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Abstract

In this paper, we formulate a problem of distributed tracking with consensus on a time-varying graph with
incomplete data and noisy communication links. We develop a framework to handle a time-varying network
topology in which not every node has local observations to generate own local tracking estimates (incomplete
data). A distributed tracking-with-consensus algorithm that is suitable for such a noisy, time-varying graph is
proposed. We establish the graph conditions so that distributed consensus can be achieved in the presence of
noisy communication links when the effective network graph is time-varying. The steady-state performance of the
proposed distributed tracking with consensus algorithm is also analyzed and compared with that of the distributed
local Kalman filtering with the centralized fusion and centralized Kalman filter. Simulation results and performance
analysis of the proposed algorithm are given, showing that the proposed distributed tracking with consensus
algorithm performs almost the same as the distributed local Kalman filtering with centralized fusion on noisy time-
varying graphs with incomplete data, while the proposed algorithm has the additional advantages of robustness
and scalability.

1 Introduction
Multisensor tracking problems have attracted the atten-
tion of many researchers in robotics, systems, and con-
trol theory over the past three decades [1-4]. Target
tracking problems are of great importance in surveil-
lance, security, and information systems for monitoring
the behavior of agents using sensor networks, such as
tracking pallets in warehouses, vehicles on roadways, or
firefighters in burning buildings [5,6]. With the intro-
duction of the concept of consensus, distributed track-
ing, and coordination without any fusion center have
also received considerable attention in recent years [7,8].
Distributed consensus estimation in sensor networks

has been studied with both fixed as well as time-varying
communication topologies, taking into account issues
such as link failure, packet losses and quantization or
additive channel noise [8-20]. Olfati-Saber and Murray
[9] considered the average consensus for first-order inte-
grator networks with fixed and switching topologies.
Kingston and Beard [10] extended the results of [9] to

the discrete-time models and relaxed the graph condi-
tion to instantaneously balanced, connected-over-time
networks. Xiao and Boyd [11] considered discrete-time
distributed averaging consensus over fixed and undir-
ected graphs. They designed the weighted adjacency
matrix to optimize the convergence rate by semidefinite
programming. Huang and Manton [17] considered the
discrete-time average consensus with fixed topologies
and measurement noises. They introduced decreasing
step size in the protocol to attenuate the noises. Li and
Zhang [18-20] considered the continuous-time average
consensus with time-varying topologies and communica-
tion noises, where time-varying consensus gains are
adopted. They gave a necessary and sufficient condition
for mean square average consensus with fixed graph
topologies and sufficient conditions for mean square
average consensus and almost sure consensus with
time-varying graph topologies.
On the other hand, the distributed consensus tracking

over networks with and without noiseless communica-
tion links among nodes have also been considered
[21-26]. Recent work in [21,22] considered the distribu-
ted consensus tracking over a fixed graph with noiseless
communication among nodes. A distributed Kalman fil-
ter with embedded consensus filters was proposed in
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[21] and further extended to heterogeneous and non-lin-
ear sensing models in [22]. Distributed Kalman filtering
using one-step weighted averaging was considered in
[23]. Each node desires an estimate of the observed sys-
tem and communicates its local estimate with neighbors
in the network. Then, new estimate is formed as a
weighted average of the neighboring estimates, where
the weights are optimized to yield a small estimation
error covariance. In [24], the authors presented a dis-
tributed Kalman filter to estimate the state of a sparsely
connected, large-scale, dynamical system. The complex
large-scale systems are decomposed spatially into low-
order overlapping subsystems. A fusion algorithm using
bipartite fusion graphs and local average consensus algo-
rithms is applied to fuse observations for those overlap-
ping subsystems. A tracking control problem for
multiagent consensus with an active leader and variable
interconnection topology was considered in [25], where
the state of the considered leader keeps changing and
may not be measured. A neighbor-based local controller
together with a neighbor-based state-estimation rule is
given for each agent to track such a leader. In [26], the
authors proposed a greedy stepsize sequence design to
guarantee the convergence of distributed estimation
consensus over a network with noisy links.
Distributed tracking with consensus, addressed in this

paper and previous work [27,28], refers to the problem
that a group of nodes need to achieve an agreement
over the state of a dynamical system by exchanging
tracking estimates over a network. For instance, space-
object tracking with a satellite surveillance network that
consists of fixed nodes that are connected together, and
mobile nodes that could only have active links with
other nodes within their communication radius could
benefit from such distributed tracking with consensus,
due to the fact that individual sensor nodes may not
have enough observations of sufficient quality [29].
Thus, different sensor nodes may arrive at different
local estimates regarding the same space object of inter-
est [29]. Information exchange among nodes may
improve the quality of local estimates, and consensus
estimates may help avoid conflicting and inefficient dis-
tributed decisions. Other applications of this problem
include flocking and formation control, real-time moni-
toring, target tracking, and global positioning system
(GPS) [29,30]. In [28], the performance analysis of dis-
tributed tracking with consensus on noisy time-varying
graphs was addressed, and later, the algorithm of dis-
tributed tracking with consensus with incomplete data
was proposed without theoretical proof in [27].
The contributions of this work are as follows: (1) We

formulate the problem of distributed tracking with con-
sensus on a time-varying graph with incomplete data
and noisy communication links. (2) We develop an

algorithm by combining distributed Kalman filtering
with consensus updates to handle a time-varying net-
work in which not every node has local observations to
generate own local tracking estimates (incomplete data).
(3) We establish the graph conditions so that the dis-
tributed consensus can be achieved when the graph
topology is time-varying and with noisy communication
links. (4) We analyze the steady-state performance of
the distributed tracking with consensus on both fixed
and time-varying graphs and compare with that of the
distributed local Kalman filtering with centralized fusion
and centralized Kalman filter.
Following notation will be used in this paper. At time

j, an undirected graph is denoted by G(j) = (V, E(j)) for j
≥ 0, where V = {1,2,..., N} is the node set and E(j) ⊆ V ×
V denotes the edge set. A random graph in which the
existence of an edge between a pair of vertices in the set
V = {1, 2,..., N} is determined randomly and independent
of other edges with probability p Î (0,1] is denoted by G
(N, p). The neighborhood of node n at time j is denoted
by Ωn(j) = {l Î V|{l, n} Î E(j)}. Node n is said to have
degree dn(j) = |Ωn(j)|, where | · | refers to the cardinal-
ity of a set. Let the degree matrix be the diagonal matrix
D(j) = diag (d1(j), . . ., dN(j)), where diag(d1, ...,dN) repre-
sents a diagonal matrix with (d1, ..., dN) on its main
diagonal. The adjacency matrix of the graph G(j) is
denoted by A(j) = [Aln(j)], where Aln(j) = 1, if {l, n} Î E
(j), and Aln(j) = 0 otherwise. The graph Laplacian matrix
is denoted by L(j) = D(j) - A(j). The Laplacian is a posi-
tive semidefinite matrix so that its eigenvalues can
always be ordered as 0 = l1 (L) ≤ l2 (L) ≤ ··· lN (L). The
smallest eigenvalue l1(L) is always equal to zero with 1
being the corresponding eigenvector where 1 is the vec-
tor of all ones of suitable length. For a connected graph,
the second eigenvalue l2 (L) > 0 and is termed the alge-
braic connectivity or the Fiedler value of the network
[15,31]. Let p(l, n) be the probability that links {l, n} of
the graph exists (for random graphs considered in this
paper, we will always assume that p(l, n) = p for ∀l, n Î
V). For a directed graph, let (l, n) denote the directed
edge from node l to node n. The direct sum of an N ×
N matrix B and an M × M matrix C will be an (N + M)
× (N + M) matrix, denoted by B ⊕ C, whereas the Kro-
necker product of an N × N matrix B and an M × M
matrix C will be an NM × NM matrix, denoted by B ⊗
C. From the properties of Kronecker product and eigen-
values [32], for an N × N matrix B and an M × M
matrix C, if ln and ωm are two eigenvalues of matrices
B and C, respectively, for 1 ≤ n ≤ N and 1 ≤ m ≤ M,
then lnωm is an eigenvalue of B ⊗ C. We denote the N-
dimensional Euclidean space by ℝN. The N × N identity
matrix is denoted by IN, while 1N denotes the column
vectors of all ones and em denotes the column vectors
with the mth element as one and the rest as zeros. The
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operator || · || applied to a vector denotes the standard
Euclidean 2-norm, while applied to matrices denotes the
induced 2-norm, which is equivalent to the matrix spec-
tral radius for symmetric matrices.
The remainder of this paper is organized as follows:

