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We investigate the problem of bearings-only tracking of manoeuvring targets using particle filters (PFs). Three different (PFs) are
proposed for this problem which is formulated as a multiple model tracking problem in a jumpMarkov system (JMS) framework.
The proposed filters are (i) multiple model PF (MMPF), (ii) auxiliary MMPF (AUX-MMPF), and (iii) jump Markov system PF
(JMS-PF). The performance of these filters is compared with that of standard interacting multiple model (IMM)-based trackers
such as IMM-EKF and IMM-UKF for three separate cases: (i) single-sensor case, (ii) multisensor case, and (iii) tracking with hard
constraints. A conservative CRLB applicable for this problem is also derived and compared with the RMS error performance of
the filters. The results confirm the superiority of the PFs for this difficult nonlinear tracking problem.
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1. INTRODUCTION

The problem of bearings-only tracking arises in a variety of
important practical applications. Typical examples are sub-
marine tracking (using a passive sonar) or aircraft surveil-
lance (using a radar in a passive mode or an electronic war-
fare device) [1, 2, 3]. The problem is sometimes referred to
as target motion analysis (TMA), and its objective is to track
the kinematics (position and velocity) of a moving target us-
ing noise-corrupted bearingmeasurements. In the case of au-
tonomous TMA (single observer only), which is the focus of
a major part of this paper, the observation platform needs to
manoeuvre in order to estimate the target range [1, 3]. This
need for ownship manoeuvre and its impact on target state
observability have been explored extensively in [4, 5].

Most researchers in the field of bearings-only tracking
have concentrated on tracking a nonmanoeuvring target.
Due to inherent nonlinearity and observability issues, it is
difficult to construct a finite-dimensional optimal Bayesian
filter even for this relatively simple problem. As for the
bearings-only tracking of a manoeuvring target, the prob-
lem is much more difficult and so far, very limited research
has been published in the open literature. For example, inter-
acting multiple model (IMM)-based trackers were proposed
in [6, 7] for this problem. These algorithms employ a con-
stant velocity (CV) model along with manoeuvre models to
capture the dynamic behaviour of a manoeuvring target sce-
nario. Le Cadre and Tremois [8] modelled the manoeuvring
target using the CV model with process noise and developed
a tracking filter in the hidden Markov model framework.
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This paper presents the application of particle filters
(PFs) [9, 10, 11] for bearings-only tracking of manoeuvring
targets and compares its performance with traditional IMM-
based filters. This work builds on the investigation carried
out by the authors in [12] for the same problem. The ad-
ditional features considered in this paper include (a) use of
different manoeuvre models, (b) two additional PFs, and
(c) tracking with hard constraints. The error performance
of the developed filters is analysed by Monte Carlo (MC)
simulations and compared to the theoretical Cramér-Rao
lower bounds (CRLBs). Essentially, the manoeuvring tar-
get problem is formulated in a jump Markov system (JMS)
framework and these filters provide suboptimal solutions to
the target state, given a sequence of bearing measurements
and the particular JMS framework. In the JMS framework
considered in this paper, the target motion is modelled by
three switching dynamics models whose evolution follows a
Markov chain. One of these models is the standard CVmodel
while the other two correspond to coordinated turn (CT)
models that capture the manoeuvre dynamics.

Three different PFs are proposed for this problem: (i)
multiple model PF (MMPF), (ii) auxiliary MMPF (AUX-
MMPF), and (iii) JMS-PF. The MMPF [12, 13] and AUX-
MMPF [14] represent the target state and the mode at ev-
ery time by a set of paired particles and construct the joint
posterior density of the target state and mode, given all mea-
surements. The JMS-PF, on the other hand, involves a hybrid
scheme where it uses particles to represent only the distribu-
tion of the modes, while mode-conditioned state estimation
is carried out using extended Kalman filters (EKFs).

The performance of the above algorithms is compared
with two conventional schemes: (i) IMM-EKF and (ii) IMM-
UKF. These filters represent the posterior density at each time
epoch by a finite Gaussian mixture, and they merge and mix
these Gaussian mixture components at every step to avoid
the exponential growth in the number of mixture compo-
nents. The IMM-EKF uses EKFs while the IMM-UKF utilises
unscented Kalman filters (UKFs) [15] to compute the mode-
conditioned state estimates.

In addition to the autonomous bearings-only tracking
problem, two further cases are investigated in the paper: mul-
tisensor bearings-only tracking, and tracking with hard con-
straints. The multisensor bearings-only problem involves a
slight modification to the original problem, where a second
static sensor sends its target bearing measurements to the
original platform. The problem of tracking with hard con-
straints involves the use of prior knowledge, such as speed
constraints, to improve tracker performance.

The organisation of the paper is as follows. Section 2
presents the mathematical formulation for the bearings-only
tracking problem for each of the three different cases in-
vestigated: (i) single-sensor case, (ii) multisensor case, and
(iii) tracking with hard constraints. In Section 3 the relevant
CRLBs are derived for all but case (iii) for which the ana-
lytic derivation is difficult (due to the non-Gaussian prior
and process noise vectors). The tracking algorithms for each
case are then presented in Section 4 followed by simulation
results in Section 5.

2. PROBLEM FORMULATION

2.1. Single-sensor case

Conceptually, the basic problem in bearings-only tracking is
to estimate the trajectory of a target (i.e., position and veloc-
ity) from noise-corrupted sensor bearing data. For the case
of a single-sensor problem, these bearing data are obtained
from a single-moving observer (ownship). The target state
vector is

xt =
[
xt yt ẋt ẏt

]T
, (1)

where (x, y) and (ẋ, ẏ) are the position and velocity compo-
nents, respectively. The ownship state vector xo is similarly
defined. We now introduce the relative state vector defined
by

x � xt − xo =
[
x y ẋ ẏ

]T
(2)

for which the discrete-time state equation will be written.
The dynamics of a manoeuvring target is modelled by mul-
tiple switching regimes, also known as a JMS. We make the
assumption that at any time in the observation period, the
target motion obeys one of s = 3 dynamic behaviour models:
(a) CVmotion model, (b) clockwise CT model, and (c) anti-
clockwise CT model. Let S � {1, 2, 3} denote the set of three
models for the dynamicmotion, and let rk be the regime vari-
able in effect in the interval (k−1, k], where k is the discrete-
time index. Then, the target dynamics can be mathematically
written as

xk+1 = f(rk+1)
(
xk, xok, x

o
k+1

)
+Gvk

(
rk+1 ∈ S

)
, (3)

where

G =




T2

2
0

0
T2

2
T 0

0 T



, (4)

