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We propose a nonlinear image restoration method that uses the generalized radial basis function network (GRBFN) and a regu-
larization method. The GRBFN is used to estimate the nonlinear blurring function. The regularization method is used to recover
the original image from the nonlinearly degraded image. We alternately use the two estimation methods to restore the original
image from the degraded image. Since the GRBFN approximates the nonlinear blurring function itself, the existence of the in-
verse of the blurring process does not need to be assured. A method of adjusting the regularization parameter according to image
characteristics is also presented for improving restoration performance.
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1. INTRODUCTION

In the recent years, a special class of artificial neural net-
works, called the radial basis function network (RBFN), has
received considerable attention [1]. The RBFN has a univer-
sal approximation capability [2] and has successfully been
applied to many signal and image processing problems due
to its excellent approximation capability [3, 4]. The RBFN
provides a smooth function that achieves a good tradeoff be-
tween fidelity to the data and smoothness. The regularization
parameter controls the tradeoff between the two require-
ments. In the standard RBFN, the number of basis functions
is set to equal to the number of data. Therefore, the com-
putational requirement of constructing the RBFN gets larger
as the number of data gets larger. For reducing the compu-
tational complexity, the generalized RBFN (GRBFN), which
has a smaller number of basis functions than the number of
data, has been proposed [1, 5].

Restoration of images degraded by blur and additive
noise is very important in image processing. A number
of image restoration methods have been proposed so far

[6, 7, 8, 9]. In [8], a regularization approach has been de-
veloped, which provides a compromise between fidelity of
the restored image to the degraded image and smoothness
of the original image and the blurring function. Alternate
estimation of original image and blurring function is em-
ployed for improving restoration performance, however the
blurring function is assumed to be linear. In some applica-
tions, nonlinear blurring needs to be considered in the de-
sign of restoration process. The neglect results in an unac-
ceptable restoration performance [10]. In [9], the GRBFN is
used to restore the original image from the nonlinearly de-
graded image in the presence of observation noise, however
the inverse of the blurring process is assumed to exist. More-
over, the GRBFN trained by a training image has been fixed
during the processing of test images.

In this paper, a nonlinear image restoration method that
uses the GRBFN and a regularization method proposed. The
GRBFN is used to estimate the nonlinear blurring func-
tion under the assumption that the original image is known
and smooth. The regularization method is used to recover
the original image from the nonlinearly degraded image,
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under the assumption that the blurring function is known
and smooth. A cost function is then minimized by using
the steepest descent technique. In actual applications, nei-
ther the blurring function nor the original image is known.
We thus alternately use the two estimation methods to re-
store the original image from the nonlinearly degraded im-
age, under the single assumption of the smoothness of orig-
inal image and blurring function. Since the GRBFN ap-
proximates the nonlinear blurring function itself, the exis-
tence of the inverse of the blurring process does not need
to be assured. Moreover, in order to efficiently remove noise
components, we propose a method of adjusting the regu-
larization parameter according to image characteristics. It
is shown through computer simulations that the adaptive
selection method is useful in improving restoration perfor-
mance.

2. FUNCTION APPROXIMATION
BY USING THE GRBFN

2.1. RBFN

Suppose that the I/O relationship between the p-dimensional
input vector x= [x1, x2, . . . , xp]T and the scalar output y is
described by

y = g(x) + ε, (1)

where g is an unknown function, and ε is a random noise
with zero mean. Given a set of N observations {(xi, yi)}Ni=1,
the regularization procedure determines a smooth function
f that minimizes the following cost function:

H[g] =
N∑
i=1

(
yi − g

(
xi
))2

+ λS[g]. (2)

The first termmeasures the distance between the data and the
desired solution. The second term is the stabilizer that mea-
sures the cost associated with the deviation from the smooth-
ness. The nonnegative parameter λ, called the regularization
parameter, controls the tradeoff between the two terms. As λ
is larger, the resulting function becomes smoother, while the
discrepancy between the data point and the network output
becomes larger.

