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Multiuser detection for space-time coded synchronous multiple-access systems in the presence of independent Rayleigh fading
is considered. Under the assumption of quasi-static fading, it is shown that optimal (full diversity-achieving) space-time codes
designed for single-user channels, can still provide full diversity in the multiuser channel. The joint optimal maximum likelihood
multiuser detector, which can be implemented with a Viterbi-type algorithm, is derived for such space-time coded systems. Low
complexity, partitioned detector structures that separate the multiuser detection and space-time decoding into two stages are also
developed. Both linear and nonlinear multiuser detection schemes are considered for the first stage of these partitioned space-
time multiuser receivers. Simulation results show that these latter methods achieve performance competitive with the single-user
bound for space-time coded systems.
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1. INTRODUCTION

Most previous work in space-time coded systems has been
concerned with single-user channels [1, 2, 3]. For example, a
performance criterion for single-user space-time code con-
struction was given in [3]. In this paper, multiuser detec-
tion for space-time coded multiple-access systems is con-
sidered. We first investigate the design of space-time codes
for multiple-access channels subject to quasi-static, indepen-
dent Rayleigh fading. We show that the code design cri-
terion derived for the single-user channel in [3] can still
be used in this multiuser case. In particular, we show that
diversity-achieving codes in single-user channels are capa-
ble of providing the full diversity in such multiuser chan-
nels. We also consider detection and decoding of space-time
coded multiuser systems. As we will see, the joint Maximum
Likelihood (ML) decoder for such systems has prohibitively
large computational complexity, motivating us to consider
low-complexity, sub-optimal detector structures. In partic-
ular, we propose partitioned space-time multiuser detectors
that separate the multiuser detection and space-time decod-
ing into two stages. We consider both linear and nonlinear
schemes for the first stage of the partitioned receiver and ex-
amine the performance of these detectors.

Low complexity multiuser receiver structures for space-
time coded systems have previously been described in [4, 5].
For example, a multi-stage receiver suitable for a code-
division multiple-access (CDMA) system employing both
turbo and space-time coding was proposed in [5]. However,
this paper considers only space-time block coding whereas
we are concerned here with space-time trellis coded mul-
tiuser systems. Receiver structures for multiple-access sys-
tems with both space-time block and trellis coded systems
have been presented in [4]. In particular, [4] has proposed
an iterative multiuser receiver based on interference cancel-
lation and Minimum Mean Square Error (MMSE) filtering
for a space-time trellis coded CDMA system. Though this re-
ceiver has the same basic structure as one of the partitioned
receivers we proposed in Section 4 below, there are some im-
portant differences between the two schemes, as we will point
out in Section 4.

This presentation is organized as follows: in Section 2,
we present our signal model, while in Section 3, we derive
the jointly optimal ML detector/decoder. In Section 4, we
propose low complexity receiver structures for space-time
coded multiuser systems by separating the multiuser de-
tection stage from the space-time decoder stage. We con-
sider both linear and nonlinear multiuser detection stages.
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In particular, in this section, we consider partitioned space-
time multiuser receivers based on the linear decorrelator [6]
and on the linear MMSE estimator [6], as well as two par-
titioned receiver structures based on nonlinear interference
cancelling multiuser detection stages. We propose an iter-
ative receiver structure based on the turbo principle, sim-
ilar to that developed in [7] for a convolutionally coded
CDMA channel, and demonstrate how near-single-user per-
formance is achievable with only a few iterations. Section 5
details a soft input soft output (SISO) maximum a posteri-
ori probability (MAP) decoder [8] that can be used as the
second stage of these interference cancelling receivers. Fi-
nally, in Section 6 we give performance results for the pro-
posed receiver architectures for representative space-time
trellis codes.

2. SIGNALMODEL

Consider a system of K independent users, each employing
an independent space-time code with NT transmitter anten-
nas. The binary information sequence {dk(n)}∞n=0 of user k,
for k = 1, . . . , K , is first encoded by a space-time encoder, and
then the encoded data is divided intoNT streams by passing it
through a serial-to-parallel converter.1 The code bits in each
parallel stream are block interleaved, BPSK symbol-mapped,
modulated by an appropriate signature waveform, sk(t), and
are transmitted simultaneously from the NT transmitter
antennas.

The kth user’s transmitted signal at time t can thus be
written as

xk(t) =
Ak√
NT

B−1∑
i=0

NT∑
nT=1

bk,nT (i)sk(t − iT), (1)

where {bknT (i) ∈ {+1,−1}}B−1i=0 is the symbol-mapped space-
time encoder output of the kth user on transmitter antenna
nT at time i, and B is the number of channel symbols per
user in a data frame which is assumed to be the same as the
length of a space-time codeword. We assume that the signa-
ture waveform of each user is supported only on the interval
0 ≤ t ≤ T , and is normalized so that

∫T

0
s2k(t)dx = 1, k = 1, . . . , K. (2)

Thus, A2
k represents the transmitted energy per bit of user

k, independent of the number of transmitter antennas. Note
that the model of (1) is otherwise general with regard to the
signalling format, and so the following results can be applied
to any signalling scheme. However, we are interested here
in nonorthogonal signalling schemes such as code-division
multiple-access (CDMA).

1For simplicity we assume that all the users employ the same number of
transmitter antennas, although generalizing to different numbers of trans-
mitter antennas is straightforward.

Assuming that the fading is sufficiently slow to be con-
stant over a received data frame, the corresponding signal re-
ceived at a single receive antenna can be written as

r(t) =
B−1∑
i=0

K∑
k=1

Ak√
NT

NT∑
nT=1

αk,nT bk,nT (i)sk(t − iT) + n(t), (3)

where n(t) is complex white Gaussian noise with zero mean
and variance N0/2 per dimension. The complex fading co-
efficient, αk,nT , between the kth user’s nT th transmitter an-
tenna and the receiver, is assumed to be a zero-mean unit
variance complex Gaussian random variable with indepen-
dent real and imaginary parts. Equivalently, αk,nT has uni-
form phase and Rayleigh amplitude; that is, the so-called
Rayleigh fading model. These fading coefficients are assumed
to be mutually independent with respect to both k and nT . In
what follows, we assume that all parameters of the model (3)
are known to the receiver. Only the transmitted symbols are
unknown.

3. JOINTMLMULTIUSER DETECTION ANDDECODING
FOR SPACE-TIME CODEDMULTIUSER SYSTEMS

In this section, we consider the joint maximum-likelihood
detection and decoding of the symbols in the model of
Section 2. To do so, we first establish some notation.