T is the sampling time, and vk is a 2 × 1 i.i.d. process noise
vector with vk ∼ N (0,Q). The process noise covariance ma-
trix is chosen to be Q = σ2a I, where I is the 2 × 2 identity
matrix and σa is a process noise parameter. Note that Gvk
in (3) corresponds to a piecewise constant white acceleration
noise model [16] which is adequate for the large sampling
time chosen in our paper. The mode-conditioned transition
function f (rk+1)(·, ·, ·) in (3) is given by

f(rk+1)
(
xk, xok, x

o
k+1

) = F(rk+1)
(
xk
) · (xk + xok

)− xok+1. (5)
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Here F(rk+1)(·) is the transition matrix corresponding to
mode rk+1, which, for the particular problem of interest, can
be specified as follows. F(1)(·) corresponds to CVmotion and
is thus given by the standard CV transition matrix:

F(1)
(
xk
) =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 . (6)

The next two transition matrices correspond to CT transi-
tions (clockwise and anticlockwise, respectively). These are
given by

F( j)
(
xk
)=




1 0
sin
(
Ω

( j)
k T
)

Ω
( j)
k

−
(
1− cos

(
Ω

( j)
k T
))

Ω
( j)
k

0 1

(
1− cos

(
Ω

( j)
k T
))

Ω
( j)
k

sin
(
Ω

( j)
k T
)

Ω
( j)
k

0 0 cos
(
Ω

( j)
k T
) − sin

(
Ω

( j)
k T
)

0 0 sin
(
Ω

( j)
k T
)

cos
(
Ω

( j)
k T
)



,

j = 2, 3,
(7)

where the mode-conditioned turning rates are

Ω(2)
k = am√(

ẋk + ẋok
)2

+
(
ẏk + ẏok

)2 ,

Ω(3)
k = −am√(

ẋk + ẋok
)2

+
(
ẏk + ẏok

)2 .
(8)

Here am > 0 is a typical manoeuvre acceleration. Note that
the turning rate is expressed as a function of target speed (a
nonlinear function of the state vector xk) and thus models 2
and 3 are clearly nonlinear transitions.

We model the mode rk in effect at (k − 1, k] by a time-
homogeneous 3-state first-order Markov chain with known
transition probability matrix Π, whose elements are

πi j � P
(
rk = j|rk−1 = i

)
, i, j ∈ S, (9)

such that

πi j ≥ 0,
∑
j

πi j = 1. (10)

The initial probabilities are denoted by πi � P(r1 = i) for
i ∈ S and they satisfy

πi ≥ 0,
∑
i

πi = 1. (11)

The available measurement at time k is the angle from
the observer’s platform to the target, referenced (clockwise
positive) to the y-axis and is given by

zk = h
(
xk
)
+wk, (12)

where wk is a zero-mean independent Gaussian noise with
variance σ2θ and

h
(
xk
) = arctan

(
xk
yk

)
(13)

is the true bearing angle. The state variable of interest for esti-
mation is the hybrid state vector yk = (xTk , rk)

T . Thus, given a
set of measurements Zk = {z1, . . . , zk} and the jump-Markov
model (3), the problem is to obtain estimates of the hybrid
state vector yk. In particular, we are interested in computing
the kinematic state estimate x̂k|k = E[xk|Zk] and mode prob-
abilities P(rk = j|Zk), for every j ∈ S.

2.2. Multisensor case

Suppose there is a possibility of the ownship receiving addi-
tional (secondary) bearing measurements from a sensor lo-
cated at (xsk, y

s
k) whose measurement errors are independent

to that of the ownship sensor. For simplicity, we assume that
(a) additional measurements are synchronous to the primary
sensormeasurements that (b) there is a zero transmission de-
lay from the sensor at (xsk, y

s
k) to the ownship at (xok , y

o
k). The

secondary measurement can be modelled as

z′k = h′
(
xk
)
+w′k, (14)

where

h′
(
xk
) = arctan

(
xk + xok − xsk
yk + yok − ysk

)
(15)

and w′k is a zero-mean white Gaussian noise sequence with
variance σ2θ′ . If the additional bearing measurement is not re-
ceived at time k, we set z′k = ∅. The bearings-only track-
ing problem for this multisensor case is then to estimate
the state vector xk given a sequence of measurements Zk =
{z1, z′1, . . . , zk, z′k}.

2.3. Trackingwith constraints

In many tracking problems, one has some hard constraints
on the state vector which can be a valuable source of infor-
mation in the estimation process. For example, we may know
the minimum and maximum speeds of the target given by
the constraint

smin ≤
√(

ẋk + ẋok
)2

+
(
ẏk + ẏok

)2 ≤ smax. (16)
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Suppose some constraint (such as the speed constraint) is
imposed on the state vector, and denote the set of constrained
state vectors byΨ. Let the initial distribution of the state vec-
tor in the absence of constraints be x0 ∼ p(x0). With con-
straints, this initial distribution becomes a truncated density
p̃(x0), that is,

p̃
(
x0
) =



p
(
x0
)

∫
x0∈Ψ p

(
x0
)
dx0

, x0 ∈ Ψ,

0 otherwise.
(17)

Likewise, the dynamics model should be modified in such a
way that xk is always constrained toΨ. In the absence of hard
constraints, suppose that the process noise vk ∼ g(v) is used
in the filter. With constraints, the pdf of vk becomes a state-
dependent truncated density given by

g̃
(
v; xk

) =



g(v)∫
v∈G(xk) g(v)dv

, v ∈ G
(
xk
)
,

0 otherwise,
(18)

where G(xk) = {v : xk ∈ Ψ}.
For the bearings-only tracking problem, we will consider

hard constraints in target dynamics only. The measurement
model remains the same as that for the unconstrained prob-
lem. Given a sequence of measurements Zk and some con-
straint Ψ on the state vector, the aim is to obtain estimates of
the state vector xk, that is,

x̂k|k = E
[
xk
∣∣Zk,Ψ

]
=
∫
xk p
(
xk
∣∣Zk,Ψ

)
dxk ,

(19)

where p(xk|Zk,Ψ) is the posterior density of the state, given
the measurements and hard constraints.

3. CRAMÉR-RAO LOWER BOUNDS

We follow the approach taken in [12] for the development
of a conservative CRLB for the manoeuvring target tracking
problem. This bound assumes that the true model history of
the target trajectory

H∗
k =

{
r∗1 , r

∗
2 , . . . , r

∗
k

}
(20)

is known a priori. Then, a bound on the covariance of x̂k was
shown to be

E
[(
x̂k − xk

)(
x̂k − xk

)T]

≥ E
[(
x̂k − xk

)(
x̂k − xk

)T∣∣∣H∗
k

]

≥ [J∗k ]−1,
(21)

where the mode-history-conditioned information matrix J∗k
is

J∗k = E
[(∇xk log p

(
xk,Zk

))(∇xk log p
(
xk ,Zk

))T∣∣∣H∗
k

]
.