We choose the stabilizer as

S[g] =
∞∑
n=0

(−1)n σ2n

n!2n
∇2ng, (3)

where ∇2n is the n iterated Laplacian operator in n dimen-
sions. Then, the minimization of H[g] yields the following
solution [1]:

g(x) =
N∑
i=1

cih
(∣∣x − xi

∣∣), (4)

where ci and xi are the network parameter and the RBF cen-
ter, respectively, and h is the Gaussian function defined by

h
(∣∣x− xi

∣∣) = exp

(
−
∣∣x− xi

∣∣2
2σ2

)
. (5)

The parameter σ is the width of the Gaussian function. The
function g is called the RBFN as it is expressed as a linear
combination of RBFs, h(|x − xi|) (i = 1, 2, . . . ,N). The net-
work parameter is determined by solving the following linear
equations of size (N ×N):

(H + λI)c = y. (6)

Here, y = [y1, y2, . . . , yN ]T is the output vector, c = [c1,
c2, . . . , cN ]T is the parameter vector, and H is the (N × N)
matrix whose i jth element is given by (H)i j = h(|xi − x j|).
The matrix (H + λI) is always invertible for nonnegative λ
[11]. The RBFN has a universal approximation capability [2]
and has successfully been used for approximating a large va-
riety of nonlinear functions in signal and image processing
problems [3, 4].

2.2. GRBFN

The GRBFN, which has a smaller number of basis functions
than the number of data, is represented by [1, 5]

g(x) =
M∑
j=1

cj exp

(
−
∣∣x − t j

∣∣2
2σ2

)
, (M < N), (7)

where M is the number of basis functions and the p-
dimensional vector t j ( j = 1, 2, . . . ,M) is called the center
of the GRBF. The network parameter cj ( j = 1, 2, . . . ,M) is
determined by solving the following linear equations of size
(M ×M), (

GTG + λG0
)
c = GTy, (8)

where we define the (N × M) matrix G and the (M × M)
matrix G0 as

(G)i j = exp

(
−
∣∣xi − t j

∣∣2
2σ2

)
(i=1, 2, . . . ,N , j=1, 2, . . . ,M),

(
G0
)
pq = exp

(
−
∣∣tp − tq

∣∣2
2σ2

)
(p, q = 1, 2, . . . ,M),

(9)

respectively, and put c = (c1, c2, . . . , cM)T and y = (y1,
y2, . . . , yN )T . We put M = N to have G = G0 = H. The
GRBFN then results in the standard RBFN.

The computational complexity of solving (8) is of or-
der M3, while that of solving (6) is of order N3. There-
fore, the GRBFN requires less computation than the standard
RBFN, although the approximation accuracy of the GRBFN
degrades as the number of basis functionsM decreases.
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Figure 3: Pixel position considered in fi.

3. IMAGE RESTORATION BASEDON
THE REGULARIZATIONMETHOD

We express the original image of size (N × N) as f (xi) (i =
1, 2, . . . ,N2), where we choose the pixel position xi as shown
in Figure 1. Figure 2 illustrates the degradation process con-
sidered here. The degraded image yi at the position xi is rep-
resented by

yi = g
(
fi
)
+ εi

(
i = 1, 2, . . . ,N2), (10)

where g is a space-invariant nonlinear blurring function, εi is
a random observation noise with zero mean. Also, fi is the 9-
dimensional vector (or the (3× 3) image) consisting of pixel
values of the original image at xi and its 8-nearest neighbors,
represented by

fi =
(
f
(
xi−N−1

)
, f
(
xi−N

)
, f
(
xi−N+1

)
, f
(
xi−1

)
,

f
(
xi
)
, f
(
xi+1

)
, f
(
xi+N−1

)
, f
(
xi+N

)
, f
(
xi+N+1

))T
.
(11)

Figure 3 illustrates the pixel position of the elements of fi. Al-
though we here define fi as in (11), other choices are possible.

We estimate the blurring function g from the degraded
image yi by using the GRBFN, under the assumption that
the original image f (xi) is known and g is smooth. Next, we
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Figure 4: Pixel positions of the centers.

estimate f (xi) from yi by using a regularization method, un-
der the assumption that g is known and f (xi) is smooth. Fi-
nally, we alternately use the two methods to estimate f (xi)
from yi, under the single assumption of the smoothness of g
and f (xi).

3.1. Estimation of blurring function

We approximate the smooth blurring function g(fi) by using
the GRBFN with M2 centers. The output of the GRBFN is
represented by

ĝ
(
fi
) = M2∑

j=1
cj exp

(
−
∣∣fi − t j

∣∣2
2σ2

)
, (12)

where ĝ denotes the estimate of g. We here put the 9-
dimensional center t j as

tk+M(l−1) = f(N2/M)(l−1)+(N/M)(k−1)+N+2 (k, l = 1, 2, . . . ,M),

(13)

so that they are equally distributed over the whole image
space. The black squares in Figure 4 denote the positions of
the center. For example, when N = 256 and M = 4, the
GRBFN has 16 centers such that t1 = f258, t2 = f322, . . . , t16 =
f49602.