We denote the kth user’s transmitted symbol vector
(on NT antennas) at time i by the row vector bk(i) =
[bk,1(i) · · · bk,NT (i)]. Define, the BK ×NTK joint codeword
matrix D, of all users, as

D =




D1 0B×NT · · · 0B×NT

0B×NT D2 · · · 0B×NT

...
...

. . .
...

0B×NT 0B×NT · · · DK


 , (4)

where we have also introduced the notation, for k = 1, . . . , K ,

Dk =




bk(0)
...

bk(B − 1)


 . (5)

Note that Dk ∈ {+1,−1}B×NT , for k = 1, . . . , K . We will call
the joint codeword, D, of all users, the super codeword. The
space-time coded output from all the users at time i is the
K × KNT matrix denoted as D(i), where

D(i) =




b1(i) 01×NT · · · 01×NT

01×NT b2(i) · · · 01×NT

...
...

. . .
...

01×NT 01×NT · · · bK (i)


 . (6)

The fading coefficients of the kth user can be collected
into a vector αk = [αk,1 · · ·αk,NT ]

T ∈ CNT×1, and we can
combine all these fading coefficient vectors into one vector
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α = [αT1 · · ·αTK ]T ∈ CKNT×1. With this notation, the output,
y(i) = [y1(i) · · · yK (i)]T , of a bank of K matched filters (each
matched to a user signature waveform sk(t)) at the ith symbol
interval can be written as

y(i) = RAD(i)α + η(i), (7)

where the diagonal matrix A is defined as

A = diag
(

A1√
NT

, . . . ,
AK√
NT

)
, (8)

R is the cross-correlation matrix of the users’ signature wave-
forms and η(i) ∼ �(0, N0R).

Denote the B-vector of the kth matched filter outputs
corresponding to the complete received codeword as yk =
[yk(0) · · · yk(B − 1)]T and the BK-vector of outputs of all
the matched filters corresponding to a complete codeword
as y = [y1 · · · yK ]T . Then we can write

y =
(
RA ⊗ IB

)
Dα + ση (9)

=
(
R ⊗ IB

)(
A ⊗ IB

)
Dα + ση, (10)

where η ∼ �(0, N0R ⊗ IB), IB denotes the B × B identity ma-
trix and ⊗ denotes the Kronecker product. In going from (9)
to (10), we have used the fact that, for general matrices A, B,
C, andD we have, (A ⊗B)(C ⊗D) = (AC ⊗BD) provided the
dimensions of the matrices A, B, C, and D are such that the
various matrix products are well defined [9].

The joint ML multiuser decision rule for the space-time
coded CDMA system is then given by

D̂ = argmax
D

P[y|D], (11)

where themaximization is over all the valid super codewords.
Note that this joint ML detector and decoder searches over a
super trellis made up by combining all the users’ space-time
code trellises.

Next, we investigate the diversity gain of the space-time
codes in themultiple-access channel.We show that the space-
time codes designed to achieve full diversity in the single user
channels will also be able to achieve full diversity asymptoti-
cally, as the noise N0 vanishes, in the multiuser case.

For convenience, we define the following quantity:

h(D) =
(
y − (RA ⊗ IB

)
Dα

)H
× (R ⊗ IB

)−1(y − (RA ⊗ IB
)
Dα

)
.

(12)

Suppose that the super codewordD is transmitted. Then,
conditioned on α, the pairwise error probability (PEP) that
the ML decision rule erroneously decides in favor of another
valid super codeword D̂ is given by

P
[
D −→ D̂|α, y =

(
RA ⊗ IB

)
Dα + η

]
= P

[
h(D) > h

(
D̂
)|α, y =

(
RA ⊗ IB

)
Dα + η

]
= P[V < 0|α],

(13)

where the random variable V is given by

V =
((
RA ⊗ IB

)(
D − D̂

)
α + η

)H(R ⊗ IB
)−1

× ((RA ⊗ IB
)(
D − D̂

)
α + η

) − ηH
(
R ⊗ IB

)−1
η.

(14)

It can be shown that V is a Gaussian random variable with

E{V} = αH
(
D − D̂

)H(H ⊗ IB
)(
D − D̂

)
α, (15)

whereH = ARA and

Var(V) = 2N0E{V}. (16)

Thus, letting E = D − D̂ , we have

P
[
D −→ D̂|α, y] = Q

(√
αHEH

(
H ⊗ IB

)
Eα

2N0

)

= Q

(√
αHΓα

2N0

)

≤ 1
2
exp

(
− 1
4N0

αHΓα

)
,

(17)

where the last step follows from the standard approximation
of the unit Gaussian tail distribution. Note that we have in-
troduced the notation Γ = EH(H ⊗ IB)E = EH(A ⊗ IB)(R ⊗
IB)(A ⊗ IB)E, and

Q(x) =
1√
2π

∫∞

x
e−t

2/2 dt. (18)

Clearly, Γ is Hermitian. Hence we can decompose it as

Γ = UΣUH, (19)

where U is an NTK × NTK unitary matrix, whose columns
are orthonormal eigenvectors of Γ, and Σ = diag(λ1, . . . , λNK )
where {λi}NK

i=1 are the eigenvalues of Γ, which are all nonneg-
ative. ExactlyNTK −r of these eigenvalues will be zero, where
r is the rank of Γ.

Substituting (19) into the upper bound for the condi-
tional pairwise probability (conditioned on the fading coef-
ficients) given in (17), we obtain the following:

P
[
D −→ D̂|α] ≤ 1

2
exp

(
− 1
4N0

αHUΣUHα

)
(20)

=
1
2
exp

(
−
∑NTK

i=1 λi
∣∣βi∣∣2

4N0

)
, (21)

where,

β = UHα. (22)

Since α is a vector of independent Gaussian random variables
with identical distributions, that is, �(0, INTK ), and since U
is anNTK ×NTK unitary matrix, it then follows that β is also
an independent Gaussian random vector having the same
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distribution, that is, β ∼ �(0, INTK ). Thus, the |βi|’s are in-
dependent and identically distributed (i.i.d.) Rayleigh ran-
dom variables. By averaging (21), over the |βi|’s we can upper
bound the PEP of the joint ML decision rule as

P
[
D −→ D̂

] ≤ 1∏NTK
i=1

(
1 + λi/4N0

)
=

1∏r
i=1
(
1 + λi/4N0

) .
(23)

