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Research investigating the use of Legendre moments for pattern recognition has been performed in recent years. This field of
research remains quite open. This paper proposes a new technique based on block-based reconstruction method (BBRM) using
Legendre moments compared with the global reconstruction method (GRM). For alleviating the blocking artifact involved in the
processing, we propose a new approach using lapped block-based reconstruction method (LBBRM). For the problem of selecting
the optimal number of moment used to represent a given image, we propose the maximum entropy principle (MEP) method.
The main motivation of the proposed approaches is to allow fast and efficient reconstruction algorithm, with improvement of the
reconstructed images quality. A binary handwritten musical character and multi-gray-level Lena image are used to demonstrate

the performance of our algorithm.
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1. INTRODUCTION

Moments and functions of moments have been extensively
employed as the invariant global features of an image in pat-
tern recognition, image classification, target identification,
and scene analysis [1, 2, 3, 4, 5].

In the recent years, research investigating the use of mo-
ments for pattern reconstruction has been performed. Teh
and Chin [6] performed an extensive analysis and com-
parison of the most common moment definitions, where
conventional, Legendre, Zernike, pseudo-Zernike, rotational,
and complex moments were all examined in terms of image
representation ability, information redundancy, and noise
sensitivity. Both analytic and experimental methods were
used to characterize the various moment definitions. They
concluded that, in terms of overall performances, Zernike
and pseudo-Zernike moments outperform the other types.

In general, orthogonal moments are better than other types
of moments in terms of information redundancy and image
representation.

More recently, an important and significant work con-
sidering moments for pattern reconstruction was performed
by Liao and Pawlak [7]. In this study, the error analysis and
characterization of Legendre moments descriptors have been
investigated, where several new techniques to increase the
accuracy and the efficiency of the moments are proposed.
Based on these improvements, Liao and Pawlak performed
image reconstruction via Legendre moments, specially re-
constructed image quality.

In order to propose an approach which allows fast and
efficient reconstruction algorithm in the case of multi-gray
level images with greater sizes, our basic idea is to have high
reconstruction quality by using only a small finite number
of moments. This strategy lies in the utilization of low-order
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polynomials on small intervals instead of high orders on a
single one [8]. Hence, the input image is partitioned into
blocks of pixels which are then reconstructed as separate en-
tities. This allows a fast and efficient reconstruction algo-
rithm, with improvement of the reconstructed image qual-
ity. Furthermore, if any block is affected by a reconstruc-
tion error, the others are not affected, keeping by this way
the reconstructed errors as a local distortion; such a fact
preserves the integrity of the reconstructed image. Unfor-
tunately, when adjacent blocks have different reconstruction
errors, the block boundaries become visible, producing ver-
tical and horizontal lines in the reconstructed images. This
blocking artifact is therefore more noticeable at lower re-
construction orders. We propose a new approach for allevi-
ating the blocking artifact using lapped block-based recon-
struction method (LBBRM). This method results in signif-
icant objective and subjective improvement in image qual-
ity.

For the problem of selecting an optimal number of mo-
ments from the digital images, Teh and Chin [6] have con-
sidered the mean square error (MSE) between an image and
its reconstructed version as a good measure of image repre-
sentation ability. However, this method depends on the un-
known original image function, which puts a severe limi-
tation on the application of this criterion. In order to re-
solve this problem, Liao and Pawlak suggested a statistics
cross-validation methodology [7, 9]. The lack of a complete
study concerning this method makes its implementation dif-
ficult.

In this paper, we introduce the maximum entropy prin-
ciple (MEP) as a selection criterion, an automatic technique,
which allows estimating the optimal number of moment di-
rectly from the available data, where no a priori information
is needed [10, 11].

Our proposed method, which is the combination of the
LBBRM with the MEP as selection criteria, achieves improve-
ment in the four following points:

(i) the reduction of the reconstruction space and, by the
way, the reduction of the information quantity to ma-
nipulate, involving a great reliability on the recon-
struction process where only moments of low orders
are used;

(ii) the simplicity of moment calculation and reconstruc-
tion into each block constituting the whole image, in-
volving a computation time improvement;

(iii) the robustness against the reconstruction errors which
remain local and do not affect the other blocks consti-
tuting the whole image;

(iv) the automation of the proposed algorithm, without
any a priori information.