The determination of the number and position of cen-
ters is very important in the application of the GRBFN. The
orthogonal least square training method for determining the
centers has been proposed in [12], and the limitation is sug-
gested in [13]. Dynamic configuration methods that adap-
tively add a new basis function to the network according
to a prescribed performance index have been proposed in
[14, 15]. However, we simply choose the centers as in (13),
because the iterative determination of the number and posi-
tion of centers is computationally expensive, and (13) gives
a satisfactory estimation accuracy as shown below if the user
appropriately set the values of λ and σ2.
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Table 1: MSE for different values of λ and σ2, (E[ε2i ] = 200).

σ2
λ

0.0001 0.001 0.01 0.1 1.0

100 180.96 180.96 180.96 180.96 180.96

200 14.10 14.10 14.10 14.10 14.11

500 2.45 2.45 2.45 2.47 2.74

1000 2.31 2.30 2.33 2.61 3.08

2000 2.57 2.58 2.76 2.81 2.88

10000 2.82 2.82 2.80 3.02 16.97

The regularization parameter ci (i = 1, 2, . . . ,M2) is de-
termined by solving the following linear equations of size
(M2 ×M2): (

GTG + λG0
)
c = GTy, (14)

where we define the (N2 ×M2) matrix G and the (M2 ×M2)
matrix G0 as

(G)i j

=exp

(
−
∣∣fi−t j∣∣2

2σ2

)
,
(
i=1, 2, . . . ,N2, j=1, 2, . . . ,M2),

(
G0
)
pq = exp

(
−
∣∣tp − tq

∣∣2
2σ2

)
,
(
p, q = 1, 2, . . . ,M2),

(15)

respectively, and put c = (c1, c2, . . . , cM2 )T and y = (y1,
y2, . . . , yN2 )T . Althoughwemay no longer find physical prop-
erties of the blurring process from (12), the GRBFN can ap-
proximate an arbitrary nonlinear function with high accu-
racy [11].

3.2. Example of blur estimation

We here consider the following nonlinear blurring function:

g
(
fi
) = 1

3

(
f 2
(
xi−N−1

)
+ f 2

(
xi−N

)
+ f 2

(
xi−N+1

)
+ f 2

(
xi−1

)
+ f 2

(
xi
)
+ f 2

(
xi+1

)
+ f 2

(
xi+N−1

)
+ f 2

(
xi+N

)
+ f 2

(
xi+N+1

))1/2
.

(16)

We degraded the Girl image of size (256 × 256) with 8 bit
grayscale by using (16). Using the degraded image, we mea-
sured the computation time and the mean square error
(MSE) between the true and approximated images, com-
puted by

MSE = 1
N2

N2∑
i=1

(
ĝ
(
fi
)− g

(
fi
))2

. (17)

As the number of basis functions M increases, the MSE be-
comes smaller, while the computation time becomes larger.
Therefore, we have to make a tradeoff between the computa-
tion time and the MSE in determining the parameterM.

Table 2: MSE for different values of λ and σ2, (E[ε2i ] = 400).

σ2
λ

0.0001 0.001 0.01 0.1 1.0

100 180.99 180.99 180.99 180.99 180.98

200 14.15 14.15 14.15 14.15 14.16

500 2.51 2.51 2.51 2.52 2.76

1000 2.36 2.36 2.38 2.64 3.10

2000 2.62 2.63 2.81 2.84 2.89

10000 2.84 2.84 2.82 3.03 16.92

We measured the computation time for different values
of M, where we used an IBM PC/AT compatible computer
with an Intel Pentium II 750MHz and 256MB DRAM. The
computation times for M = 2, 4, 8, 16 are 0.95, 6.15, 78.4,
and 1226.6 (s), respectively. We next measured the MSE for
different values of λ and σ2, where we put M = 4. Tables 1
and 2 summarize the results for E[ε2i ] = 200 and E[ε2i ] =
400, respectively. We see that choosing λ = 0.001 and σ2 =
1000 provides a good tradeoff between the computation time
and the MSE, and that the MSE is fairly robust against the
choice. From these results, we put M = 4, λ = 0.001, and
σ2 = 1000 throughout the simulations.