To investigate the dependence of the above upper bound on
the individual user space-time codes, we proceed as follows.
If we assume that all the users are assigned different signa-
ture waveforms, then the cross-correlation matrix R will be
symmetric and positive definite. In this case, by performing
Cholesky decomposition we can find aK×K lower triangular
matrix L such that,

R = LTL. (24)

Then we also have

R ⊗ IB = LTL ⊗ IB (25)

=
(
L ⊗ IB

)T(L ⊗ IB
)

= LT0 L0, (26)

where we have set L0 = L ⊗ IB. Since L0 is a lower triangular
matrix, (26) defines the Cholesky factorization for thematrix
R ⊗ IB. Substituting (26) into the matrix Γ we get

Γ = EH
(
A ⊗ IB

)(
LT0 L0

)(
A ⊗ IB

)
E

=
(
L0
(
A ⊗ IB

)
E
)H(L0(A ⊗ IB

)
E
)
.

(27)

We define the BK × BK matrix

Γ̄ =
(
L0
(
A ⊗ IB

)
E
)(
L0
(
A ⊗ IB

)
E
)H (28)

= L0
(
A ⊗ IB

)
EEH

(
A ⊗ IB

)
LH0 . (29)

Now we make the observation that if B < NT , then the eigen-
values of (L0(A ⊗ IB)E)H(L0(A ⊗ IB)E) are the same as the
eigenvalues of (L0(A⊗IB)E)(L0(A⊗IB)E)H , with an additional
(NT − B)K zero eigenvalues; or if B > NT , then the eigenval-
ues of (L0(A ⊗ IB)E)H(L0(A ⊗ IB)E) will be the eigenvalues
of (L0(A ⊗ IB)E)(L0(A ⊗ IB)E)H after dropping (B − NT)K
zero eigenvalues. In either case, the nonzero eigenvalues of
the NTK × NTK matrix Γ, will be the same as the nonzero
eigenvalues of the BK × BK matrix Γ̄.

We now make use of the following theorem due to
Ostrowski (cf. [10, page 224]).

Theorem 1 (Ostrowski). Suppose A and S are N × N ma-
trices where A is Hermitian and S is nonsingular. Suppose
the eigenvalues of A are arranged in increasing order as
λ1(A), . . . , λN (A). Then, for each k = 1, 2, . . . , N there exists

a positive real number θk ∈ [λ1(SSH), λN (SSH)], such that

λk
(
SASH

)
= θkλk(A), (30)

where λ1(SSH), . . . , λN (SSH), and λ1(SASH), . . . , λN (SASH)
denote the eigenvalues of SSH and SASH , respectively, arranged
in increasing order.

Wemay apply the above theorem to (29), with S replaced
by L0 and A replaced by (A ⊗ IB)EEH(A ⊗ IB). Again we note
that the eigenvalues of L0LH0 are the same as the eigenvalues
of LH0 L0 = R ⊗ IB (from (26)). Also, for an N × N matrix A
and anM ×M matrix B, the eigenvalues of A⊗B are given by
{λn(A)λm(B);n = 1, . . . , N,m = 1, . . . ,M} where {λn(A)}Nn=1
and {λm(B)}Mm=1 are the eigenvalues of A and B, respectively.
Thus, if we denote the eigenvalues of the cross-correlation
matrix R, in ascending order, by {λk(R)}Kk=1, then the eigen-
values of R ⊗ IB will also be the same eigenvalues with each
repeating B times.

For k = 1, . . . , K , denote the rank of the codeword error
matrix Ek = Dk − D̂k by rk. Then rk ≤ NT for k = 1, . . . , K .
Denote the nonzero eigenvalues of the NT ×NT matrix (Dk −
D̂k)H(Dk − D̂k) by {λn(Ek)}rkn=1, for k = 1, . . . , K . Then the
nonzero eigenvalues of the matrix (A ⊗ IB)EEH(A ⊗ IB) are
given by the collection

{
A2
k

NT
λn
(
Ek
)
;n = 1, . . . , rk, k = 1, . . . , K

}
. (31)

Theorem 1 allows us to specify the eigenvalues of the
matrix Γ̄ in terms of the eigenvalues of the individual user
codeword error matrices and the eigenvalues of the cross-
correlation matrix. Specifically, we may write the set of
nonzero eigenvalues of the matrix Γ̄ as

{
A2
k

NT
θk,nλn

(
Ek
)
; 0 < λmin(R) ≤ θk,n ≤ λmax(R),

n = 1, . . . , rk, k = 1, . . . , K

}
,

(32)

where λmin(R) and λmax(R) denote the minimum and max-
imum eigenvalues, respectively, of the cross-correlation ma-
trix R.

As noted previously, since the nonzero eigenvalues of the
matrix Γ are the same as the nonzero eigenvalues of the ma-
trix Γ̄, the above set in (32) also gives the nonzero eigenvalues
of Γ, which we may substitute into (23) to obtain,

P
[
D −→ D̂

] ≤ 1∏K
k=1

∏rk
n=1

[
1 +

(
A2
k/NT

)(
θk,nλn

(
Ek
)
/4N0

)] .
(33)

Next we introduce the following notation. Let fk(·) de-
note the kth user’s space-time encoding function. That is
fk(I) maps an information bit sequence I ∈ {+1,−1}B×1 into
a valid codeword Dk ∈ {+1,−1}B×NT . Define the following
sets:
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�k = set of all valid codewords corresponding

to the kth user’s space-time encoder output

=
{
Dk;Dk = fk(I), I ∈ {+1,−1}B×1

}
,

� = set of all valid super codewords

=
{
D = blockdiag

(
D1, . . . ,DK

)
;Dk ∈ �k,

for k = 1, . . . , K
}
,

�k = set of all the error code matrices that affect . . .

the kth user

=
{
E = blockdiag

(
E1, . . . ,EK

)
;E j ∈ {+1, 0,−1}B×NT

for j = 1, . . . , K, and Ek �= 0B×NT

}
,

� = set of all (nonzero) error code matrices

=
K⋃
k=1

�k.