Section 2 introduces our assumed system and network
model and the proposed distributed tracking with con-
sensus algorithm. In Section 3, conditions for achieving
distributed consensus are discussed and the rate of con-
vergence is quantified. The steady-state performance of
the proposed distributed tracking with consensus algo-
rithm is also analyzed in Section 3. Section 4 provides
detailed simulation results and performance comparison
of the proposed distributed tracking with consensus
algorithm and that of distributed local Kalman filtering
with centralized fusion and centralized Kalman filter.
Finally, conclusions are given in Section 5.

2 Problem formulation and the proposed
distributed tracking with consensus algorithm
A System model
Consider an N-node sensor network with a connectivity
graph G(j) = (V, E(j)) at time j. Assume that the graph
G(j) is undirected, but time varying due to nodes mov-
ing out of communication ranges of each other or need-
ing to cease transmissions to save battery power. The
objective is to perform distributed tracking of a target
and exchange tracking estimates over noisy communica-
tion links and try to reach consensus over the network.
The tracking updates are performed at k instances,
where k denotes the tracking time step (k = 0, 1,...).
Consensus updates are performed between every two
tracking updates, where 0 ≤ j <J denotes the consensus
iteration number, and J is the number of consensus
iterations per tracking update (assumed to be fixed).
The dynamics of the target evolves according to

x(k + 1) = Fx(k) + w(k); x(0) ∼ N (
x̄(0),P0

)
. (1)

The sensing model of the nth sensor is

yn(k) = Hnx(k) + vn(k), yn ∈ Rl. (2)

Note that the observation matrices Hn’s can be differ-
ent for each node. Both w(k) and vn(k) are assumed to
be zero-mean white Gaussian noise (WGN) and x(0) Î
ℝM is the initial state of the target. The second-order
statistics of the process and measurement noise are
given by

E
[
w(k)w(k′)T

]
= Qδkk′ , E

[
vn(k)vn′(k′)T

]
= Rnδkk′δnn′ ,

where δkk’ = 1 if k = k’ and δkk’ = 0, otherwise. Note
that the above system model is linear, while the system
model assumed in [29] is highly non-linear making it

difficult to analyze to obtain theoretical performance
characterization.
Figure 1 shows the system model of distributed track-

ing with consensus on a time-varying graph with incom-
plete data and noisy communication links. Let x̄n(k, j)
denote the node n’s updated tracking estimate at the jth
consensus iteration that follows the kth tracking update
step with x̄n(k, 0) = x̂n(k|k), where x̂n(k|k) is the nth
node’s filtered tracking estimate in the kth tracking
update. The received data at node n from node l, for n
≠ l, at iteration j can be written as

zn,l(k, j) = x̄l(k, j) + φn,l(j), for 0 ≤ j < J, (3)

where jn,l(j) denotes the receiver noise at the node n
in receiving the estimate of node l at iteration j and
zn,n(k, j) = x̄n(k, j). Assume that
E[φn,l(j)] = 0M,E[φn,l(j)φT

n,l(j)] = σ 2
n,lIM with

supn,l,jE[‖ φn,l(j)‖2] = u < ∞.
As depicted in Figure 1, at the end of the kth tracking

update, each node n which has an observation of the
target will have a filtered estimate x̂n(k|k) with asso-
ciated covariance matrix P̂n(k|k). In order to improve
the tracking estimate accuracy, it will exchange this fil-
tered estimate with its neighbors over noisy communica-
tion links and try to reach consensus over the network.
Note that, the goal here is to obtain a consensus track-
ing estimate over the local estimates at each tracking
time step k, and thus, the consensus problem is essen-
tially a problem of consensus in estimation.
Due to time-varying topology of the network, at any

given tracking time step k, not all nodes may observe
the target. Thus, these nodes will not have local tracking
estimates, which is denoted as incomplete data. In pre-
vious consensus literature [8-20], all node estimates are
taken into account in forming consensus estimates.
However, the same method may not be extended to
incomplete data case, since the nodes that mostly do
not have observation (yn(k) = vn(k)) will exchange their
predicted filtered estimates with others. Those predicted
tracking estimates are considered as valid estimates and
are taken into account to form consensus estimates,
which results in inaccurate estimates and worsens the
sensor network performance. By considering incomplete
data here, the nodes do not have data will not commu-
nicate their invalid tracking estimates (by setting
x̂n(k|k) = 0 and P̂n(k|k) =∈ IM for some � > 0 instead).
By introducing active node set and effective network
graph, each node will notice which node has data in
current consensus iteration. Only the estimates from
active nodes are considered into forming consensus esti-
mates. The estimates from non-active nodes will not be
considered until it forms its updated estimate by fusing
the filtered estimates from neighboring active nodes.
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Since the non-active nodes join the consensus process
without invalid tracking estimates, faster consensus pro-
cess could be achieved while the network performance
is still maintained.
In the space object tracking problem treated in [29],

each node observes the target and locally processes its
data in data sampling period. After forming local esti-
mates, each node will share its information among
neighboring nodes in information sharing period. Here,
the information sharing rate is much larger compared
with the data sampling rate so that each data sample
node may exchange their local estimates many times in
between, which may conceivably lead to better consen-
sus estimates. The distributed tracking with consensus
problem as formulated above may have other applica-
tions beyond the space object tracking problem, such as
in multitarget tracking with a group of autonomous
robots [33], battlefield life signs detection by Unmanned
Aerial Vehicles (UAVs) [34], package tracking in ware-
house by sensor networks [35], etc.

B Network model

We define the active node set Sjk in a time-varying graph

G(j) as the set of nodes that have updated local esti-
mates to be shared with others in the jth consensus
iteration after the kth tracking update [29]. Define effec-
tive network graph of a network G(j) = (V(j), E(j)) with

active node set Sjk as G̃(j) =
(
V(j), Ẽ(j)

)
, where

Ẽ(j) = E(j) ∩
(
∪n∈Sjkϒ

out
n (j)

)
, where

ϒout
n (j) = {(n, l)|(n, l) ∈ E(j)} denotes the set of directed

edges with initial vertex as n at iteration j. Note that,

the effective network graph G̃(j) is a directed graph,
which is obtained by removing the outgoing edges of
the nodes that do not have data in G(j). For a static
graph G(j) = G(V,E), Ẽ(j) can be written as

Ẽ(j) = Ẽ(j − 1)∪l∈Sj−1
k
(∪n∈�lϒ

out
n ), where

Ẽ(0) = E ∩
(
∪n∈S0k ϒ

out
n

)
. Note that, the nodes that do

not observe the target will not have updated local esti-
mates to share at the beginning of consensus update
process (at j = 0). However, as information exchange
among nodes progresses, some of these nodes may be
able to form their own updated local estimates at the
consensus iteration j for j > 0. Therefore, the active

node set Sjk is time-varying and Sjk = Sj−1
k ∪l∈Sj−1

k
�l(j − 1),

where S0k is the set of nodes that have observations of
the target in the kth tracking update step as in Figure 1.
Figure 2 shows the relation between the connectivity
graph G(j) and the effective network graph G̃(j) for a

graph of 6 nodes with active node set Sjk = (1, 2, 4, 6),
where solid circles denote active nodes.
Let ISjk denote an N × N matrix generated from the

active node set Sjk as follows:

[ISjk
]nn′ =

{
1 if n = n′ and n′ ∈ Sjk
0 else

.