(22)

Following [17], a recursion for J∗k can be written as

J∗k+1 = D22
k −D21

k

(
J∗k +D11

k

)−1
D12

k , (23)

where, in the case of additive Gaussian noise models applica-

ble to our problem, matrices D
i j
k are given by

D11
k = E

{(
F̃
(r∗k+1)
k

)T
Q−1k F̃

(r∗k+1)
k

}
,

D12
k = −E

{(
F̃
(r∗k+1)
k

)T}
Q−1k = (D21

k

)T
,

D22
k = Q−1k + E

{
H̃T

k+1R
−1
k+1H̃k+1

}
,

(24)

where

F̃
(r∗k+1)
k =

[
∇xk

(
f (r

∗
k+1)(xk)

)T]T
,

H̃k+1 =
[∇xk+1h

T
k+1(xk+1)

]T
,

(25)

Rk+1 = σ2β 	→ Rk+1 = σ2θ is the variance of the bearing mea-
surements, and Qk is the process noise covariance matrix.
The Jacobian F̃(1)k for the case of r∗k+1 = 1 is simply the transi-

tion matrix given in (6). For r∗k+1 ∈ {2, 3}, the Jacobian F̃
(r∗k+1)
k

can be computed as

F̃
( j)
k =




1 0
∂ f

( j)
1

∂ẋk

∂ f
( j)
1

∂ẏk

0 1
∂ f

( j)
2

∂ẋk

∂ f
( j)
2

∂ẏk

0 0
∂ f

( j)
3

∂ẋk

∂ f
( j)
3

∂ẏk

0 0
∂ f

( j)
4

∂ẋk

∂ f
( j)
4

∂ẏk




, j = 2, 3, (26)

where f
( j)
i (·) denotes the ith element of the dynamics model

function f( j)(·). The detailed evaluation of F̃
( j)
k is given in the

appendix.
Likewise, the Jacobian of the measurement function is

given by

H̃k+1 =
[

∂h

∂xk+1

∂h

∂yk+1

∂h

∂ẋk+1

∂h

∂ẏk+1

]
, (27)

where

∂h

∂xk+1
= yk+1

x2k+1 + y2k+1
,

∂h

∂yk+1
= −xk+1

x2k+1 + y2k+1
,

∂h

∂ẋk+1
= ∂h

∂ẏk+1
= 0.

(28)
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For the case of additional measurements from a sec-
ondary sensor, the only change required will be in the com-
putation ofD22

k . In particular, Rk+1 and H̃k+1 will be replaced
by R′k+1 and H̃

′
k+1, corresponding to the augmented measure-

ment vector (zk+1, z′k+1). These are given by

R′k+1 =
[
σ2θ 0
0 σ2θ′

]
,

H̃′
k+1 =




∂h

∂xk+1

∂h

∂yk+1

∂h

∂ẋk+1

∂h

∂ẏk+1
∂h′

∂xk+1

∂h′

∂yk+1

∂h′

∂ẋk+1

∂h′

∂ẏk+1


 ,

(29)

where σ2β′ 	→ σ2θ′ is the noise variance of the secondary sensor,

and the first row of H̃′
k+1 is identical to (27). The elements of

the second row of H̃′
k+1 are given by

∂h′

∂xk+1
= yk+1 + y01k+1 − y02k+1(

xk+1 + x01k+1 − x02k+1
)2

+
(
yk+1 + y01k+1 − y02k+1

)2 ,
∂h′

∂yk+1
= −(xk+1 + x01k+1 − x02k+1

)
(
xk+1 + x01k+1 − x02k+1

)2
+
(
yk+1 + y01k+1 − y02k+1

)2 ,
∂h′

∂ẋk+1
= ∂h′

∂ẏk+1
= 0.

(30)

The simulation experiments for this problem will be car-
ried out on fixed trajectories. This means that for the cor-
responding CRLBs, the expectation operators in (24) vanish
and the required Jacobians will be computed at the true tra-
jectories. The recursion (23) is initialised by

J∗1 = P−11 , (31)

where P1 is the initial covariance matrix of the state estimate.
This can be computed using the expression (38), where we
replace the measurement θ1 by the true initial bearing.

4. TRACKING ALGORITHMS

This section describes five recursive algorithms designed for
tracking a manoeuvring target using bearings-only measure-
ments. Two of the algorithms are IMM-based algorithms and
the other three are PF-based schemes. The algorithms con-
sidered are (i) IMM-EKF, (ii) IMM-UKF, (iii) MMPF, (iv)
AUX-MMPF, and (v) JMS-PF. All five algorithms are applica-
ble to both single-sensor and multisensor tracking problems,
formulated in Section 2.

Sections 4.1, 4.2, 4.3, 4.4, and 4.5 will present the ele-
ments of the five tracking algorithms to be investigated. The
IMM-based trackers will not be presented in detail; the inter-
ested reader is referred to [7, 12, 16] for a detailed exposition
of these trackers. Section 4.6 presents the required method-
ology for the multisensor case while Section 4.7 discusses the
modifications required in the PF-based trackers for tracking
with hard constraints.

4.1. IMM-EKF algorithm

The IMM-EKF algorithm is an EKF-based routine that has
been utilised for manoeuvring target tracking problems for-
mulated in a JMS framework [7, 12]. The basic idea is that,
for each dynamic model of the JMS, a separate EKF is used,
and the filter outputs are weighted according to the mode
probabilities to give the state estimate and covariance. At
each time index, the target state pdf is characterised by a fi-
nite Gaussian mixture which is then propagated to the next
time index. Ideally, this propagation results in an s-fold in-
crease in the number of mixture components, where s is the
number of modes in the JMS. However, the IMM-EKF algo-
rithm avoids this growth by merging groups of components
using mixture probabilities. The details of the IMM-EKF al-
gorithm can be found in [7], where slightly different motion
models to the one used here were proposed.

The sources of approximation in the IMM-EKF algo-
rithm are twofold. First, the EKF approximates nonlinear
transformations by linear transformations at some operating
point. If the nonlinearity is severe or if the operating point
is not chosen properly, the resultant approximation can be
poor, leading to filter divergence. Second, the IMM approx-
imates the exponentially growing Gaussian mixture with a
finite Gaussian mixture. The above two approximations can
cause filter instability in certain scenarios.