In this paper, a class of Legendre orthogonal moments
is examined, due to the fact that they possess better recon-
struction power than geometrical moments and they attain a
zero value of redundancy measures [6, 12, 13, 14]. Neverthe-
less, the presented results can be extended to other types of
orthogonal moments [6, 14, 15, 16].

Our paper is organized as follows. In Section 2, some ba-
sic definitions are given to build up the necessary mathe-
matical background, including Legendre moments and their
properties. Section 3 performs the block-based reconstruc-
tion method (BBRM) using the MEP. Section 4 presents the
LBBRM method and its performance. Finally, Sections 5 and
6 deal with the summary of important results and conclu-
sions of the paper.

2. LEGENDRE MOMENTS

The Legendre moments of order (p + q) are defined for a
given real image intensity function f(x, y) as

2p+1)(2g+1)
hpg = EEEEED [ [ PPy f 5 y)dxdy, (1)

where f(x, y) is assumed to have bounded support.

The Legendre polynomials Py (x) are a complete orthog-
onal basis set on the interval [—1, 1], for an order p. They are
defined as

1 dP

P
ZTP!@('XZ?l) . (2)

P P (x) =
The orthogonality property is guaranteed by the equality

2

epere

jl P, (x)P,(x)dx =
-1

where 8,4 is the Kronecker function, that is,

1 ifp=g
Opg = ‘| (4)

0 otherwise.

2.1. Image reconstruction by Legendre moments

By taking the orthogonality principle into consideration, the
image function f(x, y) can be written as an infinite series
expansion in terms of the Legendre polynomials over the
square [—1,1] X [—1,1]:

Fey) =2 2 ApgPp(0)Py(y), (5)

p=0q=0

where the Legendre moments A,, are computed over the
same square.

If only Legendre moments of order smaller than or equal
to 6 are given, then the function f(x, y) can be approximated
by a continuous function which is a truncated series:

0 p
folx, y) = Z Z Ap-qPp—q(x)Py(y). (6)
p=0 g=0

Furthermore, 1, ,’s must be replaced by their numerical ap-
proximation which will be pointed out in the following



904

EURASIP Journal on Applied Signal Processing

section. The number of moments used in the reconstruction
of the image for a given order 6 is defined by

@+1)(0+2)

; @)

Ntota.l =

2.2. Approximation of the Legendre moments

The aforementioned properties of the Legendre moments are
valid as long as one uses a true analog image function. In
practice, the Legendre moments have to be computed from
sampled data, that is, the rectangular sampling of the orig-
inal image function f(x, y), producing the set of samples
f(xi, yj) with an (M, N) array of pixels; thus we define the
discrete version of 1, 4 in terms of summation by the tradi-
tional commonly used formula (see [6]):

- (2p+1)(2q+1)zzpp

Apg = Py(yj) f (xi, yj) AxAy,

(8)

i=1j=1

where Ax = (x; — x;-1) and Ay = (y; —
intervals in the x and y directions.

It is clear, however, that A p.q IS NOt @ very accurate approx-
imation of A4, in particular, when the moment order (p+q)
increases [7].

The piecewise constant approximation of f(x, y) in (1),
proposed recently by Liao and Pawlak [7, 9], yields the fol-
lowing approximation of A, 4:

¥j-1) are sampling

/ip,q = Hyp,q(xi, yj) f (i, y5), 9)

Mz
M=

Il
—_

1

i=1j

with the supposition that f(x, y) is piecewise constant over
the interval

[xi—%,xi+%] X[}’j‘%))’j"'%]’ (10)
and where
Hpq(xi y;)

(11)

represents the integration of the polynomial P,(x)P4(y)
around the (x;, y;) pixel.

This approximation allows a good quality of recon-
structed images by reducing the reconstruction error. But, in
this study, only bilevel and small-size images are taken into
account, that is, multi-gray-level images with greater sizes
have been ignored. Indeed, if we consider those later, higher-
order moments are involved, and by the way, the computa-
tion of moments becomes a time-consuming procedure, too
long to be tolerated, with no high quality image successfully
reconstructed from the original version.