(34)

For each valid super codeword D ∈ �, let �(D) and
�k(D) denote the set of all the valid error code matrices cor-
responding to D ∈ � and the set of valid error code matrices
corresponding to D that effect the kth user, respectively; that
is,

�(D) =
{
E ∈ �; (D − 2E) ∈ �

}
,

�k(D) = �(D) ∩ �k.
(35)

We may now upper bound the frame error probability,
Pke , for the kth user as,

Pke =
∑
D∈�

P[D]P


 ⋃

E∈�k(D)

{
D −→ (D − 2E)

}
≤
∑
D∈�

P[D]
∑

E∈�k(D)

P
[
D −→ (D − 2E)

]
≤
∑
D∈�

P[D]

×
∑

E∈�k(D)


 1∏K

j=1
∏r j

n=1

[
1 +

(
A2

j /NT
)(
θj,nλn

(
E j
)
/N0

)]

,
(36)

where in the last step we have used the bound obtained in
(33) and P[D] denotes the a priori probability that the super
codeword D is transmitted. Next, define, for k = 1, . . . , K ,

Λk
(
Ek
)
=
( rk∏

n=1

θk,nλn
(
Ek
))1/rk

. (37)

Note thatΛk(Ek) may be interpreted as the coding gain of the
kth user’s space-time code in the multiuser channel, corre-
sponding to the codeword pair Dk and D̂k. Then, as N0 → 0,
we can upper bound Pke as

Pke ≤
∑
D∈�

P[D sent]
∑

E∈�k(D)

Nr
0[∏K

j=1
(
A2

j /NT
)
Λ j
(
E j
)]r j , (38)

where r =
∑K

k=1 rk. For smallN0, we may take the dominating
terms in the last sum to be the terms with the smallest expo-
nent r. For E ∈ �k(D), the smallest value of r is obtained
when E is such that E j = 0B×NT for j �= k. In this case, it is
easily seen that θk,n = 1 for n = 1, . . . , rk and thus as N0 → 0,
we get

Pke <
∑
D∈�

P[D]
∑

E∈�k(D)
E j=0, j �=k

1[((
A2
k
/NT

)
/N0

)
Λk
(
Ek
)]rk . (39)

From (39) we observe that, at least when the SNR is suffi-
ciently large, the diversity advantage offered by the kth user’s
space-time code is the same as that in a single-user channel.
That is, if the minimum rank of all the valid error codewords
Ek is rk, then the asymptotic diversity advantage in the mul-
tiuser channel is equal to rk. In particular, if the kth user’s
space-time code were to achieve the full diversity NT in a
single-user environment, then it will also achieve the full di-
versity NT in the multiuser channel, at least asymptotically
in SNR, as long as the signature cross-correlation matrix is
nonsingular.

It is easily seen that this ML path search can be imple-
mented as a maximum-likelihood path search over a super
trellis formed by combining all the users’ space-time code
trellises using the Viterbi algorithm. This is similar to the
optimal decoder for convolutionally coded CDMA channels
derived in [11]. Assuming (for simplicity) that all the users
employ space-time codes based on underlying convolutional
codes that have a constraint length ν, this super trellis will
have a total of K(ν − 1) states, resulting in a total complex-
ity per user of about �(2Kν/K), which is exponential in Kν.
Note also that, in order to achieve full diversity gain NT in an
NT transmitter antenna system we must have ν ≥ NT [3, 12].
Hence, it is clear that even for a small number of users this
could easily become a prohibitively large computational bur-
den at the receiver. This motivates us to look for sub-optimal,
low complexity receiver structures for space-time codedmul-
tiuser systems.

In Section 4, we develop partitioned receiver structures in
order to reduce the computational complexity of joint mul-
tiuser detection and space-time decoding, while still achiev-
ing competitive performance against the joint ML decision
rule. Specifically, we separate the multiuser detection and the
space-time decoding into two stages, as is done in [13] for
the case of (single-antenna) convolutionally coded CDMA
channels. At the first stage of the partitioned receiver, mul-
tiuser detection is performed. The outputs from the mul-
tiuser detection stage are then passed onto a bank of single-
user space-time decoders corresponding to the K users in the
system. Thus, each user’s space-time decoder operates inde-
pendently from the others. Of course, it is possible to employ
either an ML or a maximum a posteriori probability (MAP)
decoder as the single-user space-time decoder at the second
stage of the receiver. Also, it is possible to use any reasonable
multiuser detection strategy at the first stage of the receiver.
In the following we consider both linear and nonlinear mul-
tiuser detectors as the first stage of the partitioned space-time
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multiuser receiver, and compare the performance of these re-
ceivers against the best possible performance.

4. PARTITIONED LOWCOMPLEXITY DETECTOR
STRUCTURES FOR SPACE-TIME CODED
MULTIUSER SYSTEMS

We first consider the linear multiuser detector based parti-
tioned receiver architecture, followed by the nonlinear mul-
tiuser detection approaches. For linear multiuser detectors,
we investigate both decorrelator and linear MMSE detectors
[6]. For nonlinear approaches we consider both a simple it-
erative receiver based on interference cancellation and the
turbo principle, and an improved iterative receiver based on
instantaneous MMSE filtering after the interference cancel-
lation step [7].

4.1. Decorrelator based partitioned space-time
multiuser receiver

The decorrelator output at the ith symbol time is given by
[6],

ŷ(i) = R−1y(i) = AD(i)α + η̂, (40)

where η̂ ∼ �(0, N0R−1). The first stage of the receiver com-
putes soft outputs corresponding to each user’s transmitted
symbol vectors at time i. The soft outputs are the a poste-
riori probabilities (APPs) of each user’s transmitted symbol
vectors, defined as below for l = 1, . . . , L, k = 1, . . . , K , and
i = 0, . . . , B − 1 where L = 2NT is the number of possible
transmitted symbol vectors:

pk,l(i) = P
[
bk(i) = sl|ŷ(i),α

]
for sl ∈ {+1,−1}1×NT . (41)

(Note that sl is a row vector.) From (40), we can write this a
posteriori probability as,

pk,l(i) = C1 exp

(
− 1

N0
(
R−1)

kk

∣∣∣∣ ŷk(i) − Ak√
NT

slαk

∣∣∣∣
2
)
,

(42)

where (R−1)kk is the (k, k)th element of the matrix R−1, ŷk(i)
is the kth component of the vector ŷ(i) and C1 is a normaliz-
ing constant.