Next, we provide details of the filter initialisation for the
EKF routines used in this algorithm.

4.1.1. Filter initialisation

Suppose the initial prior range is r ∼ N (r̄, σ2r ), where r̄ and
σ2r are the mean and variance of the initial range. Then, given
the first bearing measurement θ1, the position components
of the relative target state vector is initialised according to
standard procedure [12], that is,

x1 = r̄ sin θ1, y1 = r̄ cos θ1, (32)

with covariance

Pxy =
[
σ2x σxy
σyx σ2y

]
, (33)

σ2x = r̄2σ2θ cos
2 θ1 + σ2r sin

2 θ1, (34)

σ2y = r̄2σ2θ sin
2 θ1 + σ2r cos

2 θ1, (35)

σxy = σyx =
(
σ2r − r̄2σ2θ

)
sin θ1 cos θ1, (36)

where σθ is the bearing-measurement standard deviation.We
adopt a similar procedure to initialise the velocity compo-
nents. The overall relative target state vector can thus be ini-
tialised as follows. Suppose we have some prior knowledge
of the target speed and course given by s ∼ N (s̄, σ2s ) and
c ∼ N (c̄, σ2c ), respectively. Then, the overall relative target
state vector is initialised as

x̂1 =




r̄ sin θ1
r̄ cos θ1

s̄ sin(c̄)− ẋo1
s̄ cos(c̄)− ẏo1


 , (37)
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where (ẋo1, ẏ
o
1) is the velocity of the ownship at time index 1.

The corresponding initial covariance matrix is given by

P1 =




σ2x σxy 0 0

σyx σ2y 0 0

0 0 σ2ẋ σẋ ẏ

0 0 σẏẋ σ2ẏ


 , (38)

where σ2x , σxy , σyx, σ
2
y are given by (34)–(36), and

σ2ẋ = s̄2σ2c cos
2(c̄) + σ2s sin

2(c̄),

σ2ẏ = s̄2σ2c sin
2(c̄) + σ2s cos

2(c̄),

σẋẏ = σẏẋ =
(
σ2s − s̄2σ2c

)
sin(c̄) cos(c̄).

(39)

4.2. IMM-UKF algorithm

This algorithm is similar to the IMM-EKF with the main dif-
ference being that the model-matched EKFs are replaced by
model-matched UKFs [15]. The UKF for model 1 uses the
unscented transform (UT) only for the filter update (because
only the measurement equation is non-linear). The UKFs for
models 2 and 3 use the UT for both the prediction and the
update stage of the filter. The IMM-UKF is initialised in a
similar manner to that of the IMM-EKF.

4.3. MMPF

The MMPF [12, 13] has been used to solve various manoeu-
vring target tracking problems. Here we briefly review the
basics of this filter.

The MMPF estimates the posterior density p(yk|Zk),
where yk = [xTk , rk]

T is the augmented (hybrid) state vec-
tor. In order to recursively compute the PF estimates, the MC
representation of p(yk|Zk) has to be propagated in time. Let
{yik−1,wi

k−1}Ni=1 denote a random measure that characterises
the posterior pdf p(yk−1|Zk−1), where yik−1, i = 1, . . . ,N , is
a set of support points with associated weights wi

k−1, i =
1, . . . ,N . Then, the posterior density of the augmented state
at k − 1 can be approximated as

p
(
yk−1|Zk−1

) ≈ N∑
i=1

wi
k−1δ

(
yk−1 − yik−1

)
, (40)

where δ(·) is the Dirac delta measure. Next, the posterior pdf
at k can be written as

p
(
yk|Zk

)∝ p
(
zk
∣∣yk)

∫
p
(
yk
∣∣yk−1)p(yk−1∣∣Zk−1

)
dyk−1

≈ p
(
zk
∣∣yk)

N∑
i=1

wi
k−1p

(
yk
∣∣yik−1),

(41)

where approximation (40) was used in (41). Now, to repre-
sent the pdf p(yk|Zk) using particles, we employ the impor-
tance samplingmethod [9]. By choosing the importance den-
sity to be p(yk|yk−1), one can draw samples y∗

i

k ∼ p(yk|yik−1),
i = 1, . . . ,N . To draw a sample from p(yk|yik−1), we first draw
a sample from p(rk|rik−1) which is a discrete probability mass

function given by the ith row of the Markov chain transition
probability matrix. That is, we choose r∗

i

k ∼ p(rk|rik−1) such
that

P
(
r∗

i

k = j
) = πi j . (42)

Next, given the mode r∗
i

k , one can easily sample x∗
i

k ∼
p(xk|xik−1, rik) by generating process noise sample vik−1 ∼
N (0,Q) and propagating xik−1, r

∗i

k , and vik−1 through the
dynamics model (3). This gives us the sample {y∗i

k =
[(x∗

i

k )T , r∗
i

k ]T}Ni=1 which can be used to approximate the pos-
terior pdf p(yk|Zk) as

p
(
yk
∣∣Zk
) ≈ N∑

i=1
wi
kδ
(
yk − y∗

i

k

)
, (43)

where

wi
k ∝ wi

k−1p
(
zk
∣∣y∗i

k

)
. (44)

Note that p(zk|y∗i

k ) = p(zk|x∗i

k ) which can be computed us-
ing the measurement equation (12). This completes the de-
scription of a single recursion of the MMPF. The filter is ini-
tialised by generatingN samples {xi1}Ni=1 from the initial den-
sity N (x̂1,P1), where x̂1 and P1 were specified in (37) and
(38), respectively.

A common problem with PFs is the degeneracy phe-
nomenon, where, after a few iterations, all but one particle
will have negligible weight. A measure of degeneracy is the
effective sample size Neff which can be empirically evaluated
as

N̂eff = 1∑N
i=1w

i
k
2 . (45)

The usual approach to overcoming the degeneracy problem
is to introduce resampling whenever N̂eff < Nthr for some
threshold Nthr. The resampling step involves generating a
new set {yik}Ni=1 by sampling with replacement N times from
the set {y∗i

k }Ni=1 such that

P
(
yik = y∗

j

k

) = w
j
k. (46)

4.4. AUX-MMPF

The AUX-MMPF [14] focuses on the characterisation of pdf
p(xk, i, rk|Zk), where i refers to the ith particle at k − 1.
This density is marginalised to obtain a representation of
p(xk|Zk).