3. BLOCKIMAGE RECONSTRUCTION

To overcome this situation, our strategy lies in the utilization
of polynomials having low orders on small intervals instead
of high orders on a single one [8]; that is, the input image is
partitioned into square blocks of pixels of size (k, ), a thing
that produces a number of subimages which will be recon-
structed separately.

Let (M, N) be the image size by pixels and let (k, [) repre-
sent the block size. By introducing the variables

M N
l

$1 = ?, S = N (12)

we can deduce the total number of image blocks, which can

be set as N = s1 - s5.
Given the image space which takes the form

Q={x,‘,yj|0Sx,‘SM,0SijN}, (13)
we define the subset D" C ) as

(1’12 + l)k,
(m + 1)1},

D"™™ = {x;, yj | mk < x; <
(14)
ml<y;<

It should be noticed that this subspace, which can also be
termed image block space (see Figure 1), is related to Q
with
(s1—1) (s2-1)
Q= U U pmm, (15)
=0 m=
Then let the image function associated to each D">"2 subset

be defined as follows:

e y) = eDpmml o (16)

This gives

{f (i yj) 1 xi )

(s1=1) (s2—1)

U U Fren(x, y). (17)

07!2

fley) =

From these definitions, we introduce the Legendre moment
related to each image block as

(my+1)k (m+1)1
Ao = 30> Hpa (%, y5) S (% yy), (18)
i=mk j=ml

where

Xi+Ax/2 J~yj+Ay/2

Hp™ (xi, yj) = J

xi—Ax/2

Py ()P, (y)dxdy  (19)
yji—Ay/2

and x;, y; € D™,
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FiGure 1: Illustration of the BBRM. (a) Division of the input image
into N, subimages, (b) moment extraction for each block, and (c)
reconstruction and merging the N;, blocks.

The block image function reconstructed from Ap';" up to
a given order 6 can intuitively be defined as

T (xi ) = Ame Py (x:) Py (y)). (20)

~[Me
=Mz

The image function up to 8 can be finally obtained by

s1—1 -1

foey)=U U " ). (21)

n=0 ny=0

The proposed technique of reconstruction achieves the first
three improvements presented in the introduction.

3.1. Optimal-order moments selection using MEP

The image recovery from its moments is quite difficult and
computationally expansive because we ignore the order of
the truncated expansion of f(x, y), which gives a good qual-
ity of the reconstructed image.

Here, we introduce the MEP for the reconstruction. This
automatic technique can estimate the optimal number of
moments directly from the available data and does not re-
quire any a priori image information.

Let p(x;, y;) be the estimated probability density function
obtained by normalizing f (%3 yj) [10]:

A f (i)
b)) = s———F (22)
! Zx,-,yjeﬂ f(xi’ )’j)
with
Z f)(x,‘, y]) = 1, (23)
x,-,y}-EQ

where 0 < p(x;, y;) < 1, and Q is the image plane.
Let G,, be a set of estimated underlying probability den-
sity function for various Legendre moment orders 0:

Gy = {po(xiyj) 10 =1,..., 0} (24)

By applying the MEP for noisy images, we deduce that among
these estimates of the probability density function, there is
one and only one probability density function denoted as
Pé (xi, yj) whose entropy is maximum [10, 17] and which
represents the optimal probability density function, and then
gives the optimal order of moments. For noise-free images,
the entropy function monotonically increases up to a certain
optimal order where the maximum image information is
recreated, and then become relatively constant.
The Shannon entropy of pg (x;, y;) is defined as in [11]:

S(po(xiyi)) == D polxiyj)log (Palxiy;))  (25)

Xi, Y €EQ
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and the optimal pg (x;, y;) is such that

S(pg (xi y7)) = max {S(po(xi y;)) | polxi y;) € Gw}(. |
26

3.2. Block reconstruction algorithm using the MEP

The Legendre moments representation and reconstruction
method by block processing is the same as illustrated in
Section 2, except that, in this case, the algorithm will try
to reconstruct each block separately; and the optimal or-
der of reconstruction, controlled by the MEP, will be given
after merging all the subimages into the whole output im-
age.