Note that, ISjk is a diagonal matrix with n’th diagonal

element equal to zero for n′ ∈ (Sjk)
c, where (·)c denotes

the set complement. By combining the connectivity

graph G(j) with the active node set Sjk, we obtain the

A 

Figure 1 Block diagram of distributed tracking with consensus on a time-varying graph with incomplete data and noisy
communication links.
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effective network graph G̃(j). Thus, the adjacency matrix

of the effective network graph is given by A(j) = A(j)ISjk.
The corresponding degree matrix D(j) can then be
obtained from A(j), and the Laplacian matrix is L(j) = D
(j) - A(j) by definition.
As an example, consider the same network model in

Figure 2. The matrix ISjk
= diag(1, 1, 0, 1, 0, 1). The

Laplacian matrices of the connectivity graph and effec-
tive network graph are as follows:

L(j) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4 −1 0 −1 −1 −1
−1 3 −1 −1 0 0
0 −1 2 0 −1 0

−1 −1 0 3 −1 0
−1 0 −1 −1 4 −1
−1 0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

and L(j) =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −1 0 −1 0 −1
−1 2 0 −1 0 0
0 −1 1 0 0 0

−1 −1 0 2 0 0
−1 0 0 −1 3 −1
−1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

C Distributed tracking with consensus algorithm
In this section, we propose a distributed tracking and
consensus algorithm for the above distributed tracking
problem over a time-varying graph with incomplete data
and noisy communication links. This algorithm is based
on the architecture that was first proposed in [29] in the
special context of consensus tracking in a satellite sen-
sor network for situational awareness.

Figure 3 shows the timing diagram of tracking and
consensus updates process in the proposed distributed
tracking with consensus algorithm. As in Figure 3, at
tracking time step k, node n is assumed to have com-
pleted its consensus iterations corresponding to time k -
1. If the output of this consensus update following the
(k - 1)th tracking update step is x̄n(k − 1, J) with the
associated covariance matrix P̄n(k − 1, J), then node n
sets x̄n(k − 1|k − 1) = x̄n(k − 1, J) and
P̄n(k − 1|k − 1) = P̄n(k − 1, J). Next, at the kth tracking

update step, each node n where n ∈ Sjk, passes its obser-
vation yn(k) through its local Kalman filter as follows
[1]:

x̂n(k|k − 1) = Fx̄n(k − 1|k − 1),

P̂n(k|k − 1) = FP̄n(k − 1|k − 1)FT +Q,

Kn(k) = P̂n(k|k − 1)HT
n

(
HnP̂n(k|k − 1)HT

n + Rn

)−1
,

x̂n(k|k) = x̂n(k|k − 1) + Kn(k)
(
yn(k) − Hnx̂n(k|k − 1)

)
,

P̂n(k|k) =
(
I − Kn(k)Hn

)
P̂n(k|k − 1),

(4)

where x̄n(k − 1|k − 1) = x̄n(k − 1, J) with
x̄n(0, J) = x̄(0) and P̄n(k − 1|k − 1) = P̄n(k − 1, J) with

P̄n(0, J) = P0. Let X̄(k − 1, j) =
[
x̄1(k − 1, j)T, x̄2(k − 1, j)T, . . . , x̄N(k − 1, j)T

]T
.

1 2

3

4
5

6

effective network graphconnectivity graph

S =(1, 2, 4, 6)

active node set

G(j)=(               )~ ~V(j),E(j)G(j)=(               )V(j),E(j)

1 2

3

4
5

6

k
j

Figure 2 Connectivity graph and effective network graph.

B 

Figure 3 Timing diagram of tracking and consensus updates in the proposed algorithm for distributed tracking with consensus.
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Denote P̄(k − 1, j) as the covariance matrix correspond-
ing to X̄(k − 1, j). The P̄n(k − 1, J) in (4) can be obtained
by extracting the nth M × M main diagonal block of
P̄(k − 1, J).
Node n uses its filtered estimate x̂n(k|k) obtained by

the above tracking update step as the initial estimate for
consensus update exchanges by setting x̄n(k, 0) = x̂n(k|k)
with initial covariance matrix

P̄(k, 0) = P̂1(k|k) ⊕ P̂2(k|k) ⊕ · · · ⊕ P̂N(k|k),a where ⊕
denotes the direct sum. On the other hand, for nodes

n ∈ (Sjk)
c, we may arbitrarily set x̂n(k|k) = 0 and

P̂n(k|k) =∈ IM for some � > 0.
During the (j + 1)th consensus update, each node n

forms a linear estimate of the following form as its con-
sensus estimate:

x̄n(k, j + 1) = x̄n(k, j) + γn(j)
N∑
l=1

An,l(j)
(
z̄n,l(k, j) − z̄n,n(k, j)

)
, (5)

where gn(j) is the nth node’s weight coefficient at

iteration j and 0 ≤ j <J. We set gn(j) = g(j) for n ∈ Sjk and

γn(j) = 1∑N
l=1 An,l(j)

for n ∈ Sjk and
∑N

l=1
An,l(j) �= 0. For

node n that does not have local tracking estimate, we
assume that it will generate its estimate by averaging the
tracking estimates from its neighbors.b

By defining X̄(k, j) = [x̄1(k, j)T,x̄2(k, j)T, . . . , x̄N(k, j)T]T,
the consensus update dynamics can be written in vector
form as follows:

X̄(k, j + 1) = X̄(k, j) − [(�(j)L(j)) ⊗ IM
]
X̄(k, j) − (�(j) ⊗ IM)	̄(j), (6)

where

�(j) = diag
(
γ1(j), . . . , γN(j)

)
, 	̄(j) =

[
φ1(j)

T · · · φN(j)
T
]T

and φn(j) = −∑l∈�n(j) φn,l(j). Note that, from (3),

E[	(j)] = 0 and supjE[‖ 	̄(j)‖2] = η ≤ N(N − 1)u < ∞.
Let us define ē(k, j) to be the error vector at the jth

consensus iteration after the kth tracking update:
ē(k, j) � X̄(k, j) − (1 ⊗ IM)x(k). From (6), it follows that

ē(k, j + 1) = (A(j) ⊗ IM)ē(k, j) − (�(j) ⊗ IM
)
	̄(j)

+
(
(A(j) ⊗ IM) − I

)
(1 ⊗ IM)x(k),

(7)

where A(j) = IN-Γ(j)L(j). Note that, this coefficient
matrix A(j) is slightly different from the one proposed
in [29]. In [29], A(j) = Ĩ(j) − γ (j)L̃(j), where Ĩ(j) and L̃(j)
are the modified identity and Laplacian matrices. The
required modification, however, does not lend itself to a
convenient relation between the original matrices and
the modified ones that can be used in mathematical
derivations.
Note that, if the filtered estimate x̂n(k|k) at the end of

the measurement update stage is an unbiased estimate,

then x̄n(k, 0) is also unbiased for all n ∈ Sjk. From (5),

since x̄n(k, j + 1) = 1∑N
l=1 An,l(j)

