density).

3.2. Estimation results

We now present the time-frequency spectrum obtained ap-
plying the proposed method to the chosen density f(t). We
consider the noise free case and then we add to the origi-
nal density a white Gaussian noise with decreasing SNR, to
simulate measurement noise and other stochastic processes
embedded in the data. We point out that often in astron-
omy the only source of noise are the statistical fluctuations
associated with counting a finite number of discrete events.
Nevertheless, in the general framework of signal analysis, it
is a basic and important approach to consider the case where
additive white noise is present.

Noise-free case

In Figure 2 we represent the estimated instantaneous spec-
trum of f(t) obtained from a sequence ti of events generated
by the mixing method. The number of events used is 2N, N
being the length of the original sampled density f(t). The
quality of the result is surprising, if one considers that only
two events are generated for each of the N samples of the
noise free density. To give an idea on how rough is the ap-
proximation of f(t) obtained using 2N, we plot in Figure 3
a comparison between the original density f(t) and a re-
constructed version f̂ (t) obtained from the kernel method.
The quality of the reconstruction increases if one generates
a sequence ti made of 4N events, as Figure 4 shows. Here
a direct comparison with Figure 1 shows the quality of the
estimation.
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Figure 3: Comparison between the initial density f(t) (continuous
line) and the estimated version f̂ (t) (dashed line) obtained with the
kernel method. Notice how poor seems the quality of the estimated
density f̂ (t). Despite this apparently bad estimation, the estimated
instantaneous power spectrum will show clearly the presence of a
time-varying frequency in the data.
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Figure 4: Estimated instantaneous spectrum of the density f(t)
when a sequence ti of events is given. The number of events is four
times the number of samples of the numerical version of f(t).

SNR = 2.5 dB

In Figure 5 we represent the estimation done when SNR =
2.5 dB. The reconstruction is very good, despite only 4N
events have been used to generate the sequence ti.

SNR = −7 dB

In Figure 6 we plot the estimation obtained when SNR =
−7 dB and 40N events are used. The noise has now increased
consistently, and 4N points are not enough to retrieve the
time-frequency signature of the original signal. The increased
number of events allows us to clearly understand the structure
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Figure 5: Time-frequency spectrum estimated when SNR = 2.5 dB.
Notice the quality of the approximation, even if only 4N events have
been used (N being the length of the numerical version of f(t)).
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Figure 6: Time-frequency spectrum estimated with the proposed
method when SNR = −7 dB. The number of events is 40N, to guar-
antee a sufficient estimation of the original density.

of the time-varying frequency component. Also a “bumpy”
behavior is noticeable in the signal component. This is due
mainly to the interaction between the high noise level and
the signal itself, more than to the event-based nature of the
data. The latter can be in fact excluded considering the results
obtained in the noise free case, where the event-based time-
frequency spectrum represents an excellent approximation of
the original density, with no visible “bump.”

4. CONCLUSION

We have presented a new method that allows the estimation
of the instantaneous spectrum of a density f(t) when only
a sequence of events ti (with density f(t)) is given. We con-
sidered the case of a “noisy density,” that means we developed
the estimation algorithm taking care of noise reduction by
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using a Welch’s algorithm. The results presented show that
the estimation algorithm is robust and effective, and that has
excellent performance even when the number of events ti
available is small and a high noise level is present.

REFERENCES

[1] L. Galleani, L. Cohen, D. Nelson, and J. Scargle, “Time-
evolution of the power spectrum of the black hole X-ray nova
XTE J1550-564,” in Nonlinear Signal and Image Processing
(NSIP-01), Baltimore, USA, June 2001.

[2] L. Galleani, L. Cohen, D. Nelson, and J. Scargle, “Estimating
the instantaneous power spectrum of an X-ray binary system,”
in SPIE 2001, San Diego, USA, 30 July-3 August 2001.

[3] L. Cohen, “Time-frequency distributions–a review,” Proceed-
ings of the IEEE, vol. 77, no. 7, pp. 941–981, 1989.

[4] L. Cohen, Time-Frequency Analysis, Prentice-Hall, New Jersey,
1995.

[5] B. W. Silverman, Density Estimation for Statistics and Data
Analysis, Chapman & Hall/CRC Press, New York, January 1986.

[6] A. Papoulis, Signal Analysis, McGraw-Hill, New York, 1984.
[7] D. W. Scott, Multivariate Density Estimation, John Wiley &

Sons, New York, 1992.
[8] A. Antoniou, Digital Filters: Analysis and Design, McGraw-Hill,

New York, 1979.
[9] G. Frazer and B. Boashash, “Multiple window spectrogram

and time frequency distributions,” in Proc. of the IEEE Int.
Conference on Acoustics, Speech and Signal Processing (ICASSP-
94), vol. 6, pp. 293–296, Adelaide, Australia, 1994.