The following are the steps of the block reconstruction
algorithm using the MEP as a measure of moment-order
selection; here we use the following iterative algorithm ver-
sion:

Initialize 6.
Divide the original image into square blocks of size
(kx1).
Repeat
(1) Increase 6.
(2) Evaluate the Legendre moments of each block
by using (18).
(3) Estimate the image density function of each
block by using (20).
(4) Merge the estimated blocks into the whole im-
age fg(x,-, y;) for the order 6 using (21).
(5) Evaluate the corresponding Shannon entropy
S(ﬁ@(xi: )’j))-
Until S(po(xi, y;)) < S(po(xi, yj)) +e.

ALGORITHM 1

Take 6 as the optimal order and fg(x,», ;) as the optimal
reconstructed density function.

To evaluate experimentally the values taken by ¢, com-
puter simulations have been carried out, applied on Lena
and handwritten musical character with different input block
sizes (4 X 4), (8 x 8), (16 x 16), and (32 X 32).

The iterative LBBRM algorithm produces good results in
terms of image quality only if ¢ verifies the following condi-
tion:

lel < 1. (27)

The values of ¢ according to the results indicated in Table 1
are indicated in Section 5.

4. LAPPED BLOCK-BASED RECONSTRUCTION
METHOD

The proposed block image reconstruction using the method
of moments offers a good trade-off between computation

TasLE 1: The optimal orders given by the MEP in each block size of
the LBBRM and GRM, with the corresponding image qualities.

LBBRM GRM
Block size 4x4 8§ X8 16 X 16 32 %32
Optimal order 4 8 13 25 80
PSNR (dB) 32.67 36.19 29.20 26.12 24.08

time and subjective image quality. Unfortunately, when ad-
jacent blocks have different reconstruction errors, the block
boundaries become visible. This blocking artifact is therefore
more noticeable in the reconstructed images at lower recon-
struction orders. These vertical and horizontal lines, caused
by this blocking artifact, are generally considered objection-
able to human viewers.

One technique for mitigating artifacts in block process-
ing involves a posteriori processing of the reconstructed
images. Such techniques allow substantial reduction of the
blocking artifact, despite the expense of an increase in the
overall mean square reconstruction error [18].

It is well known that the blocking effect is a consequence
of ignoring the interblock correlation during the reconstruc-
tion process because every block is taken as an indepen-
dent entity. Therefore, one of the best ways to minimize the
disturbance in the output image is to make use of the in-
terblock correlation. Our method exploits for every block
the neighborhood information related to its adjacent blocks
during the moment computation. This approach can achieve
a remarkable performance in eliminating the blocking ef-
fect and, by the way, avoid other strategies to restore or en-
hance the image quality by using postprocessing techniques.
Consequently, the elimination of the blocking artifact is in-
cluded in the moment computation and reconstruction pro-
cess.

Figure 2 shows the block diagram of the proposed LB-
BRM. Note that there are two stages in this block diagram:

(i) the moment computation which extracts the block
neighborhood information by proceeding on lapped
blocks;

(ii) the reconstruction process which acts on output blocks
and merge them into the final image.

The proposed LBBRM algorithm controlled by the entropy
principle is the same as in the previous section, except that
moments are computed for lapped blocks composing the in-
put image as defined in (18), and according to Figure 2, the
image function is obtained by merging the output blocks as
defined in (20) and (21).

Controlled by the entropy principle, the LBBRM ap-
proach estimates the optimal number of moments directly
from the available data. Consequently, it does not require any
a priori information about the image.

As a summary, the LBBRM achieves improvement in the
following points:

(1) mitigating the artifact involved in the block process-
ing by exploiting the block neighborhood information



Lapped Block Image Analysis via the Method of Legendre Moments 907

Input lapped block Image

: pixel

Lapped block
>
—i
=

Output block

Moment computation and Output
reconstruction for lapped  p)ocks

image blocks

Lapped block moment

Block reconstruction | —
process

computation

FiGure 2: Illustration of the different stages of the LBBRM using Legendre moments.
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FIGURE 3: (a) The original Lena image, (b) the reconstructed Lena
via the BBRM (left image) and LBBRM (right image) using Leg-
endre moments with the block size (4 x 4) and for reconstruction
order 0, and (c) the image via the BBRM (left image) and LBBRM
(right image) for block size (4 X 4) and order 4.

during the moment computation stage, a thing that al-
lows to avoid enhancement postprocessing techniques
which is a time-consuming procedure.