∑N
l=1 An,l(j)(x̄l(k, j) + φn,l(j))

for n ∈ (Sjk)
c, then x̄n(k, j + 1) is also unbiased for

n ∈ (Sjk)
c if x̄l(k, j) is unbiased for l ∈ Sjk. From (7), it can

be shown that the unbiasedness in consensus estimate
X̄(k, j) can be maintained if matrix A(j) satisfies the con-
dition

(
(A(j) ⊗ IM) − I

)
(1 ⊗ IM) = 0, which is equivalent

to requiring
(
(A(j) − IN)1

)⊗ IM = 0. It follows that the
unbiasedness in consensus estimate X̄(k, j) requires 0 to
be an eigenvalue of the Laplacian matrix L(j) with the
associated eigenvector 1.c Define the covariance matrix
corresponding to X̄(k, j) as P̄(k, j) = E[ē(k, j)ē(k, j)T].
From (7) and unbiasedness condition, it can be easily
seen that

P̄(k, j + 1) =
(
A(j) ⊗ IM

)
P̄(k, j)(A(j) ⊗ IM)T

+E
{
(�(j) ⊗ IM)	̄(j)	̄(j)T(�(j) ⊗ IM)

}
.

(8)

As shown in Figure 3, after J consensus iterations,
each node n will feed x̄n(k, J) back to their local Kalman
filters by setting x̄n(k|k) = x̄n(k, J) and P̄n(k|k) = P̄n(k, J)
before starting next tracking update at time k+1. Recall
that here P̄n(k, J) is the nth M × M main diagonal block
of P̄(k, J). Algorithm 1 shows a summary of the steps in
the proposed distributed tracking with consensus
algorithm.

3 Performance analysis
A Conditions for achieving consensus
In this section, we analyze the convergence of the pro-
posed distributed tracking with consensus algorithm and
the convergence rate. Note that, the proofs of lemmas
and theorems in this section are different from those in
[16] due to vector state and incomplete data, which
results in two stages of consensus process: obtaining
complete data from incomplete data and reaching con-
sensus on complete data. In the scenarios we consider,
we assume that the information exchange rate during
the consensus update process is much higher
Algorithm 1 Distributed tracking with consensus

algorithm
Initialize: x(0), F, Hn, Q, Rn
while new data exist do
Kalman filtering in tracking process:

x̂n(k|k − 1) = Fx̄n(k − 1|k − 1)
P̂n(k|k − 1) = FP̄n(k − 1|k − 1)FT +Q

Kn(k) = P̂n(k|k − 1)HT
n

(
HnP̂n(k|k − 1)HT

n + Rn

)−1

x̂n(k|k) = x̂n(k|k − 1) + Kn(k)
(
yn(k) − Hnx̂n(k|k − 1)

)
P̂n(k|k) =

(
I − Kn(k)Hn

)
P̂n(k|k − 1)

update the initial state of consensus process:
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x̄n(k, 0) = x̂n(k|k)
P̄(k, 0) = P̂1(k|k) ⊕ P̂2(k|k) ⊕ · · · ⊕ P̂N(k|k)
j ¬ 0

while j ≤ J - 1 do

x̄n(k, j + 1) = x̄n(k, j) + γn(j)
∑N

l=1
An,l(j)

(
zn,l(k, j) − zn,n(k, j)

)
j ¬ j + 1

end while
x̄n(k|k) = x̄n(k, J)
P̄n(k|k) = P̄n(k, J)
k ¬ k + 1

end while
compared with the data sampling rate for the tracking

updates. Hence, we can assume that J ≫ 1,d guarantee-
ing enough time for information to be exchanged over
the network so that consensus can be reached if the
weight {g(j)} is chosen properly. As mentioned above,
for a fixed k and J ≫ 1, the consensus update process
after the kth tracking update can be considered as a
consensus in estimation problem. Thus, to simplify
notation, in the following, we omit the tracking time
step index k in X̄(k, j).
We start by defining the consensus subspace C as

C = {X ∈ RNM|X = 1N ⊗ a, a ∈ RM}.
If the consensus algorithm (6) converges to the con-

sensus subspace C, each node estimate x̄n(j) will con-
verge to the same value x̄n(j) = a for 1 ≤ n ≤ N, a Î ℝM

and consensus is reached over the network. It is well
known from the stochastic approximation literature [36]
that, in order to ensure asymptotic convergence to con-
sensus subspace, the weight coefficient g(j) must satisfy
the persistence condition as follows

γ (j) > 0,
∞∑
j=0

γ (j) = ∞,
∞∑
j=0

γ (j)2 < ∞. (9)

We recall the following result on distance properties
in ℝNM:
Lemma 1: Suppose that X Î ℝNM and consider the

orthogonal decomposition X = XC + XC⊥. Then, the
Euclidean distance ρ(X,C) =‖ XC⊥ ‖.
In the following, we prove that the consensus algo-

rithm given in (6) converges almost surely (a.s.). This is
achieved in two steps: First, Lemma 3 proves that the
state vector sequence {X̄(j)}j≥0 converges a.s. to the con-
sensus subspace C. Theorem 1 then completes the proof
by showing that the sequence of component-wise
averages {X̄avg(j)}j≥0 converges a.s. to a finite random

variable Θ, where X̄avg(j) = 1
N (1

T ⊗ IM)X̄(j). The proof
of Theorem 1 will require a basic result on convergence
of Markov processes from [36], which is restated as

Lemma 2 in our context. Before stating the lemma,
however, we need to introduce the notation of [36].
Let {X̄(j)}j≥0 be a Markov process in ℝNM. Define the

generating opaserator L corresponding to {X̄(j)}j≥0 as

LV(j,X) = E
{
V(j + 1,X(j + 1))|X(j) = X

}− V(j,X),

for functions V(j,X), j ≥ 0,X ∈ RNM, provided the con-
ditional expectation exists. If DL is the domain of L,
then we say that V(j,X) ∈ DL in a domain C, if LV(j,X)
is finite for all (j,X) ∈ C.
For G ⊂ ℝNM, the �-neighborhood of G and its com-

plement are defined as,

Uε(G) =
{
X| inf

Y∈G
ρ(X,Y) < ε

}
, Vε(G) = RNM\Uε(G). (10)

With these notations, we may now state the desired
lemma on the convergence of Markov processes:
Lemma 2 (Convergence of Markov Processes): Let

{X̄(j)}j≥0 be a Markov process with generating operator

L. Let there exist a non-negative function V(j,X) ∈ DL
in the domain G ⊂ ℝNM for j ≥ 0 and X ∈ RNM. Assume
that

inf
j≥0,X∈Vε(G)

V(j,X) > 0, ∀ε > 0, and V(j,X) = 0, X ∈ G,

lim
X→G

sup
j≥0

V(j,X) = 0, and LV(j,X) ≤ g(j)(1 + V(j,X)) − γ (j)ϕ(j,X),

where ϕ(j,X),X ∈ RNM is a non-negative function such
that

inf
j,X∈Vε(G)

ϕ(j,X) > 0, ∀ε > 0; γ (j) > 0,
∑
j≥0

γ (j) = ∞;

and g(j) > 0,
∑
j≥0

g(j) = ∞.

Then, the Markov process {X̄(j)}j≥0 with an arbitrary
initial distribution
converges almost surely (a.s.) to G as j ® ∞:

P
(
lim
j→∞

ρ(X(j),G) = 0
)
= 1.