The second stage of the partitioned receiver employs
a bank of single-user space-time Viterbi decoders that use
these a posteriori probabilities as inputs. The kth user’s de-
coder uses only the symbol vector probabilities correspond-
ing to the kth user. This results in a decentralized imple-
mentation of the receiver. Clearly this partitioned receiver is
equivalent to a single-user space-time coded system, except
for a different noise variance value. Thus we may also eas-
ily obtain the following upper bound for the pairwise error
probability of the decorrelator-based partitioned space-time
multiuser receiver:

Pk,(d)e
[
Dk −→ D̂k

] ≤ 1∏rk
n=1λn

(
Ek
)
(

A2
k/NT

4N0
(
R−1)

kk

)−rk
. (43)

4.2. LinearMMSE based partitioned space-time
multiuser receiver

As is well known, the decorrelator performance degrades
when the background noise is dominant, since it completely
ignores the presence of background noise [6]. A better com-
promise between suppressing the multiple-access interfer-
ence (MAI) and the background noise is obtained by em-
ploying a linear MMSE filter at the first stage of the space-
time receiver. The linear MMSE multiuser detector output at
symbol time i is given by [6]

ŷ(i) = A−1(R +N0A−2)−1y(i). (44)

The decision statistic corresponding to the kth user can
then be written as,

ŷk(i) =
Ak

NT

K∑
j=1

(M)k jAjb j(i)αj + η̂k(i)

=
A2
k

NT
(M)kkbk(i)αk

+
Ak

NT

∑
j �=k

(M)k jAjb j(i)α j + η̂k(i),

(45)

where

M =
(
A2 +N0R−1)−1,

η̂k(i) ∼ �
(
0,
(
A2
k/NT

)
N0
(
MR−1M

)
kk

)
.

(46)

In order to compute the soft output a posteriori proba-
bilities at the end of the first stage, we make the assumption
that the noise at the output of an MMSE multiuser detector
(residual MAI plus the background noise) can be modeled as
being Gaussian [14]. Therefore, we may model (45) as

ŷk(i) =
A2
k

NT
(M)kkbk(i)αk + η̃k(i), (47)

with η̃k(i) ∼ �(0, ν2k(i)). It can be shown that

ν2k(i) =
A2
k

NT

[∑
j �=k

(
A2

j

NT

)
(M)2k j

∣∣αj(i)
∣∣2 +N0

(
MR−1M

)
kk

]
.

(48)

Using this model, the soft output a posteriori probabili-
ties at the output of the linear MMSE multiuser stage can be
written as

pk,l(i) = P
[
bk(i) = sl|ŷ(i),α

]
= C2 exp

(
− 1

ν2k(i)

∣∣∣∣ ŷk(i) − A2
k

NT
(M)kkslαk

∣∣∣∣
2
)
,

(49)

where C2 is a normalizing constant. The second stage of
this receiver operates exactly the same way as that in the
decorrelator-based partitioned receiver. When the second
stage employs ML decoding in the kth user’s space-time de-
coder, the pairwise error probability corresponding to the kth
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user’s decisions, conditioned on the fading coefficients, may
be given as,

Pk,(MMSE)
e

[
Dk −→ D̂k |α

]

= Q



√√√√(

A2
k

NT
(M)kk

)2 ∥∥(Dk − D̂k
)
αk
∥∥2

2ν2k




≤ 1
2
exp

(
−
(

A2
k

NT
(M)kk

)2∑rk
n=1 λk,n

∣∣γk,n∣∣2
4ν2k

)
,

(50)

where the λk,n’s are the nonzero eigenvalues of the matrix
(Dk − D̂k)T(Dk − D̂k), and as mentioned before,

ν2k(i) = 4
A2
k

NT


∑

j �=k

(
A2

j

NT
(M)2k j

NT∑
n=1

∣∣αj,n

∣∣2)

+N0
(
MR−1M

)
kk


.

(51)

Here |γk,n| and |αj,n| are independent sets of unit-variance
independent Rayleigh random variables. By averaging the
right-hand side of the last inequality (50) over the joint dis-
tribution of the random variables {|γk,n|, |αj,n|; j �= k, n =
1, . . . , NT}, we can obtain the following upper bound for the
kth user’s pairwise error probability for the linear MMSE-
based partitioned space-time multiuser receiver:

Pk,(MMSE)
e

[
Dk −→ D̂k

]
≤

( rk∏

n=1

λk,n

)(
A2
k/NT

4N0

)rk

×
(

(M)2kk(
MR−1M

)
kk + (1/2)

∑
j �=k A

2
j (M)2k j

)rk



−1

.

(52)

4.3. IterativeMUDwith interference cancellation for
space-time coded CDMA

In this section, we present a simple iterative receiver struc-
ture based on interference cancellation and the turbo prin-
ciple (cf. [7]). Suppose that at the first stage of the receiver,
we have available a priori probabilities of all users’ transmit-
ted symbol vectors, pk,l(i)

p
2 = P[bk(i) = sl], for l = 1, . . . , L,

k = 1, . . . , K , and i = 0, . . . , B−1. Note that the subscript 2 and
superscript p indicate that these a priori probabilities were in
fact generated by the second stage of the receiver (i.e., the
single-user space-time decoders) at the previous iteration.
Using these a priori probabilities pk,l(i)

p
2 , the interference-

cancelling multiuser detector at the first stage of the receiver
computes soft estimates of the transmitted symbol vectors of
all the users as

b̂k(i) =
L∑
l=1

sl pk,l(i)
p
2 . (53)

These soft estimates are used to suppress the multiple-
access interference at the output of the kth user’s matched
filter. Thus, the interference cancelled output correspond-
ing to the kth user is obtained as the kth component of the
vector

ŷk(i) = ŷ(i) − RAD̂k(i)α, (54)

where D̂k(i) = diag(b̂1(i), . . . , b̂k−1(i), 0, b̂k+1(i), . . . , b̂K (i)).
From (54), with ŷk(i) denoting the kth element of ŷk(i), we
have

ŷk(i) =
Ak√
NT

bkαk

+
∑
j �=k

ρk j
Aj√
NT

(
b j − b̂ j

)
α j + ηk(i).