(ii) the automatic estimation of the optimal order from the
available data; hence, there is no need to a priori infor-
mation about image.

As shown in Figure 3, this method results in significant
objective and subjective improvement in image quality.

5. EXPERIMENTAL RESULTS

In this section, we introduce some criteria commonly used
for measuring image quality and, therefore, rating the per-
formance of the reconstruction as a processing technique.

5.1. Mean square error

The MSE is defined for an image having the size (M, N) as

MSE =

nMg

N
ML Z | £ (i 1) = f G y) | (28)

where f(x;, y;j) is the reconstructed version of the original
function f(x;, y;) over the (x;, y;) pixel.
5.2. Peak signal-to-noise ratio

In [19], the peak signal-to-noise ratio (PSNR) is defined in
decibels (dB) as

2
PSNR = 10log, (TII(SE) (29)
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FIGURE 4: Global reconstruction of the “Clef de Sol” image by the Legendre moments. (a) Original input image; reconstructed images from
(b) to (j) represent orders 10, 20, 30, 40, 50, 60, 70, 80, and 90, respectively.
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F1GURE 5: The corresponding entropy function of the reconstructed
images versus the order of reconstruction. The optimal order of the
reconstruction is 80, with PSNR 24.08.

where k is the gray-level maximum value of the original im-
age.

In order to illustrate our approach, we consider a (128 x
128) real binary image representing a special handwritten
musical note called “Clef de Sol” scanned at 256 gray-level,
and binarized into 0 and 255 (Figure 4a), and the (128 x 128)
real multi-gray-level Lena image.

Figures 4 and 9 show examples of the reconstruction
for the (128 x 128) handwritten character and Lena image,
respectively, from its Legendre moment with the classical
global reconstruction method (GRM), where the processing
is done on the whole image by including increasingly higher-
order moments. It illustrates the fact that the fine detail can

10000
8000 g)
6000 -
m
w
= 4000 -
2000 A
0 -
T T T T T
0 20 40 60 80 100
Order
—o— GRM —v— 16 x 16
—bA— 4 x4 —x— 32 x32
—b0— 8x8

FiGure 6: Comparison of the LBBRM, with different block sizes,
and GRM in terms of the reconstruction MSE for the handwritten
musical character.

be recreated only by including higher-order moments. The
corresponding entropy function of the handwritten charac-
ter, as defined in (25), is computed and shown versus the re-
construction order in Figure 5.

The reconstructed images for the same handwritten char-
acter and the Lena image by the LBBRM, including sizes
(4 x 4) and (8 x 8), are shown in Figures 7, 10, and
11, respectively. It shows that a relatively small finite set
of moments can adequately characterize the given image
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FiGure 7: The original image representing the handwritten musical character “Clef de Sol,” and its reconstructed pattern via the LBBRM
using Legendre moments. (A) The original input image. (B) LBBRM with the block size (4 X 4); from (a) to (g) the reconstructed images
from the order 0 to 6, (h) the reconstructed image for the order 7 where the reconstruction error is equal to zero. (C) LBBRM with the block

size reconstruction (8 x 8), from (a) to (m) the reconstructed images from the order 1 to 12, (n) reconstructed image for the order 13 where
the perfect reconstruction is obtained.
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TaBLE 2: Values of the PSNR (dB) for the reconstructed images rep-
100 A/A A—A’A—@;——_QZV,V_V§°V resenting Lena for the proposed LBBRM, with different block sizes,
R / |:|/ e x—X—X and GRM via the reconstruction order.
90 /X—“X
E PSNR with LBBRM .
PSNR with GRM
B 80+ Size 4x4 8x8 16x16 32x32
S 4
E 04 Order
i 0 21.91 1856  15.96 13.45 11.21
60 — 28.98 22.62 21.72 19.55 16.24
T = 10 3532 2536  24.86 22.15 17.42
20 15 36.22 3438  25.95 24.12 18.32
T T T T T T T T T
0 10 20 30 40 20 37.11 34.81 27.70 25.59 19.34
Order 25 38.94 31.91 32.95 26.85 20.35
—A—4 x4 —V—16x 16 30 35.22 32.68 33.64 28.25 21.19
OB I 35 3800 3691 3583  29.58 21.89
40 39.24 38.64  37.47 31.16 22.70
Ficure 8: Entropy function for the reconstructed images via the
new proposed LBBRM with different sizes. 45 4177 3823 3518 32.56 23.28
50 40.38 39.52  33.66 33.54 23.66

with no need to include higher-order moments. The corre-
sponding entropy functions in each case are regrouped in
Figure 8.