A proportionality for the joint probability density p(xk,
i, rk|Zk) can be written using Bayes’ rule as

p
(
xk, i, rk

∣∣Zk
)

∝ p
(
zk
∣∣xk)p(xk, i, rk∣∣Zk−1

)
= p
(
zk
∣∣xk)p(xk∣∣rk, i,Zk−1

)
p
(
rk
∣∣i,Zk−1

)
p
(
i
∣∣Zk−1

)
= p
(
zk
∣∣xk)p(xk∣∣xik−1, rk)p(rk∣∣rik−1)wi

k−1,
(47)
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where p(rk|rk−1) is an element of the transition proba-
bility matrix Π defined by (9). To sample directly from
p(xk, i, rk|Zk) as given by (47) is not practical. Hence, we
again use importance sampling [9, 14] to first obtain a sam-
ple from a density which closely resembles (47), and then
weight the samples appropriately to produce an MC repre-
sentation of p(xk, i, rk|Zk). This can be done by introducing
the function q(xk, i, rk|Zk) with proportionality

q
(
xk, i, rk

∣∣Zk
)∝p

(
zk
∣∣µik(rk))p(xk∣∣xik−1, rk)p(rk∣∣rik−1)wi

k−1,
(48)

where

µik
(
rk
) = E

{
xk
∣∣xik−1, rk}

= f(rk)
(
xik−1, x

o
k−1, x

o
k

)
.

(49)

Importance density q(xk, i, rk|Zk) differs from (47) only
in the first factor. Now, we can write q(xk, i, rk|Zk) as

q
(
xk, i, rk

∣∣Zk
) = q

(
i, rk
∣∣Zk
)
g
(
xk
∣∣i, rk,Zk

)
(50)

and define

g
(
xk
∣∣i, rk,Zk

)
� p
(
xk
∣∣xik−1, rk). (51)

In order to obtain a sample from the density q(xk, i, rk|Zk),
we first integrate (48) with respect to xk to get an expression
for q(i, rk|Zk),

q
(
i, rk
∣∣Zk
)∝ p

(
zk
∣∣µik(rk))p(rk∣∣rik−1)wi

k−1. (52)

A random sample can now be obtained from the density

q(xk, i, rk|Zk) as follows. First, a sample {i j , r jk}Nj=1 is drawn
from the discrete distribution q(i, rk|Zk) given by (52). This
can be done by splitting each of the N particles at k − 1
into s groups (s is the number of possible modes), each
corresponding to a particular mode. Each of the sN parti-
cles is assigned a weight proportional to (52), and N points

{i j , r jk}Nj=1 are then sampled from this discrete distribution.

From (50) and (51), it is seen that the samples {x j
k}Nj=1 from

the joint density q(xk, i, rk|Zk) can now be generated from

p(xk|xi jk−1, r jk). The resultant triplet sample {x j
k, i

j , r
j
k}Nj=1 is a

random sample from the density q(xk, i, rk|Zk). To use these
samples to characterise the density p(xk, i, rk|Zk), we attach

the weights w
j
k to each particle, where w

j
k is a ratio of (48)

and (47), evaluated at {x j
k, i

j , r
j
k}, that is,

w
j
k =

p
(
zk
∣∣x j

k

)
p
(
x
j
k

∣∣xi jk−1, r jk)p(r jk∣∣rijk−1)wij
k−1

p
(
zk
∣∣µijk (rk))p(x j

k

∣∣xi jk−1, r jk)p(r jk∣∣rijk−1)wij
k−1

= p
(
zk
∣∣x j

k

)
p
(
zk
∣∣µijk (rk)) .

(53)

By defining the augmented vector yk � (xTk , i, rk)
T , we can

write down anMC representation of the pdf p(xk, i, rk|Zk) as

p
(
xk, i, rk

∣∣Zk
) = p

(
yk
) ≈ N∑

j=1
w

j
kδ
(
yk − y

j
k

)
. (54)

Observe that by omitting the {i j , r jk} components in the
triplet sample, we have a representation of the marginalised
density p(xk|Zk), that is,

p
(
xk
∣∣Zk
) ≈ N∑

j=1
w

j
kδ
(
xk − x

j
k

)
. (55)

The AUX-MMPF is initialised according to the same proce-
dure as for MMPF.

4.5. JMS-PF

The JMS-PF is based on the jump Markov linear system
(JMLS) PF proposed in [18, 19] for a JMLS. Let

Xk =
{
x1, . . . , xk

}
,

Rk =
{
r1, . . . , rk

} (56)

denote the sequences of states and modes up to time index k.
Standard particle filtering techniques focused on the estima-
tion of the pdf of the state vector xk. However, in the JMS-
PF, we place emphasis on the estimation of the pdf of the
mode sequence Rk, given measurements Zk = {z1, . . . , zk}.
The density p(Xk,Rk|Zk) can be factorised into

p
(
Xk,Rk

∣∣Zk
) = p

(
Xk

∣∣Rk,Zk
)
p
(
Rk

∣∣Zk
)
. (57)

Given a specific mode sequence Rk and measurements Zk,
the first term on the right-hand side of (57), p(Xk|Rk,Zk),
can easily be estimated using an EKF or some other nonlin-
ear filter. Therefore, we focus our attention on p(Rk|Zk); for
estimation of this density, we propose to use a PF.

Using Bayes’ rule, we note that

p
(
Rk

∣∣Zk
) = p

(
zk
∣∣Zk−1,Rk

)
p
(
rk
∣∣rk−1)

p
(
zk
∣∣Zk−1

) p
(
Rk−1

∣∣Zk−1
)
.

(58)

Equation (58) provides a useful recursion for the estimation
of p(Rk|Zk) using a PF. We describe a general recursive al-
gorithm which generates N particles {Ri

k}Ni=1 at time k which
characterises the pdf p(Rk|Zk). The algorithm requires the
introduction of an importance function q(rk|Zk,Rk−1). Sup-
pose at time k − 1, one has a set of particles {Ri

k−1}Ni=1 that
characterises the pdf p(Rk−1|Zk−1). That is,

p
(
Rk−1

∣∣Zk−1
) ≈ 1

N

N∑
i=1

δ
(
Rk−1 − Ri

k−1
)
. (59)
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Now draw N samples rik ∼ q(rk|Zk,Ri
k−1). Then, from (58)

and the principle of importance sampling, one can write

p
(
Rk

∣∣Zk
) ≈ N∑

i=1
wi
kδ
(
Rk − Ri

k

)
, (60)

where Ri
k ≡ {Ri

k−1, r
i
k} and the weight

wi
k ∝

p
(
zk
∣∣Zk−1,Ri

k

)
p
(
rik
∣∣rik−1)

q
(
rik
∣∣Zk,Ri

k−1
) . (61)

From (60), we note that one can perform resampling
(if required) to obtain an approximate i.i.d. sample from
p(Rk|Zk). The recursion can be initialised according to the
specified initial state distribution of the Markov chain, πi =
P(r1 = i).