3.3. Estimation of original image

We assume that the blurring function g is known and use a
regularization method to estimate f (xi) from yi. We choose
a cost function to be minimized as

J[F] =
N2∑
i=1

(
yi − g

(
fi
))2

+ γ
N2∑
i=1

(
f
(
xi−N

)
+ f

(
xi−1

)− 4 f
(
xi
)

+ f
(
xi+1

)
+ f

(
xi+N

))2
,

(18)

where F
def= [ f (x1), f (x2), . . . , f (xN2 )]T denotes the vector

representation of the original image. The first term measures
the distance between the degraded and blurred images, and
the second term is the Laplacian operator that measures the
smoothness of the original image. The regularization param-
eter γ controls the tradeoff between the two terms. We here
use the following steepest descent method for the minimiza-
tion:


f k+1(xi) = f̂ k
(
xi
)− µ

N2

∂J

∂ f
(
xi
)∣∣∣∣

F=F̂k
(
i = 1, 2, . . . ,N2),

(19)

where µ is a small positive constant called the step size,

and F̂k = [ f̂ k(x1), f̂ k(x2), . . . , f̂ k(xN2 )]T denotes the vec-
tor representation of the restored image at the kth itera-
tion. The detailed computation of ∂J/∂ f (xi) is shown in
Appendix A.
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3.4. Alternate estimation of blurring function
and original image

In the blur estimation described in Section 3.1, the original
image f (xi) is assumed to be known. In the original image
estimation described in Section 3.3, the blur function g(fi) is
assumed to be known. However, in actual applications, nei-
ther the original image nor the blurring function is known.
Therefore, we alternately use the blur and image estimation
methods.

We prepare a clean original image, and generate a train-
ing image by blurring the original image and adding observa-
tion noise to the blurred image. We apply the blur estimation
method to the training image under the assumption that the
original image is known. We denote the initial estimate of
the blurring function by ĝ. The training image is used only
for obtaining ĝ. We call the degraded image to be restored
the test image. Unlike the training image, we assume that the
original image of the test image is unknown. We replace the
blurring function g in (18) by the initial estimate ĝ to have

J[F] =
N2∑
i=1

(
yi − ĝ

(
fi
))2

+ γ
N2∑
i=1

(
f
(
xi−N

)
+ f

(
xi−1

)− 4 f
(
xi
)

+ f
(
xi+1

)
+ f

(
xi+N

))2
.

(20)

We minimize the cost function (20) with respect to F by us-
ing the steepest descent method (19), and obtain the restored

image F̂k. In general, the initial estimate ĝ is not accurate. We

thus replace f (xi) by f̂ k(xi) in (14) and (15), and again esti-
mate the blurring function by solving the linear equations
(14). We alternately repeat the estimations of the blurring
function and the original image until the iteration (19) con-
verges. The blur function is uniquely estimated by solving
(14), while the original image is iteratively estimated by us-
ing the steepest descent method (19) so that the cost function
J[F] is minimized. Since J[F] is nonlinear with respect to F,
the steepest descent method may converge to local minima
of J .

4. SIMULATION RESULTS

Using Girl, Lena, and Baboon images of size 256 × 256 with
8-bit gray levels, we evaluated the restoration performance
of the proposed method. We generated the training image by
using the following blurring function:

g
(
fi
) = 1

3

(
f 2
(
xi−N−1

)
+ 1.1 f 2

(
xi−N

)
+ 0.9 f 2

(
xi−N+1

)
+ 0.8 f 2

(
xi−1

)
+ f 2

(
xi
)
+ 1.2 f 2

(
xi+1

)
+ 0.9 f 2

(
xi+N−1

)
+ 1.1 f 2

(
xi+N

)
+ f 2

(
xi+N+1

))1/2
,

(21)

while we generated the test images by using (16). It is here
noted that the blurring functions are different in the training

(a) (b)

(c) (d)

Figure 5: Blur estimation result: (a) original image f (xi), (b)
blurred image g(fi), (c) degraded image yi, and (d) output of the
GRBFN ĝ(fi).

and test images. Throughout the simulations, we put E[ε2i ] =
200.

We used the degraded Girl image as the training image,
the degraded Lena and Baboon images as the test images, and
compared the restoration performances of the following two
methods.

Method A

This method comprises two steps.

Step (1) Using the training image, we initially estimate the
blurring function by the GRBFN.