Proof Proof is a vector generalization of that in [16],
and is omitted.
Lemma 2 guarantees a.s. convergence of a general

Markov process with an arbitrary initial distribution
under the assumption of the existence of a Lya-punov
function V(j,X). In fact, the state vector sequence
{X̄(j)}j≥0 given in (6) is a Markov process, since

P[X(j)|X(j − 1), . . . ,X(0)] = P[X(j)|X(j − 1)]. In the next
lemma, we prove that the state estimate sequence
{X̄(j)}j≥0 given in (6) converges a.s. to the consensus
subspace C by showing that the consensus algorithm
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over an undirected effective network graph satisfies the
Lyapunov function assumptions of Lemma 2.
Lemma 3 (a.s. convergence of the proposed algorithm

to the consensus subspace): Consider the consensus algo-
rithm in (6) with initial state X(0) ∈ RNM. The weight
coefficients satisfy the persistence condition in (9).
Assume that the undirected connectivity graph Lapla-
cian L(j) is independent ofcommunication noise jn,l(j)
for 1 ≤ n, l ≤ N. If L(j) = L + L̃(j) with mean L = E[L(j)]
is such that λ2(L) > 0 and p(l, n) > 0 for {l, n} Î E(j),
then

P
[
lim
j→∞

ρ(X(j),C) = 0
]
= 1.

Proof See Appendix A.
Lemma 3 shows that the state estimate sequence

{X̄(j)}j≥0 given in (6) converges a.s. to the consensus
subspace C. The key to the proof is to show that the
directed effective network graph will become an undir-
ected graph after all nodes have local estimates and the
consensus algorithm over this undirected effective net-
work graph satisfies the condition required in Lemma 2.
In the following theorem, we state our main result and
complete the convergence proof for the proposed dis-
tributed tracking with consensus algorithm by showing
that the sequence of component-wise averages
{X̄avg(j)}j≥0 converges a.s. to a finite random variable Θ,

where X̄avg(j) = 1
N (1

T ⊗ IM)X̄(j).
Theorem 1 (a.s. convergence to a finiterandom vector):

Consider the consensus algorithm in (6) with initial
state X(0) ∈ RNM. The weight coefficients satisfy the
persistence condition in (9). Assume that the time-vary-
ing connectivity graph Laplacian L(j) is independent of
communication noise jn ,l(j) for 1 ≤ n, l ≤ N. If
L(j) = L + L̃(j) with mean L = E[L(j)] is such that
λ2(L) > 0, and if p(l, n) > 0 for {l, n} Î E(j), then there
exists an almost sure finite real random vector Θ such
that

P
[
lim
j→∞

X(j) = 1N ⊗ �

]
= 1.

Proof Since the mean connectivity graph L is con-
nected with non-zero link probability, for j large enough,
each node will receive information from one another
and generate its updated local estimate. For a fixed k, let

Jk = inf{j|(Sjk)c = � 0, j ≥ 0}. Then, Γ(j) = g(j)IN for j ≥ Jk
and (6) becomes

X(j + 1) = X(j) − γ (j)
[
(L(j) ⊗ IM)X(j) + 	(j)

]
for j ≥ Jk. (11)

Define the average of X̄(j) as X̄avg(j) = 1
N (1

T ⊗ IM)X̄(j).

Multiply both sides of (11) by 1
N (1

T ⊗ IM) and use the

fact that 1 TL(j) = 0N, so that for (Sjk)
c =� 0, we have

Xavg(j + 1) = Xavg(j) − ε(j) = Xavg(Jk) −
∑
Jk≤l≤j

ε(l),

where ε(j) = γ (j)
N (1T ⊗ IM)	(j). Assuming that receiver

noise is zero-mean and time independent, we obtain

E[
∥∥ε(j)∥∥2] = γ 2(j)

N2
E[	̄(j)T(1T ⊗ IM)T(1T ⊗ IM)	(j)]

=
γ 2(j)
N2

E

⎡
⎣ ∑

1≤n≤N

(φn(j))
T
φn(j)

⎤
⎦ ,

where φn(j) = −∑l∈�n(j) φn,l(j) denotes the total
incoming noise from node l Î Ωn (j) to node n and the
last step follows from the independence of jl(j) and jn

(j). By assuming that E
[
φl,n(j)φl,n(j)

T
]
= σ 2IM, for 1 ≤ l,

n ≤ N, we obtain

E[‖ ε(j)‖2] ≤ γ 2(j)
N2

MN(N − 1)σ 2 =
γ 2(j)M(N − 1)

N
σ 2.

From independence of X̄(j) and 	(j) and the indepen-
dence of noise over time, we then have that

E[‖ Xavg(j + 1)‖2] ≤ E[Xavg(Jk)TXavg(Jk)] +
j∑

l≥Kk

γ 2(l)M(N − 1)
N

σ 2 ≤ ∞.

Denote Xavg(j) = [Xavg,1(j) . . . Xavg,M(j)]T. It can be
easily seen that

E[(Xavg,m(j + 1))2] ≤ E[(Xavg,m(Jk))2] +
j∑

l≥Jk

γ 2(l)(N − 1)
N

σ 2 ≤ ∞.

Hence, the sequence {Xavg,m(j)} is an L2 bounded mar-
tingale and thus converges a.s. in L2 to a finite random
scalar θ. Define Xm(j) = [eTmx̄1 . . . , eTmx̄N]

T. From the
conclusion of Lemma 3, we have that
P[limj→∞ ‖ X(j) − 1N ⊗ Xavg(j) ‖= 0] = 1, which

implies that
P[limj→∞ ‖ Xm(j) − Xavg,m(j)1N ‖= 0] = 1. Then, we

obtain that
P[limj→∞Xm(j) = θ1N] = 1 and the theorem follows.
Theorem 1 shows that the proposed distributed track-

ing with consensus algorithm will reach consensus
almost surely and the consensus estimate limj→∞x̄(j) is
a finite random vector Θ. Since the consensus algorithm
in (6) falls in the framework of stochastic approxima-
tion, we may also analyze the convergence rate of the
consensus algorithm based on the ODE method (ordin-
ary difference equation) [37]. The next theorem charac-
terizes an upper bound to the convergence rate of the
proposed distributed tracking with consensus algorithm.
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Theorem 2 (convergence rate): Consider the consensus
algorithm in (6) with initial state X(0) ∈ RNM. The
weight coefficients satisfy the persistence condition in

(9) and γ (j) ≤ 2
λ2(L̄)+λn(L̄)

. Assume that the time-varying

connectivity graph Laplacian L(j) is independent of com-
munication noise jn,l(j) for 1 ≤ n, l ≤ N. For j ≥ Jk, the
effective network graph Laplacian is L(j) = L + L̃(j) with
mean L = E[L(j)]. If the connectivity graph Laplacian L
(j) with mean L = E[L(j)] is such that λ2(L) > 0, and if p
(l, n) > 0 for {l, n} Î E(j), the convergence rate,e of the
proposed consensus algorithm is bounded by

−λ2(L)
(

1
J−Jk

∑
Jk≤j≤J γ (j)

)
.