How do we choose the importance density q(rk|Zk,
Rk−1)? A sensible selection criterion is to choose a proposal
that minimises the variance of the importance weights at
time k, given Rk−1 and Zk. According to this strategy, it
was shown in [18] that the optimal importance density is
p(rk|Zk,Ri

k−1). Now, it is easy to see that this density satis-
fies

p
(
rk
∣∣Zk,Ri

k−1
) = p

(
zk
∣∣Zk−1,Ri

k−1, rk
)
p
(
rk
∣∣rik−1)

p
(
zk
∣∣Zk−1,Ri

k−1
) . (62)

Note that p(rk|Zk,Ri
k−1) is proportional to the numerator of

(62) as the denominator is independent of rk. Also, the term
p(rk|rk−1) is simply the Markov chain transition probability
(specified by the transition probability matrix Π). The term
p(zk|Zk−1,Rk), which features in the numerator of (62), can
be approximated by one-step-ahead EKF outputs, that is, we
can write

p
(
zk
∣∣Zk−1,Rk

) ≈ N
(
νk
(
Rk,Zk−1

)
; 0, Sk

(
Rk,Zk−1

))
, (63)

where νk(·, ·) and Sk(·, ·) are the mode-history-conditioned
innovation and its covariance, respectively. Thus, p(rk|rk−1)
and (63) allow the computation of the optimal importance
density.

Using (62) as the importance density q(·|·, ·) in (61), we
find that the weight

wi
k ∝ p

(
zk
∣∣Zk−1,Ri

k−1
)
. (64)

Since rk ∈ {1, . . . , s}, the importance weights given above can
be computed as

wi
k ∝ p

(
zk
∣∣Zk−1,Ri

k−1
)

=
s∑

j=1
p
(
zk
∣∣Zk−1,Ri

k−1, rk = j
)
p
(
rk = j

∣∣rik−1). (65)

Note that the computation of the importance weights in
(65) requires s one-step-ahead EKF innovations and their
covariances.

This completes the description of the PF for estimation of
the Markov chain distribution p(Rk|Zk). As mentioned ear-
lier, given a particular mode sequence, the state estimates are
easily obtained using a standard EKF.

4.6. Methodology for themultisensor case

The methodology for the multisensor case is similar to that
of the single-sensor case. The two main points to note for
this case are that (a) the secondary measurement is processed
in a sequential manner assuming a zero time delay between
the primary and secondary measurements and (b) for the
processing of the secondary measurement, the measurement
function (15) is used in place of (13) for the computation
of the necessary quantities such as Jacobians, predicted mea-
surements, and weights.

4.7. Modifications for trackingwith hard constraints

The problem of bearings-only tracking with hard constraints
was described in Section 2.3. Recall that for the constraint
xk ∈ Ψ, the state estimate is given by the mean of the pos-
terior density p(xk|Zk,Ψ). This density cannot be easily con-
structed by standard Kalman-filter-based techniques. How-
ever, since PFs make no restrictions on the prior density or
the distributions of the process and measurement noise vec-
tors, it turns out that p(xk|Zk,Ψ) can be constructed using
PFs. The only modifications required in the PFs for the case
of constraint xk ∈ Ψ are as follows:

(i) the prior distribution needs to be p̃(x) defined in (17)
and the filter needs to be able to sample from this den-
sity;

(ii) in the prediction step, samples are drawn from the
constrained process noise density g̃(v; xk) instead of
the standard process noise pdf.

Both changes require the ability to sample from a truncated
density. A simple method to sample from a generic truncated
density t̃(x) defined by

t̃(x) =



t(x)∫
x∈Ψ t(x)dx

, x ∈ Ψ,

0 otherwise
(66)

is as follows. Suppose we can easily sample from t(x). Then,
to draw x ∼ t̃(x), we can use rejection sampling from t(x)
until the condition x ∈ Ψ is satisfied. The resulting sample
is then distributed according to t̃(x). This simple technique
will be adopted in the modifications required in the PF for
the constrained problem.1 With the above modifications, the
PF leads to a cloud of particles that characterise the posterior
density p(xk|Zk,Ψ) from which the state estimate x̂k|k and its
covariance Pk|k can be obtained.

1This rejection sampling scheme can potentially be inefficient. For more
efficient schemes to sample from truncated densities, see [20].
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5. SIMULATION RESULTS

In this section, we present a performance comparison of the
various tracking algorithms described in the previous sec-
tion. The comparison will be based on a set of 100MC simu-
lations and where possible, the CRLB will be used to indicate
the best possible performance that one can expect for a given
scenario and a set of parameters. Before proceeding, we give
a description of the four performance metrics that will be
used in this analysis: (i) RMS position error, (ii) efficiency
η, (iii) root time-averaged mean square (RTAMS) error, and
(iv) number of divergent tracks.

To define each of the above performance metrics, let
(xik, y

i
k) and (x̂ik, ŷ

i
k) denote the true and estimated target po-

sitions at time k at the ith MC run. Suppose M of such MC
runs are carried out. Then, the RMS position error at k can
be computed as

RMSk =

√√√√√ 1
M

M∑
i=1

(
x̂ik − xik

)2
+
(
ŷik − yik

)2
. (67)

Now, if J−1k [i, j] denotes the i jth element of the inverse in-
formation matrix for the problem at hand, then the corre-
sponding CRLB for the metric (67) can be written as

CRLB
(
RMSk

) = √J−1k [1, 1] + J−1k [2, 2]. (68)

The second metric stated above is the efficiency parameter η
defined as

ηk � CRLB
(
RMSk

)
RMSk

× 100% (69)

which indicates “closeness” to CRLB. Thus, ηk = 100% im-
plies an efficient estimator that achieves the CRLB exactly.

For a particular scenario and parameters, the overall per-
formance of a filter is evaluated using the third metric which
is the RTAMS error. This is defined as

RTAMS =
√√√√√ 1(

tmax − �
)
M

tmax∑
k=�+1

M∑
i=1

(
x̂ik − xik

)2
+
(
ŷik − yik

)2
,

(70)

where tmax is the total number of observations (or time
epochs) and � is a time index after which the averaging is
carried out. Typically � is chosen to coincide with the end of
the first ownship manoeuvre.