Table 1 summarizes the optimal orders obtained in each
case with the corresponding PSNR. The following values of
¢ have been obtained according to the results indicated in
Table 1:

(i) for (4 x 4) block size, ¢ = 0.70 with optimal order = 4

(ii) for (8 x 8) block size, ¢ = 0.85 with optimal order = 8;

(iii) for (16 x 16) block size, ¢ = 0.91 with optimal order
=13;

(iv) for (32 x 32) block size, ¢ = 0.93 with optimal order
= 25.

It is clear from the results that the optimal number of mo-
ments, which are useful to the reconstruction process, in-
creases as the reconstruction block size increases. The com-
parison in terms of the mean square reconstruction errors
(MSE), as defined in (28), of GRM and LBBRM, is plotted in
Figure 6 for the handwritten character, and in Figure 12 for
the Lena image.

Figures 6 and 12 show the dramatic reduction of the
reconstruction error while reconstructing image by smaller
block sizes. As shown in Table 2, the proposed LBBRM can
recreate high-quality images for lower-order of moments,
compared with the GRM. Table 3 shows the important com-
putation time-reduction factors obtained by using the pro-
posed LBBRM compared with the GRM.

6. CONCLUSION

This paper proposes a new technique based on block im-
age reconstruction using Legendre moments. We propose,
for the problem of selecting the optimal number of mo-

TaBLE 3: The reduction factors of reconstruction time for LBBRM
in comparison with GRM for PSNR = 26.

LBBRM
4x4 8x8 16x16 32x32
80.23% 86.61% 86.45% 81.66%

Block size

Musical character

Corresponding moment order 1 3 6 13
Lena 82.26% 88.26% 87.94% 84.62%
Corresponding moment order 3 11 16 25

ments used to represent a given image, the MEP method.
This method requires no a priori image information.

The processing of the image by blocks of size (4 X 4),
(8 x8), (16 x 16), and (32 x 32) involves a dramatic reduc-
tion of the reconstruction error, and a considerable gain in
the computation time, compared with the GRM, in the case
of (128 x 128) binary and multi-gray-level images. Hence
we can obtain better reconstruction quality on each block
with order of moments considerably low. This new method
can involve a blocking artifact, especially at lower recon-
struction orders. We propose a new approach for allevi-
ating the blocking artifact by using LBBRM. This method
results in significant objective and subjective improvement
in the reconstructed image quality, as shown in the exper-
imental results in the case of binary and multi-gray-level
images.

The proposed approach which is a combination of the
LBBRM with the PME as selection criteria allows not only
improvement of the reconstructed images quality but also
a surprising acceleration of the reconstruction process, as
shown in the results of computation time in Table 3.
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) §) (k) @

FIGURE 9: Global reconstruction of the Lena image by the Legendre moments. (a) Original input image; reconstructed images from (b) to
(I) represent orders 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110, respectively.

FIGURE 10: The original Lena image (a), and its reconstructed patterns via the proposed LBBRM using Legendre moments, with the blocks
size (4 X 4); the reconstructed images from (b) to (1) represent orders from 0 to 10, respectively.
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(e) (6]

FIGURE 11: The original Lena image (a) and its reconstructed patterns via the proposed LBBRM with the block size (8 x 8) using Legendre
moments; from (b) to (h) are the reconstructed images for orders 1, 10, 15, 20, 25, 30, and 35, respectively.

3000
2500 -
2000 A

1500 ~

MSE

1000

T T T
0 20 40 60 80 100 120 140 160

Order
—— GRM —— 16x 16
—— 4 x4 —x— 32 x 32

—o— 8x8

Figure 12: Comparison of LBBRM, with different block sizes, and
GRM in terms of the reconstruction MSE for Lena image.
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