Proof For a fixed i, let Jk = inf{j|(Sjk)c = ∅, j ≥ 0}. From
the asymptotic unbiasedness of Θ, we have
limj→∞E[X(j)] = 1N ⊗ r, where r = Xavg(Jk). For j ≥ Jk,
define �(j) = INM = −γ (j)(L ⊗ IM), where L = E[L(j)].
Using the fact that L(j) and X̄(j) are independent, and
E[	̄(j)] = 0NM, from (6), we have that

E[X(j + 1)] = �(j)E[X(j)] =
j∏

l=Jk

�(l)E[X(Jk)], ∀j ≥ Jk. (12)

From the persistence condition
γ (j) > 0,

∑
j≥0 γ (j) = ∞ and

∑
j≥0 γ 2(j) ≤ ∞[16], it fol-

lows that g(j) ® 0. From the mixed-product property of
Kro-necker product (A ⊗ B)(C ⊗ D) = AB ⊗ CD and
(INM − γ (j)L)1N = 1N[32], we have

1N ⊗ r = �(j)(1N ⊗ r). (13)

From (12) and (13), it can be shown that

‖ E[X(j)] − 1N ⊗ r ‖ ≤
∏

Jk≤l≤j−1

ρ̄(1 − γ (l)L) ‖ E[X(Jk)] − 1N ⊗ r ‖

=
∏

Jk≤l≤j−1

(1 − γ (l)λ2(L)) ‖ E[X(Jk)] − 1N ⊗ r ‖,

where last step follows from Lemma 8 of [15] and ρ̄(·)
denotes the spectral radius of a matrix. From the
assumption on weight coefficient g(j), we have
0 ≤ γ (l)λ2(L̄) ≤ 1. Since 1 - a ≤ e-a for 0 ≤ a ≤ 1, we
then have that

‖ E[X(j)] − 1N ⊗ r ‖≤
(
e
−λ2(L̄)

(∑
Jk≤l≤j−1 γ (l)

))
‖ E[X(Jk)] − 1N ⊗ r ‖ . (14)

Therefore, as j ® J, the convergence rate is bounded

by −λ2(L̄)
(

1
J−Jk

∑
Jk≤l≤J γ (l)

)
, which depends on the

algebraic connectivity λ2(L) and the weights g(j), for Jk≤
j ≤ J.
Theorem 2 shows that the convergence rate of the

proposed algorithm depends on the topology through
the algebraic connectivity λ2(L) of the effective network
graph G̃(j) and through weights g(j), for j ≥ Jk. Since for

L̄ = E[L(j)] = E[L(j)] and L(j) = L(j), we have
L̄ = E[L(j)] = E[L(j)]. In (14), λ2(L) is the algebraic con-
nectivity of the mean Laplacian corresponding to the
time-varying network graphs. For a static network, this
reduces to the algebraic connectivity of the static Lapla-
cian L.
Since the consensus algorithm in (6) is iterative, whose

energy consumption is proportional to the time neces-
sary to achieve consensus and inversely proportional to
transmit power. From [38,39], for energy-constrained
sensor networks, there exists a tradeoff between conver-
gence time that depends on network connectivity and
the transmit power of each node necessary to establish
the links with the desired reliability. Therefore, we can
minimize the energy consumption for consensus process
by optimizing transmit power, network topology, and
weights g(j).

B Steady-state analysis for noiseless graphs
In this section, we analyze the steady-state performance
of the proposed distributed tracking with consensus
algorithm. When the filter reaches steady state, the
error covariance matrix is time invariant and the corre-
sponding filter gain is constant. Therefore, finding the
steady state of the proposed algorithm will help under-
standing its asymptotic behavior, analyzing error covar-
iance, and filter design. From (8), it can be seen that the
propagation of communication noise implies the non-
existence of an upper bound to the covariance matrix.
Therefore, the covariance matrix in the Kalman filter
may not also converge and the filter may not reach
steady state. However, time-varying graph assumption
does not affect the existence of steady state. Since for J
® ∞, consensus is reached over the network and the
outputs of the consensus update Xn(k, J) and P(k, J)
depend only on the inputs Xn(k, 0) and P(k, 0) for com-
plete data case with noiseless time-varying graphs (for
incomplete data case with noiseless time-varying graphs,
this property still holds for some special types of
graphs). Hence, the combined system of distributed
tracking with consensus can be transformed into a Kal-
man filter with time-invariant parameters. Therefore,
steady state can still be reached [1]. In the following,
assuming noiseless time-varying graphs, we start with
steady-state analysis for the case with complete data,
and then, we extend the results to the case with incom-
plete data.
1) Complete data with noiseless time-varying graphs
Here, we assume complete data, a scalar target state x Î
ℝ1 (for simplicity) and noiseless time-varying graphs,
where the connectivity graph Laplacian L(i) with mean
L = E[L(j)] is such that λ2(L) > 0, and p(l, n) > 0 for {l,
n} Î E(j). Note that, since a closed form equation for

Ruan et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:110
http://asp.eurasipjournals.com/content/2011/1/110

Page 9 of 21



P̂n(k + 1|k) cannot be easily obtained when the target
state x Î ℝM for M > 1, the following derivation would
not apply to vector state.
From the result of Theorem 1 for scalar target state,

itcan be shown that limJ→∞X(k, J) = Xavg(k, 0)1N, where
Xavg(k, j) = 1

N1
TX(k, J). From the definition of X(k, j) and

x̄n(k, 0) = x̂n(k|k), we have for 1 ≤ n ≤ N

lim
J→∞

x̄n(k, J) =
1
N

N∑
n=1

x̂n(k|k). (15)

With the assumptions above, the covariance matrix (8)
in the (j + 1)th consensus iteration after the kth tracking
update simplifies to P(k, j + 1) = A(j)P(k, j)A(j)T For
complete data case, L(j) = L(j). Since 1T L(j) = 0, from
(7), we have 1T A(j) = 1. Then, we can obtain that

1TP(k, j + 1)1 = 1TP(k, j)1. (16)

By applying the result of Theorem 1, we have
limJ→∞P(k, J) = (Xavg(k, 0) − x(k))211T. Since all the
elements in limJ→∞P(k, J) are equal, from (16), it fol-
lows that

lim
J→∞

P(k, J) =
1TP(k, 0)1

N2
11T =

∑N
n=1 P̂n(k|k)

N2
11T. (17)

Since P̄n(k, J) is the nth M × M main diagonal block of
P̄(k, J), we have the covariance matrix for node n (1 ≤ n
≤ N) as below:

lim
J→∞

Pn(k, J) =

∑N
n=1 P̂n(k|k)

N2
. (18)

From (15) and (18), we have x̄n(k, J) = x̄l(k, J) and
P̄n(k, J) = P̄l(k, J) for J ® ∞ and 1 ≤ n, l ≤ N. Then, each
node n sets x̄n(k|k) = x̄n(k, J) and Pn(k|k) = Pn(k, J).
From (4), we have x̂n(k + 1|k) = x̂l(k + 1|k) and

P̂n(k + 1|k) = P̂l(k + 1|k) for 1 ≤ n, l ≤ N and it follows
that for 1 ≤ n ≤ N

x̂n(k + 1|k) = F
1
N

N∑
q=1

x̂q(k|k − 1) − F
1
N

N∑
q=1

[
Kq(k)(yq(k) − Hqx̂q(k|k − 1))

]
,

P̂l(k + 1|k) = Q +
1
N2

N∑
q=1

F(I − Kq(k)Hq)P̂q(k|k − 1)FT.

(19)

Let x̂n(k + 1|k) = x̂(k + 1|k) and

P̂n(k + 1|k) = P̂(k + 1|k). Then, the combined system of
distributed tracking with consensus can be transformed
into a single Kalman filter as follows:

x̂(k + 1|k) = Fx̂(k|k − 1) +
F
N

N∑
n=1

[
Kn(k)(yn(k) − Hnx̂n(k|k − 1))

]
,

Kn(k) = P̂(k|k − 1)HT
n

[
HnP̂(k|k − 1)HT

n + Rn

]−1
,

P̂(k + 1|k) = Q +
1
N2

N∑
n=1

[
FP̂(k|k − 1)FT − FKn(k)

(
HnP̂(k|k − 1)HT

n + Rn

)

×Kn(k)
TFT
]
.