The final metric stated above is the number of divergent
tracks. A track is declared divergent if its estimated position
error at any time index exceeds a threshold which is set to be
20 km in our simulations. It must be noted that the first three
metrics described above are computed only on nondivergent
tracks.
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Figure 1: A typical bearings-only tracking scenario with a manoeu-
vring target.

5.1. Single-sensor case

The target-observer geometry for this case is shown in
Figure 1. The target which is initially 5 km away from the
ownship maintains an initial course of −140◦. It executes a
manoeuvre in the interval 20–25 minutes to attain a new
course of 100◦, and maintains this new course for the rest
of the observation period. The ownship, travelling at a fixed
speed of 5 knots and an initial course of 140◦, executes a ma-
noeuvre in the interval 13–17 minutes to attain a new course
of 20◦. It maintains this course for a period of 15 minutes
at the end of which it executes a second manoeuvre and at-
tains a new course of 155◦. The final target-observer range
for this case is 2.91 km. Bearing measurements with accuracy
σθ = 1.5◦ are received every T = 1 minute for an observation
period of 40 minutes.

Unless otherwise mentioned, the following nominal filter
parameters were used in the simulations. The initial range
and speed prior standard deviations were set to σr = 2 km
and σs = 2 knots, respectively. The initial course and its stan-
dard deviation were set to c̄ = θ1 + π and σc = π/

√
12, where

θ1 is the initial bearing measurement. The process noise pa-
rameter was set to σa = 1.6 × 10−6 km/s2. The MMPF and
AUX-MMPF usedN = 5000 particles while the JMS-PF used
N = 100 particles. Resampling was carried out if N̂eff < Nthr,
where the threshold was set to Nthr = N/3. The resampling
scheme used in the simulations is an algorithm based on or-
der statistics [21].

The transition probability matrix required for the jump
Markov process was chosen to be

Π =


0.9 0.05 0.05
0.4 0.5 0.1
0.4 0.1 0.5


 (71)
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Table 1: Performance comparison for the single-sensor case.

Algorithm/ RMS error (final) RTAMS Improvement Divergent
CRLB (km) (%) η (km) (%) tracks

IMM-EKF 1.18 40 22 1.07 0 0
IMM-UKF 0.80 28 32 0.72 32 1
MMPF 0.59 20 43 0.44 59 0

AUX-MMPF 0.55 19 46 0.47 56 0
JMS-PF 0.77 27 33 0.64 40 0
CRLB 0.25 9 100 0.21 80 —
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Figure 2: RMS position error versus time for a manoeuvring target
scenario.

and the typical manoeuvre acceleration parameter for the fil-
ters was set to am = 1.08× 10−5 km/s2.

Figure 2 shows the RMS error curves corresponding to
the five filters: IMM-EKF, IMM-UKF, MMPF, AUX-MMPF,
and JMS-PF. A detailed comparison is also given in Table 1.
Note that the column “improvement” refers to the percent-
age improvement in RTAMS error compared with a baseline
filter which is chosen to be the IMM-EKF. From the graph
and the table, it is clear that the performance of the IMM-
EKF and IMM-UKF is poor compared to the other three fil-
ters. Though the final RMS error performance of the IMM-
UKF is comparable to the JMS-PF, since it has one divergent
track, its overall performance is considered worse than that
of the JMS-PF. It is clear that the best filters for this case
were the MMPF and AUX-MMPF which achieved 59% and
56% improvement, respectively, over the IMM-EKF. Also
note that the JMS-PF performance is between that of IMM-
EKF/IMM-UKF and MMPF/AUX-MMPF. From the simula-
tions, it appears that the relative computational requirements
(with respect to the IMM-EKF) for the IMM-UKF, MMPF,
AUX-MMPF, and JMS-PF are 2.6, 23, 32, and 30, respec-
tively.

The rationale for the performance differences noted
above can be explained as follows. There are two sources of
approximations in both IMM-EKF and IMM-UKF. Firstly,
the probability of the mode history is approximated by the
IMM routine which merges mode histories. Secondly, the
mode-conditioned filter estimates are obtained using an EKF
and an UKF (for the IMM-EKF and IMM-UKF, respec-
tively), both of which approximate the non-Gaussian pos-
terior density by a Gaussian. In contrast, the MMPF and
AUX-MMPF attempt to alleviate both sources of approxima-
tions: they estimate the mode probabilities with no merging
of histories and they make no linearisation (as in EKF) and
characterise the non-Gaussian posterior density in a near-
optimal manner. Thus we observe the superior performance
of the MMPF and AUX-MMPF. The JMS-PF on the other
hand is worse than MMPF/AUX-MMPF but better than
IMM-EKF/IMM-UKF as it attempts to alleviate only one
of the sources of approximations discussed above. Specifi-
cally, while the JMS-PF attempts to compute the mode his-
tory probability exactly, it uses an EKF (a local linearisa-
tion approximation) to compute the mode-conditioned fil-
tered estimates. Hence, note that even if the number of par-
ticles for the JMS-PF is increased, its performance can never
reach that of theMMPF/AUX-MMPF. It is interesting to note
from the improvement figures for the JMS-PF and MMPF
that the first source of approximation is more critical than
the second one. In fact, the contributions of the first and
second sources of approximation appear to be in the ratio
2 : 1.

It is worth noting that in the above simulations, the per-
formance of the AUX-MMPF is comparable to that of the
MMPF. This is expected due to the low process noise used
in the simulations as one would expect the performance of
the AUX-MMPF to approach that of MMPF as the process
noise tends to zero. However, for problems with moderate to
high process noise, the AUX-MMPF is likely to outperform
the MMPF.

Next, we illustrate a case where the IMM-EKF shows a
tendency to diverge while theMMPF tracks the target well for
the same set of measurements. Figure 3a shows the estimated
track and 95% error ellipses (plotted every 8 minutes) for the
IMM-EKF. Note that the IMM-EKF covariance estimate at 8
minutes is poor as it does not encapsulate the true target po-
sition. This has resulted in not only subsequent poor track
estimates, but also inability to detect the target manoeuvre.
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Figure 3: IMM-EKF tracker results. (a) Track estimates and 95% confidence ellipses. (b) Mode probabilities.
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Figure 4: MMPF tracker results. (a) Track estimates and 95% confidence ellipses. (b) Mode probabilities.

This is clear from the mode probability curves shown in
Figure 3b, where we note that though there is a slight bump
in the mode probability for the correct manoeuvre model,
the algorithm is unable to establish the occurrence of the ma-
noeuvre. The overall result is a track that is showing a ten-
dency to diverge from the true track.