(55)

Since k(i) ∼ �(0, N0), assuming all the previous es-
timates of the symbol vectors were correct, the iterative
interference-cancelling space-time multiuser detector (IC-
ST-MUD) computes the soft output a posteriori probabilities
of the transmitted symbol vectors of user k, for k = 1, . . . , K ,
as

P
[
bk(i) = sl|y(i),

{
b̂ j
}K
j=1, j �=k

]

= C3 exp

[
− 1
N0

∣∣∣∣ ŷk(i) − Ak√
NT

slαk

∣∣∣∣
2
]
pk,l(i)

p
2

= pk,l(i)1pk,l(i)
p
2 ,

(56)

where ŷk(i) is given by (55), andC3 is a normalizing constant.
Following turbo decoding terminology, we call the term

pk,l(i)1 the extrinsic a posteriori probability as computed
by the space-time multiuser detector. These extrinsic a pos-
teriori probabilities, pk,l(i)1, are de-interleaved and passed
on to a bank of K single-user soft-input/soft-output (SISO)
space-time MAP decoders, described in Section 5 below.
The kth user’s SISO space-time MAP decoder computes
a posteriori probabilities of the transmitted symbol vec-
tors for all the symbols in a given frame [7]. The extrin-
sic component of these symbol vector APPs, pk,l(i)2, are
then interleaved and fed back to the first stage of the IC-
ST-MUD, to be used as the a priori probabilities pk,l(i)

p
2 ,

in the next iteration. At the final iteration, the space-time
MAP decoders output hard decisions on the information
symbols.

The conventional matched filter complexity is �(1). At
each iteration, the first stage of the receiver needs to com-
pute 2NT symbol vector a posteriori probabilities. Hence,
the computational complexity of this partitioned receiver is
�(2NT+2ν) per user per iteration. Note that even though both
MAP and ML decoding have same �(2ν) complexity order,
the MAP decoding in general requires more computations
compared to the ML decoding. It has been shown that MAP
decoding can be done with a complexity roughly 4 times that
of ML decoding [15].
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4.4. IterativeMUDwith interference cancellation and
instantaneousMMSE filtering for space-time
codedmultiuser systems

In this section, we modify the iterative receiver proposed in
Section 4.3 with the addition of an instantaneous filter. This
becomes similar to the iterative decoder proposed in [7] for a
convolutionally coded CDMA channel. However, in the fol-
lowing wemodify it for the space-time codedmultiple-access
channel and explicitly derive the form of the instantaneous
MMSE filter.

As will be seen from the simulation results below, the
performance of the iterative IC-ST-MUD receiver, proposed
in Section 4.3, degrades considerably for medium to large
cross-correlation values. Especially when the user cross-
correlations are high, the soft estimates at the initial iteration
are very poor and thus the performance does not improve
significantly on subsequent iterations. In order to overcome
this shortcoming, we may apply a linear filter to the inter-
ference suppressed output. Specifically, we choose a linear
MMSE filter that minimize the mean square error between
the interference-suppressed output and the kth user’s fading-
modulated transmitted symbol vector. Clearly, when the soft
estimates of the multiple-access interference are very poor or
they are not available at all (as in the case of the first itera-
tion), this filtering helps the receiver to still maintain an ac-
ceptable performance level, as we will see by the simulation
results given in Section 6.

The kth user’s linear MMSE filter at symbol time i applies
weights wk(i) to the interference-suppressed output ŷk(i) of
(54), where wk(i) is designed so that,

wk(i) = argmin
w

E
{∥∥bk(i)αk −wH ŷk(i)

∥∥2}. (57)

It can easily be shown that the solution to (57) is given by

wk(i) = E
{
ŷk(i)ŷHk (i)

}−1
E
{
bk(i)αk ŷk(i)

}
, (58)

with

E
{
ŷk(i)ŷHk (i)

}
= RVk(i)R +N0R,

E
{
bk(i)αkŷk(i)

}
=

Ak√
NT

∣∣αk∣∣2Rek, (59)

where we have defined the matrix Vk(i) as

Vk(i) = AE
{
β̃k(i)β̃

H
k (i)

}
A

= diag

(
A2
1

NT

NT∑
nT=1

(
1 − b̂21,nT

)∣∣α1,nT ∣∣2, . . . ,
A2
k

NT

∣∣αk∣∣2, . . . , A2
K

NT

NT∑
nT=1

(
1 − b̂2K,nT

)∣∣αK,nT ∣∣2
)
.

(60)

Denoting thematrix (RVk(i)R +N0R)
−1 byMk(i), we can

write the instantaneous linear MMSE filter corresponding to

the kth user at symbol time i as

wk(i) =
Ak√
NT

∣∣αk∣∣2(RVk(i)R +N0R
)−1Rek

=
Ak√
NT

∣∣αk∣∣2Mk(i)Rek.

(61)

Now, we again model the residual noise at the linear
MMSE filter output as having a Gaussian distribution [7, 14].
Thus, we have the following model for zk(i), the output of
the linear MMSE filter corresponding to the kth user at sym-
bol time i:

zk(i) = wH
k (i)ŷk(i) = µk(i)bk(i)αk + vk(i), (62)

where vk(i) ∼ �(0, ν2k(i)). It is easily shown that

µk(i) =
A2
k

NT

∣∣αk∣∣2(Mk(i)
)
k,k,

ν2k(i) =
∣∣αk∣∣2(µk(i) − µ2k(i)

)
.

(63)

The soft-output interference-cancelling multiuser detec-
tor with instantaneous MMSE filtering makes use of the
model in (62) in order to compute the a posteriori proba-
bilities of the transmitted symbol vectors corresponding to
the kth user. Specifically, we have

P
[
bk(i) = sl|y(i),

{
b̂ j
}K
j=1, j �=k

]

= C4 exp


 −

∣∣zk(i) − µk(i)slαk
∣∣2

ν2k(i)


pk,l(i)p2

= pk,l(i)1pk,l(i)
p
2 ,

(64)

where µk(i) and ν2k(i) are given by (63) and C4 is a normaliz-
ing constant.

The second stage of this modified iterative receiver is a
SISO space-time MAP decoder which operates exactly the
same way as the receiver described in Section 4.3. This de-
coder is described briefly in Section 5.

The K × K matrix inversion required in the first stage of
this receiver can be performed iteratively using matrix in-
version lemma similarly to what is done in [7]. Hence, the
complexity of the MMSE-based interference cancelling par-
titioned receiver has a total complexity of �(K2 + 2NT + 2ν)
per user per iteration.

As mentioned earlier, a similar type of iterative receiver
has been proposed in [4] for a space-time trellis coded
CDMA system. Specifically, [4] has also proposed a parti-
tioned iterative receiver where an instantaneous MMSE lin-
ear filter is applied to suppress the residual multiple access
interference (MAI) and noise present in the interference can-
celled channel outputs. However, the MMSE filter employed
in that receiver is a spatial MMSE filter in that the MAI in-
terference is cancelled by exploiting the receiver diversity. In
contrast, we exploit the knowledge of the temporal structure
of the multiuser signal in our MMSE filter and especially do
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Table 1: Properties of different receiver structures for space-time coded multiuser systems.