[10] M. Bayram and R. G. Baraniuk, “Multiple window time-
frequency analysis,” in Proc. of the IEEE-SP Int. Sym. on Time-
Frequency and Time-Scale Analysis, pp. 173–176, 1996.

[11] J. Pitton, “Time-frequency spectrum estimation: an adaptive
multitaper method,” in IEEE Int. Sym. Time-Frequency and
Time-Scale Analysis, pp. 665–668, 1998.

[12] F. Cakrak and P. Loughlin, “Multiple window non-linear time-
varying spectral analysis,” IEEE Trans. Signal Processing, vol.
49, no. 2, pp. 448–453, 2001.

[13] D. Nelson, “Special purpose correlation functions for im-
proved signal detection and parameter estimation,” in Proc.
of IEEE Conference on Acoustics, Speech and Signal Processing,
pp. 73–76, April 1993.

[14] J. Homan, R. Wijnands, M. van der Klis, et al., “Correlated
X-ray spectral and timing behavior of the black hole candi-
date XTE J1550-564: a new interpretation of black hole states,”
Astrophysical Journal Supplement Series, vol. 132, pp. 377–402,
February 2001.

[15] M. van der Klis, “Fourier techniques in X-ray timing,” in
Proc. NATO Advanced Study Institute, Timing Neutron Stars,
pp. 27–69, 1989.

[16] J. Scargle, D. L. Donoho, J. P. Crutchfield, T. Steiman-Cameron,
J. Imamura, and K.Young,“The quasi-periodic oscillations and
very low frequency noise of scorpius X-1 as transient chaos: a
dripping handrail?,” Astrophys. J. Lett., vol. 411, pp. L91–L94,
1993.

[17] W. Williams, “Reduced interference distributions: biological
applications and interpretations,” Proceedings of the IEEE, vol.
84, pp. 1264–1280, 1996.

[18] A. Papoulis, Probability, Random Variables, and Stochastic Pro-
cesses, McGraw-Hill, 3rd edition, 1991.

Lorenzo Galleani was born in 1970 in
Torino, Italy. He received the B.S. and Ph.D.
degrees in Electrical Engineering from Po-
litecnico di Torino, in 1997 and 2001, re-
spectively. He is a postdoctoral researcher
at Hunter College, City University of New
York, and at Politecnico di Torino. His main
research interests are on modern spectral
analysis and dynamical systems.

Leon Cohen received the B.S. degree from
City College in 1962 and the Ph.D. degree
from Yale University in 1966. He is currently
Professor of Physics at Hunter College and
Graduate Center of the City University of
New York. He has done research in math-
ematical physics, astronomy, quantum me-
chanics, chemical physics, and signal analy-
sis. He has held research visiting positions at
Harvard-Smithsonian Center for Astrophysics, University of North
Carolina, Center for Advanced Studies at the University of New
Mexico, IBM T. J. Watson Research Center and Naval Underwater
Systems Center. He is the author of the recently published book
“Time-Frequency Analysis” (Prentice Hall).

Douglas Nelson was born in Minneapolis,
Minnesota in 1945. He received a BA in
Mathematics from the University of Min-
nesota in 1967 and his Ph.D. in Mathemat-
ics from Stanford University in 1972. He
was an assistant professor of Mathematics
at Carnegie-Mellon University until 1975,
when he started working at the National Se-
curity Agency, where he has been from 1975
to the present. At the National Security Agency, Dr Nelson has
worked primarily on the development and implementation of sig-
nal processing algorithms for a variety of applications, including
radar analysis, communications and speech.

Jeff Scargle received his B.A., Summa Cum
Laude from Pomona College in 1963 and
Ph.D. from California Institute of Technol-
ogy in 1968. He has been with Space Sci-
ence Division of NASA Ames Research Cen-
ter since 1975. His research interests are high
energy and planetary astrophysics, with spe-
cialization on gamma-ray and X-ray astron-
omy, time series analysis, and nonlinear dy-
namical systems and chaos.


	1. INTRODUCTION
	2. METHOD
	2.1. Density estimation
	2.2. Highpass filtering
	2.3. Time-frequency estimation

	3. VALIDATION OF THE METHOD
	3.1. Density generation
	3.2. Estimation results

	4. CONCLUSION
	REFERENCES