Step (2) Using the test image, we repeat the update proce-
dure (19) to estimate the original image until no
significant improvement is obtained.

Method B

This method comprises four steps.

Step (1) Using the training image, we initially estimate the
blurring function by the GRBFN.

Step (2) Using the test image, we repeat the update proce-
dure (19) 10 times to obtain a restored image at
an intermediate stage.

Step (3) We regard the restored image as the original im-
age, and again estimate the blurring function.

Step (4) Repeat Step (2) and Step (3) until no significant
improvement is obtained in Step (2).

In Method A, the initial estimate of the blurring function
has been used without any change during the processing of
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Figure 6: Convergence curves of SNRIs made by Methods A and B: (a) Lena and (b) Baboon.

test images, while in Method B, both of the blurring function
and the original image are iteratively estimated.We can verify
the usefulness of the alternate estimation by comparing the
restoration performance of Methods A and B.

Figure 5 shows the blur estimation result obtained by us-
ing the training image. Figures 5a, 5b, and 5c show the orig-
inal, blurred, and degraded Girl images, respectively, and
Figure 5d shows the output of the GRBFN. We see that g(fi)
and ĝ(fi) are very close to each other. We measured the
signal-to-noise ratio improvement (SNRI) for each iteration,
defined by

SNRI = (SNR of f̂ k
(
xi
))− (SNR of yi

)
= 10 log10

∑N2

i=1 f 2
(
xi
)∑N2

i=1
(
f̂ k
(
xi
)− f

(
xi
))2

− 10 log10

∑N2

i=1 f 2
(
xi
)∑N2

i=1
(
yi − f

(
xi
))2

= 10 log10

∑N2

i=1
(
yi − f

(
xi
))2∑N2

i=1
(
f̂ k
(
xi
)− f

(
xi
))2 .

(22)

Figure 6 shows the convergence behaviors of SNRI for Meth-
ods A and B, where Figures 6a and 6b are the results of Lena
and Baboon images, respectively. The horizontal axis denotes
the total number of iterations in the steepest descent method.
We put µ = 0.02 so that the SNRI is higher and the recursion
(19) converges in 100 iterations. This means that the number
of turns from Step (4) to Step (2) is 9 = 100/10 − 1. We see
that Method B gives a better restoration performance than
Method A in both test images. We also see that the SNRI of
Lena image is higher than that of Baboon image, because Ba-
boon image contains a large amount of high-frequency com-
ponents, such as hairs, and the important high-frequency
components as well as noise components are removed by
minimizing the cost function (20).

Figures 7a, 7b, and 7c show the original, blurred, and de-
graded Lena images, respectively. Figure 7d shows the finally
restored image by using Method B. Results for Baboon image
are also shown in Figure 8. We can confirm the effectiveness
of the proposed method.

5. IMAGE RESTORATIONWITH VARIABLE γ

5.1. Determination of γ

Natural images are composed of various components, such
as the flat part and the edge. In order to efficiently remove
noise components without degrading the image quality, we
adjust the parameter γ according to image characteristics in
the cost function (20).

The new cost function with the variable parameter γ(xi)
is represented by

J[F] =
N2∑
i=1

(
yi − g

(
fi
))2

+
N2∑
i=1

γ
(
xi
)(

f
(
xi−N

)
+ f

(
xi−1

)
− 4 f

(
xi
)
+ f

(
xi+1

)
+ f

(
xi+N

))2
.

(23)

We should make the value of γ(xi) larger at the flat parts
to efficiently remove noise components, and should make it
smaller at the edges to preserve the edge information. We
minimize J by using the steepest descent technique in the
same way as (19), however the computation of ∂J/∂ f (xi) is
slightly different from the previous one. The detailed com-
putation is shown in Appendix B.