(20)

Theorem 3 Consider the system dynamics in (1) and
(2) and the Kalman filter in (20). Assume that the con-
nectivity graph Laplacian L(j) with mean L = E[L(j)] is
such that λ2(L) > 0, and p(l, n) > 0 for {l, n} Î E(j). If
the pair (F, Hn) is observable for 1 ≤ n ≤ N, then the
prediction covariance matrix P̂(k|k − 1) converges to a
constant matrix

lim
k→∞

P̂(k|k − 1) = P,

where P is the unique definite solution of the discrete
algebraic Riccati equation (DARE)

P = Q +
1
N2

N∑
n=1

[
FPFT − FPHT

n(HnPHT
n + Rn)

−1
HnPFT

]
. (21)

Proof See Proof of Theorem 4. By setting m = N and
bn(k) = 1 for 1 ≤ n ≤ N, the Kalman filter in (24) can be
reduced to the one in (20). Theorem 3 can be consid-
ered as a special case of Theorem 4. Thus, it can be
proved in a similar manner.
As a consequence of Theorem 3, the local Kalman fil-

ter gain converges to

lim
k→∞

Kn(k) = PHT
n[HnPH

T
n + Rn]−1.

From (21), it can be seen that limN®∞ P = Q, i.e., as
the size of the sensor network N increases, the steady-
state covariance P, which in this case is a scalar, will
decrease. This implies that if the network size is large
enough, asymptotically the tracking is noiseless and fol-
lows the target exactly. It is obvious that this result still
holds for distributed local Kalman filtering with centra-
lized fusion. However, the distributed tracking with con-
sensus results in the same performance even if the
graph is time-varying and it also improves the robust-
ness and scalability due to consensus exchanges. For the
assumed scalar case, for example, if Hn = H and Rn = R
for 1 ≤ n ≤ N, then we have K = HP

H2P+R and

P = −B+
√

B2+4H2QR
2H2

, where B =
(
1 − F2

N

)
R − H2Q. This

implies that for the same sensing model, each node will
have the same Kalman gain K and prediction covariance
P in the steady state.
2) Incomplete data with noiseless time-varying graphs
Next, we assume incomplete data, a scalar target state x
Î ℝ1 and noiseless time-varying graphs, where the con-
nectivity graph Laplacian L(j) with mean L = E[L(j)] is
such that λ2(L) > 0, and p(l, n) > 0 for {l, n} Î E(j).
Furthermore, we assume that only m nodes can observe
the target and without loss of any generality the index
of those m nodes are ordered as 1, 2,..., m, where m is
constant and 1 ≤ m ≤ N. This implies that the active
node set S0k = {1, 2, . . . ,m}, which does not require
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further assumptions on the connectivity graph for con-
sensus, since the graph is connected on average and the
information can still propagate over the network even if
only a fixed number of nodes have observation.
With the assumption of incomplete data and noiseless

time-varying graphs, 1TL(j) = 0 for Jk ≤ j <J. Then, (17)
becomes

lim
J→∞

P(k, J) =
1TP̄(k, Jk)1

N2
11T =

1T
[
AJk−1
0

]
P(k, 0)

[
AJk−1
0

]T
1

N2
11T

=

∑m
n=1 P̂n(k|k)β2

n (k)
N2

11T,

(22)

where
[
AJk−1
0

]
= A(Jk − 1) · · ·A(0) and

βn(k) =
∑N

l=1

[
AJk−1
0

]
ln
is the nth column sum of

[
AJk−1
0

]
that depends on time k. The last step of (22) follows
from that P̂n(k|k) = ε for m <n ≤ N and some � > 0.
Then, as in previous subsection, we have for 1 ≤ n ≤ N

lim
J→∞

P̄n(k, J) =

∑m
n=1 P̂n(k|k)β2

n (k)
N2

, and

lim
J→∞

x̄n(k, J) =
1
N

m∑
n=1

x̂n(k|k)βn(k).

(23)

From (23), for J ® ∞, we have x̄n(k, J) = x̄l(k, J) and
Pn(k, J) = Pl(k, J) for 1 ≤ n, l ≤ N. By setting
x̄n(k|k) = x̄n(k, J) and Pn(k|k) = Pn(k, J), from (4), we can
obtain recursive update equations for P̂n(k + 1|k) and
x̂n(k + 1|k). Furthermore, we also have
x̂n(k + 1|k) = x̂l(k + 1|k) and P̂n(k + 1|k) = P̂l(k + 1|k) for
1 ≤ n, l ≤ N. Let x̂n(k + 1|k) = x̂(k + 1|k) and

P̂n(k + 1|k) = P̂(k + 1|k). Then, the combined system of
distributed tracking with consensus can then be trans-
formed into a single Kalman filter for node n(1 ≤ n ≤
m) as below:

x̂(k + 1|k) = F

N

m∑
n=1

x̂(k|k − 1)βn(k) +
F

N

m∑
n=1

[
Kn(k)(yn(k) − Hnx̂(k|k − 1))βn(k)

]
,

Kn(k) = P̂(k|k − 1)HT
n

[
HnP̂(k|k − 1)HT

n + Rn

]−1
,

P̂(k + 1|k) = Q +
1
N2

m∑
n=1

[
FP̂(k|k − 1)FT − FKn(k)

(
HnP̂(k|k − 1)HT

n + Rn

)

×Kn(k)
TFT
]
β2
n (k),

(24)

where (20) is a special case of (24) with m = N and bn
(k) = 1 for 1 ≤ n ≤ N.
Theorem 4 Consider the system dynamics in (1) and

(2) and the Kalman filter in (24). Assume that m nodes
can observe the target and the index of those m nodes
are fixed and ordered as 1,..., m. The connectivity graph
Laplacian L(j) with mean L = E[L(j)] is such that
λ2(L) > 0, and p(l, n) > 0 for {l, n} Î E(j). The connec-
tivity graph has switching topologies and is periodic
such that bn(k) = bn is time invariant. If the pair (F, Hn)

is observable for 1 ≤ n ≤ m, then the prediction covar-
iance matrix P̂(k|k − 1) converges to a constant matrix

lim
k→∞

P̂(k|k − 1) = P,

where P is the unique definite solution of the discrete
algebraic Riccati equation (DARE)

P = Q +
1
N2

m∑
n=1

[
FPFT − FPHT

n(HnPHT
n + Rn)

−1
HnPFT

]
β2
n . (25)

Proof See Appendix B.
Theorem 4 asserts that if the connectivity graph topol-

ogy is switching and periodic, the proposed algorithm
can still reach steady-state and the steady-state covar-
iance matrix can be obtained by solving (25). The condi-
tions of graph topology assumed in Theorem 4 are
strong. However, it may still be applicable in certain
situations such as satellite surveillance network in [29],
since the existence of a communication link depends on
distance between nodes and the trajectories of satellites
are pre-determined and periodic, whenever ratios of the
orbit periods are rational. As an example, consider the
network model in Figure 4. The connectivity graph in
Figure 4 is switching and periodic with period equal to
4, and it can be seen that the graph is connected on

average. Let N = 6,m = 4, S0k = {1, 2, 3, 4} and γ (j) = 1
j+1

for 0 ≤ j <J. After iteration Jk = 1, all nodes will have
updated local estimates to be shared. In this case,[
AJk−1
0

]
becomes

[
AJk−1
0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 0 1 0 0
1 −2 1 1 0 0
0 1 0 0 0 0
1 1 0 −1 0 0
1
3 0 1

3
1
3 0 0

1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It can be seen that
[
AJk−1
0

]
is time-variance of m and

the periodic graph topology. Thus, bn(k) = bn is also
time invariant and 1

N

∑m
n=1 βn = 1, which follows from

the condition for unbiasedness in the consensus esti-
mate X(k, j). As we will see shortly, from the simulation
results in Section IV, the filter indeed reaches steady
state in this case, and then, the error covariance matrix
becomes time invariant and the corresponding filter
gain is constant.