TCB Advantages Disadvantages
Joint ML �(2Kν/K) optimal high computational cost
Decorrelator first stage �(K + 2NT + 2ν) low computational cost,

linear processing
performance degrades
when background noise is large

MMSE first stage �(K + 2NT + 2ν) low computational cost,
linear processing, easy
adaptive implementation

IC-ST-MUD �(2NT + 4 × 2ν) low computational cost performance degrades
rapidly when MAI is large
(roughly for ρ > 0.4).

IC-ST-MUD with
MMSE filtering

�(K2 + 2NT + 4 × 2ν) reasonable computational
cost, adaptive implementation

not rely on the availability of the receiver diversity. It is also
worth mentioning that the soft information used in the iter-
ative process is also different in the two schemes.

As a consequence of relying on a spatial filter to suppress
the multiple access interference, the receiver proposed in [4]
requires NR > NTK , where NR is the number of receiver an-
tennas, for proper interference suppression. Even at a base
station with multiple receiver antennas, this criterion could
be difficult to satisfy. Our proposed detector does not rely
on spatial diversity since it exploits only the multiuser signal
structure, which is more likely to be available at a base sta-
tion receiver, in order to suppress the interference. Also, as
a result, the complexity of the MMSE filter in [4] is domi-
nated by the inversion of an NR × NR matrix which can be
done with �(M2) < �(N2

TK
2) complexity. Comparing with

our approach, we see that we only need to compute the in-
verse of a K × K matrix which, as mentioned above, can be
done with �(K2) complexity.

In Table 1 we have summarized the properties of the dif-
ferent receiver structures considered in this paper.

5. SINGLE-USER SOFT-INPUT/SOFT-OUTPUT
SPACE-TIMEMAP DECODER

We assume that the space-time encoder of each user appends
zero bits to a given information bit block of size B′, so that
the trellis is always terminated in the zero state. Thus, the ac-
tual space-time code block length is B = B′ + ν − 1 (since we
assume that the rate of the space-time code is 1), where ν is
the constraint length of the underlying convolutional code.
In this section, we use the MAP decoding algorithm [8] to
compute the a posteriori probabilities of all the symbol vec-
tors and the information bits.

Similarly to the notation in [7], we will denote the state
of the space-time trellis at time i by a (ν − 1)-tuple, as Si =
(s1i , . . . , s

ν−1
i ) = (di−1, . . . , di−ν−1), where di is the input infor-

mation bit to the space-time encoder at time i. The corre-
sponding output code symbol vector is denoted by bi. (Note
that here we are using the subscripts to denote the time in-
dex.) Let d(s′, s) be the input information bit that causes the
state transition from Si−1 = s′ to Si = s and b(s′, s) be the
corresponding output bit vector, which is of length NT .

Define the forward and backward recursions [8] as

αi(s) =
∑
s′
αi−1

(
s′
)
P
[
bi
(
s′, s

)]
, i = 1, . . . , B,

βi(s) =
∑
s′
βi+1

(
s′
)
P
[
bi+1

(
s′, s

)]
, i = B − 1, . . . , 0,

(65)

where P[bi(s′, s)] = P[bi = b(s′, s)]. Initial conditions for
(65) are given as α0(0) = 1, α0(s �= 0) = 0, βτ(0) = 1, and
βτ(s �= 0) = 0. The summations are over all the states s′ where
the state transition (s′, s) is allowed in the code trellis. Nor-
malization of forward and backward variables is done as in
[7] to avoid numerical instabilities, though we do not elabo-
rate them here.

Let �l denote the set of state pairs (s′, s) such that the out-
put symbol vector corresponding to this transition is sl.The
SISO STMAP decoder of user k updates the a posteriori sym-
bol vector probabilities as

P
[
bk(i) = sl|

{
pk,l′(i)1

}B−1
i=0 , l

′ = 1, . . . , L
]

=
∑

(s′ ,s)∈�l

αi−1
(
s′
) · βi(s) · P[bi(s′, s)]

=


 ∑

(s′ ,s)∈�l

αi−1
(
s′
) · βi(s)


 · P[bk(i) = sl

]
= pk,l(i)2pk,l(i)1.

(66)

Again, the extrinsic part of the above a posteriori symbol
vector probability, pk,l(i)2, is interleaved and fed back to the
interference-cancelling space-time multiuser detector, to be
used as the a priori probability pk,l(i)

p
2 , in the next iteration.

In the final iteration the SISO STMAP decoder also com-
putes the a posteriori log-likelihood ratio (LLR) of the infor-
mation bits. Again, similarly to the notation in [7], let �+

denote the set of state pairs (s′, s) such that the correspond-
ing input information bit is +1. �− is defined similarly. Then
we have

Λ
[
dk(i)

]
=
P
[
dk(i) = +1

]
P
[
dk(i) = −1]

= log

∑
�+ αi−1

(
s′
) · βi(s) · P[bi(s′, s)]∑

�− αi−1
(
s′
) · βi(s) · P[bi(s′, s)] .

(67)
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Figure 1: FER performance versus Eb/N0 (in dB) of the joint maximum likelihood space-time multiuser detector. K = 2 and NT = 2 in both
cases. (a) ρ = 0.4. (b) ρ = 0.9.

Based on these a posteriori LLRs, the decoder outputs a final
hard decision on the information bit dk(i) for i = 1, . . . , B′−1,
at the last iteration.

6. SIMULATION RESULTS

In this section, we simulate the proposed receiver struc-
tures for some representative situations. We consider a syn-
chronous multiuser system and always set the number of re-
ceiver antennas to one, ignoring the possibility of exploiting
receiver diversity since our primary concern here is to in-
vestigate the transmitter diversity schemes. We will consider
two systems: one with two transmit antennas and another
with four transmit antennas. We make use of full diversity
BPSK space-time trellis codes with constraint length ν = 5,
given in [12], for both systems. Specifically, we employ space-
time codes based on the underlying rate-1/2 convolutional
code with octal generators (46, 72), and the underlying rate-
1/4 convolutional code with octal generators (52, 56, 66, 76),
both given in [12], for the two and four antenna systems, re-
spectively. In all simulations, the information block size is set
to 128 bits.