In actual applications, we can obtain only a test image de-
graded by blur and observation noise, and the original image
is unknown. Even if we pass the test image through a high
pass filter, we can not accurately estimate the edge position
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(a) (b)

(c) (d)

Figure 7: Results for Lena image: (a) original image f (xi), (b)
blurred image g(fi), (c) degraded image yi, and (d) restored image

f̂ (xi), (SNRI = 1.82).

due to the increased effect of noise components. Therefore,
we smoothed the test image by using the following mean fil-
ter of size (3× 3):

s
(
xi
) = 1

9

(
yi−N−1 + yi−N + yi−N+1 + yi−1 + yi

+ yi+1 + yi+N−1 + yi+N + yi+N+1
)
,

(24)

and then estimated the edge position by the size of the deriva-
tive of s(xi), computed by

d
(
xi
) = √{s(xi−N)− s

(
xi+N

)}2
+
{
s
(
xi−1

)− s
(
xi+1

)}2
. (25)

The value of d(xi) becomes small near the edges. We thus put

γ
(
xi
) = Ae−ad(xi) (26)

so that the value of γ(xi) becomes small near the edges, where
A and a are constants. Equation (26) achieves a good tradeoff
between restoration performance and computational sim-
plicity, although other choices exist. We may estimate the
edge position more accurately by using an order statistics fil-
ter instead of the mean filter (24). But the use of the order
statistics filter increases the computational complexity and
the restoration performance is fairly robust against the value
of the regularization parameter γ(xi) [16].

The restoration method with variable regularization pa-
rameter is summarized as follows.

Step (1) We smooth the test image by the mean filter (24)
to generate the edge image d(xi), and then com-
pute the value of γ(xi) by using (26).

(a) (b)

(c) (d)

Figure 8: Results for Baboon image: (a) original image f (xi), (b)
blurred image g(fi), (c) degraded image yi, and (d) restored image

f̂ (xi), (SNRI = 0.97).

Step (2) Using the training image, we initially estimate the
blurring function by the GRBFN.

Step (3) Using the test image, we repeat the update proce-
dure (19) 10 times to obtain a restored image at
an intermediate stage.

Step (4) We regard the restored image as the original im-
age, and again estimate the blurring function by
using the test image.

Step (5) Repeat Step (3) and Step (4) until no significant
improvement is attained in Step (3).

5.2. Restoration results

Figure 9 shows the restoration results for Lena image, where
we put A = 105 and a = 0.05. These parameters were de-
termined in a heuristic manner so that the SNRI becomes
higher. Figures 9a, 9b, and 9c show the smoothed images
s(xi), the edge image d(xi), and the finally restored image

f̂ (xi). The value of SNRI is also shown. Results for Baboon
image are shown in Figure 10. These results show that chang-
ing γ according to image characteristics improves the restora-
tion performance by 0.25 (dB) and 0.39 (dB) for Lena and
Baboon images, respectively.

We also apply the proposed method to a JPEG image
taken by a digital camera. Figure 11 shows the result, where
Figures 11a, 11b, 11c and 11d are the original, blurred,
degraded, and restored images, respectively. The SNRI is
2.18 (dB), which is slightly higher than those of Lena and
Baboon images. Because the JPEG image inherently con-
tains a small amount of high-frequency components as high-
frequency coefficients have been discarded in compression
process.
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(a) (b) (c)

Figure 9: Results for Lena image with variable γ: (a) smoothed image s(xi), (b) edge image d(xi), and (c) restored image f̂ (xi), (SNRI =
2.03).

(a) (b) (c)

Figure 10: Results for Baboon with variable γ: (a) smoothed image s(xi), (b) edge image d(xi), and (c) restored image f̂ (xi), (SNRI = 1.36).

6. CONCLUSION

We presented the nonlinear image restoration method by
using the GRBFN and the regularization method. We used
the GRBFN to estimate the nonlinear blurring function, and
used the regularization method to restore the original image.
We alternately used the two estimation methods for restor-
ing the original image from the nonlinearly degraded image,
under the single assumption of the smoothness of original
image and blurring function. The salient feature is that the
proposed estimation method is applicable even when the in-
verse of the blurring process does not exist. We also presented
the adaptive regularization parameter selection method for
further improvement of restoration performance.

APPENDICES

A. COMPUTATIONOF ∂J/∂ f (xi)

The derivative of J with respect to f (xi) is represented by
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(a) (b)

(c) (d)

Figure 11: Results for a natural image: (a) original image f (xi), (b)
blurred image g(fi), (c) degraded image yi, and (d) restored image

f̂ (xi), (SNRI = 2.18).
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Here, (t j)l denotes the lth element of the 9-dimensional vec-
tor t j . The second term in the right-hand side of (A.1) is
computed by
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B. COMPUTATIONOF ∂J/∂ f (xi)WITH VARIABLE γ

The derivative of J with respect to f (xi) is represented by
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The first term in the right-hand side of (B.1) is computed by
(A.2). The second term in the right-hand side of (B.1) can be
computed by
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