For the same set of measurements, the MMPF shows ex-
cellent performance as can be seen from Figure 4. Here we
note that the 95% confidence ellipse of the PF encapsulates
the true target position at all times. Notice that the size of
the covariance matrix shortly after the target manoeuvre is
small compared to other times. The reason for this is that the
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Figure 5: RMS position error versus time for a multisensor case.

target observability is best at that instant compared to other
times. For the given scenario, both the ownship manoeuvre
and the target manoeuvre have resulted in a geometry that
is very observable at that instant. After the target manoeu-
vre, the relative position of the target increases and this leads
to a slight decrease in observability and hence slight enlarge-
ment of the covariance matrix. The mode probability curves
for the MMPF shows that unlike the results of IMM-EKF, the
MMPF mode probabilities indicate a higher probability of
occurrence of a manoeuvre. The overall result is a much bet-
ter tracker performance for the same set of measurements.

5.2. Multisensor case

Here we consider the scenario identical to the one consid-
ered in Section 5.1, except that an additional static sensor,
located at (5 km,−2 km), provides bearing measurements to
the ownship at regular time intervals. These measurements,
with accuracy σθ′ = 2◦, arrive at only 3 time epochs, namely,
at k = 10, 20, and 30. Figure 5 shows a comparison of IMM-
EKF, IMM-UKF, and MMPF for this case. It is seen that the
MMPF exhibits excellent performance, with RMS error re-
sults very close to the CRLB. The detailed comparison given
in Table 2 shows thatMMPF achieves a final RMS error accu-
racy that is within 8% of the final range. By comparing with
the corresponding results for the single-sensor case, we note
that the final RMS error is reduced by a factor of 2.5. Inter-
estingly, the IMM-EKF and IMM-UKF performance is very
poor and is worse than their corresponding performance
when no additional measurement is received. Though this
may seem counterintuitive, it can be explained as follows.
For the given geometry, at the time of the first arrival of the
bearing measurement from the second sensor, it is possible
that due to nonlinearities and low observability in the time
interval 0–10 minutes, the track estimates and filter calcu-

lated covariance of the IMM-based filters are in error, lead-
ing to a large innovation for the second sensor measurement.
The inaccurate covariance estimate results in an incorrect fil-
ter gain computation for the second sensor measurement. In
the update equations of these filters, the large innovation gets
weighted by the computed gain which does not properly re-
flect the contribution of the new measurement. The conse-
quence of this is filter divergence. It turns out that for the
ownship measurements-only case, even if the track and co-
variance estimates are in error, the errors introduced in the
filter gain computation are not as severe as in the multisensor
case. Furthermore, as the uncertainty is mainly along the line
of bearing, the innovation for this case is not likely to be very
large. Thus the severity of track and covariance error for this
particular scenario is worse for the multisensor case than for
the single-sensor case. Similar results have been observed in
the context of an air surveillance scenario [12].

5.3. Trackingwith hard constraints

In this section, we present the results for the case of bearings-
only tracking with hard constraints. The scenario and pa-
rameters used for this case are identical to the ones con-
sidered in Section 5.1. This time, however, in addition to
the available bearing measurements, we also impose some
hard constraints on target speed. Specifically, assume that we
have prior knowledge that the target speed is in the range
3.5 ≤ s ≤ 4.5 knots. This type of nonstandard information
is difficult to incorporate into the standard EKF-based algo-
rithms (such as the IMM-EKF), and so in the comparison
below, the IMM-EKF will not utilise the hard constraints.
However, the PF-based algorithms, and, in particular, the
MMPF and AUX-MMPF, can easily incorporate such non-
standard information according to the technique described
in Section 4.7.

Figure 6 shows the RMS error in estimated position for
the MMPF that incorporates prior knowledge of speed con-
straint (referred to as MMPF-C). The figure also shows
the performance curves of the IMM-EKF and the standard
MMPF that do not utilise knowledge of hard constraints.
A detailed numerical comparison is given in Table 3. It can
be seen that the MMPF-C achieves 83% improvement in
RTAMS over the IMM-EKF. Also, observe that by incorpo-
rating the hard constraints, the MMPF-C achieves a 50% re-
duction in RTAMS error over the standard MMPF that does
not utilise hard constraints (emphasising the significance of
this nonstandard information). Incorporating such nonstan-
dard information results in highly non-Gaussian posterior
pdfs which the PF is effectively able to characterise.

6. CONCLUSIONS

This paper presented a comparative study of PF-based track-
ers against conventional IMM-based routines for the prob-
lem of bearings-only tracking of a manoeuvring target. Three
separate cases have been analysed: single-sensor case; mul-
tisensor case, and tracking with speed constraints. The re-
sults overwhelmingly confirm the superior performance of
PF-based algorithms against the conventional IMM-based
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Table 2: Performance comparison for the multisensor case.

Algorithm/ RMS error (final) RTAMS Improvement Divergent
CRLB (km) (%) η (km) (%) tracks

IMM-EKF 5.03 173 3 3.16 0 17
IMM-UKF 3.51 121 4 2.32 27 7
MMPF 0.25 8 63 0.22 93 1
CRLB 0.15 5 100 0.13 96 —

Table 3: Performance comparison for tracking with hard constraints.

Algorithm
RMS error (final) RTAMS Improvement Divergent

(km) (%) (km) (%) tracks
IMM-EKF 1.37 47 1.21 0 0
MMPF 0.53 18 0.44 64 0

MMPF-C 0.12 4 0.20 83 0
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Figure 6: RMS position error versus time for the case of tracking
with speed constraint 3.5 ≤ s ≤ 4.5 knots.

schemes. The key strength of the PF, demonstrated in this
application, is its flexibility to handle nonstandard informa-
tion along with the ability to deal with nonlinear and non-
Gaussian models.

APPENDIX

JACOBIANS OF THEMANOEUVRE DYNAMICS

The Jacobians F̃
(r∗k+1)
k , r∗k+1 ∈ {2, 3}, of themanoeuvre dynam-

ics can be computed by taking the gradients of the respective

transitions. Let f
( j)
i (·) denote the ith element of the dynam-

ics model function f( j)(·) and let (ẋtk, ẏ
t
k) denote the target

velocity vector. Then, by taking the gradients of f( j)(·) for

j = 2, 3, the required Jacobians can be computed to give
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∂ẋk

∂ f
( j)
1

∂ẏk
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∂ẏk




, j = 2, 3, (A.1)

where

∂ f
( j)
1

∂ẋk
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∂ẋk
,

∂ f
( j)
3

∂ẏk
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ẋtk
)2

+
(
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for j = 2, 3.
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