Figure 1 shows the performance results for the joint max-
imum likelihood detector in a space-time-coded multiple-
access system with two equal-power users and two trans-
mitter antennas. We use the Frame Error Rate (FER) as the
measure of performance. Plots (a) and (b) correspond to
the cases where user cross-correlations are 0.4 and 0.9, re-
spectively. Also shown on these figures is the performance
of equivalent systems without space-time coding. These re-
sults reveal the significant gains that can be achieved with
space-time coding in multiuser systems, even with only two
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Figure 2: FER performance versus Eb/N0 (in dB) of the joint maxi-
mum likelihood space-time multiuser detector. K = 2, NT = 4, and
ρ = 0.4.

transmitter antennas. For example, at 0.1 FER, there is more
than 6 dB gain in employing the two-antenna space-time
code, against a system that does not employ transmitter an-
tenna diversity.

Figure 2 shows the performance of the joint ML receiver,
again for an equal power two-user system, when each user
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Figure 3: FER performance versus Eb/N0 (in dB) of the decorrelator-based partitioned space-time multiuser detector. K = 4 in all cases. (a)
ρ = 0.4 and NT = 2. (b) ρ = 0.4 and NT = 4.
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Figure 4: FER performance versus Eb/N0 (in dB) of the decorrelator-based partitioned space-time multiuser detector. K = 4 in all cases. (a)
ρ = 0.75 and NT = 2. (b) ρ = 0.75 and NT = 4.

employs a space-time code with four transmitter antennas.
Comparing this figure with Figure 1a, we see that, at an FER
of 0.01, there is more than 4 dB SNR gain over the two-
antenna system. Also shown in Figure 2, for comparison pur-
poses, is the performance of a similar multiuser system but
without the space-time coding. It is clear from these results
that space-time coding can offer significant SNR improve-
ment in multiuser channels.

Plots (a) and (b) in Figure 3 show the FER performance
of the partitioned space-time multiuser receiver based on
a decorrelating multiuser detector and ML single-user de-
coders, in a four-user system with two and four transmit an-
tennas, respectively. User cross-correlations are assumed to
be ρjk = 0.4 for all k �= j. For the same two systems Figure 4
shows the FER performance for user cross-correlations of
ρ = 0.75.
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Figure 5: FER performance versus Eb/N0 (in dB) of the linear MMSE multiuser detector-based partitioned space-time multiuser detector.
K = 4 in all cases. (a) ρ = 0.4 and NT = 2. (b) ρ = 0.4 and NT = 4.

From Figures 3 and 4, it is seen that the decorrelator-
based partitioned space-time receivers may offer some di-
versity gain over single-antenna systems, though they fail
to capture the full gains achievable with space-time coding.
This is especially clear from the large performance gap be-
tween the decorrelator-based partitioned receiver and the
single-user bound in Figure 4. This performance degrada-
tion becomes severe with increasing user cross-correlations,
as one would expect. These results also justify our iterative
approach, which is capable of providing near single-user per-
formance even in severe MAI environments (as we will see
below).

Figure 5 shows the corresponding FER performance re-
sults for a partitioned space-time multiuser receiver based on
linear MMSE multiuser detection at the first stage. These re-
sults are included primarily to further motivate the use of
iterative partitioned receivers in space-time coded multiuser
systems. We observe that for the given cross-correlation val-
ues, the MMSE first stage performance is no better than that
with a decorrelator first stage. Of course in the case of smaller
MAI than what we have simulated, the MMSE first stage
would out-perform the decorrelator-based receiver, since in
this case the background noise would be the dominant noise
source. In either case, these linear detectors fail to exploit the
large performance gains available with space-time coding.

FER performance of the iterative receiver based on in-
terference cancellation, but without linear MMSE filtering,
is shown on Figure 6 for a four-equal-power-user system.
In this figure, plots (a) and (b) correspond to two and four
transmit antenna systems, respectively. In both cases we have
assumed that the user cross-correlations are 0.4 between any
two users. From these simulation results we observe that with

only about four iterations we can achieve most of the gain
available from the iterative decoding process. Significantly,
we see that for medium values of ρ, this simple interfer-
ence cancellation scheme can achieve near single-user perfor-
mance with few iterations, which is not possible with linear
first stages, as we observed earlier.

However, this simple interference-cancellation-based it-
erative detector fails when the cross-correlations between
users begin to increase. In this case, the performance be-
comes almost insensitive to the number of iterations. This
is not surprising, since when the user cross-correlations are
high our estimates at the end of the initial iteration are very
poor (which of course is the same as a system employing
a single-user matched filter front end), and thus the subse-
quent iterations will be based on these poor estimates.

Figure 7 shows the FER performance of the interference-
cancelling space-time multiuser receiver with instantaneous
linear MMSE filtering. Figures 7a and 7b correspond to two
and four transmitter antenna systems, respectively. In both
cases, there are four users in the systemwith equal 0.75 cross-
correlations among them. We observe that this modified it-
erative receiver provides excellent performance and is able
to achieve near single-user performance with only a few it-
erations (2–3 iterations), even in the presence of consider-
able MAI.

7. CONCLUSIONS

We have considered space-time coding for multiple-access
systems in the presence of quasi-static Rayleigh fading. By
analyzing the joint ML receiver for space-time coded mul-
tiuser systems, we have shown that codes that achieve full
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Figure 6: FER performance versus Eb/N0 (in dB) of the partitioned iterative space-time receiver based on interference cancelling multiuser
detection. K = 4 and ρ = 0.4 in both cases. (a) NT = 2. (b) NT = 4.
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Figure 7: FER performance versus Eb/N0 (in dB) of the partitioned iterative space-time receiver based on interference cancelling and linear
MMSE filtering multiuser detection stage. K = 4 and ρ = 0.75 in both cases. (a) NT = 2. (b) NT = 4.

diversity advantage in single-user channels, will also be able
to provide full diversity gain in multiple-access channels. In
order to obtain a better tradeoff between performance and
computational complexity at the receiver, we have proposed
low-complexity receiver structures by partitioning the mul-
tiuser detection and space-time decoding into two stages. In
particular, we have shown that a nonlinear iterative receiver

based on interference cancellation and instantaneous MMSE
filtering is capable of capturing most of the gains available
with space-time coding in multiple-access channels, with
only a few iterations. Our simulation results reveal the gains
achievable with space-time coding in multiuser channels and
the favorable performance tradeoffs offered by the proposed
partitioned space-time multiuser receivers.
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