4 Numerical examples
In this section, we consider the performance of the pro-
posed distributed tracking with consensus algorithm and
compare it with centralized Kalman filter and distribu-
ted local Kalman filtering with centralized fusion. The
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performance of the centralized Kalman filter is well-
understood [40] and provides a benchmark performance
for distributed local Kalman filtering with centralized
fusion. In distributed local Kalman filtering with centra-
lized fusion, all nodes send their filtered estimates to a
fusion center. The fusion center then generates a fused

estimate x̂fusion(k) = 1
|S0k |
∑

n∈S0k x̂n(k|k).
In the first simulation, we compare the performance of

the proposed algorithm with the distributed local Kalman
filtering with centralized fusion and the centralized Kal-
man filter over a random graph with noisy communica-
tion links and incomplete data. We consider a random
connectivity graph G(N, p) with N = 20 and the probabil-
ity that each link exists p = 0.5. The other parameters of
the simulation setup are: F = 1, Q = 1, x(0) = 0, P0 = 0, Rn
= 0.25, Hn = 1, σ 2

l,n = σ 2 = 0.1, S0k = {n|1 ≤ n ≤ 10,n ∈ Z}
and J = 30.
Figure 5a shows the node estimates of the three algo-

rithms in a time-varying graph with noisy communica-
tion links. As we can see, the node estimates of the
three algorithms follow the target’s trajectory. In Figure
5a, the curve with cross marker denotes the first node’s
estimate by using distributed tracking with consensus
algorithm, the dashed curve denotes the distributed
local Kalman filtering with centralized fusion, and the
curve with circle marker denotes the centralized Kalman

filter and the solid curve denotes the target’s trajectory.
Figure 5b compares the resulting mean squared error
(MSE) of the three algorithms, where the MSE of the
distributed tracking with consensus is defined to be the
average MSE over all nodes
1
N

∑N

n=1

[
(x̄n(k, J) − x(k))T(x̄n(k, J) − x(k))

]
. In Figure

5b, it can be seen that the MSE of the proposed distrib-
uted tracking with consensus algorithm is close to that
of the distributed local Kalman filtering with centralized
fusion. As expected, both of them are higher than the
MSE of the centralized Kalman filter, which acts as a
benchmark. The results in Figure 5 show that the per-
formance of the proposed distributed tracking with con-
sensus algorithm is close to that of the distributed local
Kalman filtering with centralized fusion in a time-vary-
ing random graph with noisy communication and
incomplete data. Additional communication bandwidth,
which depends on graph topology G and number of
iterations J, is required for the proposed algorithm due
to information exchange among nodes. However, it
resolves the bandwidth constraints problem of fusion
center for centralized fusion case and has a high level of
fault tolerance and reliability. Also, because of its advan-
tages of fully distributed implementation, robustness,
and scalability, it may be preferable in practical
applications.

B 

Figure 4 A time-varying graph with switching topologies.
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In the second simulation, we consider the two-dimen-
sional tracking problem treated in [22]. The connectivity
graph is again assumed to be a random graph G(N, p)
with N = 50 and the probability that each link exists p =
0.5. The probability of each node having an observation
at a given time instant is ps = 0.9. The other parameters
of the simulation setup are as follows:

F = I2+εF0+ ε2

2 F
2
0+

ε3

6 F
3
0, F0 =

[
0 −2
2 0

]
, ε = 0.015,Q = (εc2w)

2I2, cw = 5, x(0) = [15,−10]T,Hn = [1, 0]

for n is odd and Hn = [0, 1] for n is even, Rn = c2v
√
n for

n = 1, . . ., N with cv = 30, σ 2
l,n = σ 2 = 1, J = 10. Note

that, the target is moving on noisy circular trajectories.
The target is not fully observable by an individual node,
but is collectively observable by all nodes.
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Figure 5 Comparison of the proposed distributed tracking with consensus algorithm with distributed local Kalman filtering with
centralized fusion and centralized Kalman filter. (a) Node estimates; (b) mean squared error.
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Figure 6a shows the node estimates (trajectory) of the
two algorithms over a time-varying graph with incom-
plete data. In Figure 6a, the curves with markers denote
all the node estimates by using distributed tracking with
consensus algorithm, while the dashed curve denotes
the distributed local Kalman filtering with centralized
fusion and the solid curve denotes the target’s trajectory.
As we can see, both algorithms overcome the impact of
partial observations at each node resulting in improved
overall observation quality and the node estimates by
using distributed tracking with consensus algorithm are
noisy due to the communication noise. Note that the
estimates are close to the trajectory of the target but
with a small gap. That is because the observation noise
covariance is rather large at each node. Figure 6b com-
pares the resulting MSE of these algorithms. It can be
seen that the mean squared error of the proposed algo-
rithm is slightly higher than that of the distributed Kal-
man filtering with centralized fusion.
Next, we study the steady-state behavior in the case of

time-varying graphs with complete data and noiseless
communication. We consider a random connectivity
graph G(N, p) with N = 6 and the probability that each
link exists p = 0.5. The other parameters of the simula-
tion setup are as follows:
F = 1,Q = 1, x(0) = 0P0 = 0.5,Rn = 0.25, σ 2

l,n = σ 2 = 0, J = 30,Hn = 1.
Figure 7a shows the node consensus estimates x̄n(k, J)
over a random graph with noiseless communication
links and complete data. It can be seen that all node
estimates x̄n(k, J) converge to the same value and follow
the target state, as asserted by Theorem 1. Figure 7b
and 7c shows the node estimates x̄n(k, J) in the consen-
sus update after the twenty-first tracking update and the
variance of all the node estimates, respectively. Here, the
variance of all the node estimates is defined as

(k, j) = E
[
(x̄n(k, j) − μ(k, j))T(x̄n(k, j) − μ(k, j))

]
, where

μ(k, j) = 1
N

∑N
n=1 x̄n(k, j). From Figure 7b, it can be seen

that the node estimates converge to the average which
is also confirmed in Figure 7c, where the variance var(k,
j) decreases as consensus iteration number increases and
becomes static (around 10-17) after consensus is
reached. Figure 8 shows the node estimate variance

P̂n(k|k − 1) and Kalman gain Kn(k) of the filter in (20).
It can be seen that as the Kalman filter reaches steady
state, both the node estimate variance and the Kalman
gain converge, as asserted by Theorem 3.
Next, we study the steady-state behavior on a graph

with switching topologies and incomplete data and
noiseless communication. The assumed parameters in
the first simulation setup are as follows:

F = 1,Q = 1, x(0) = 0,P0 = 0.5,Rn = 0.25, σ 2
l,n = σ 2 = 0,N = 6, J = 40, S0k =

{1, 3, 4, 6},Hn = 0.5

for n = 1, 3 and Hn = 1 for n = 4, 6. The connectivity
graph Laplacian is

L(j) =

⎧⎪⎪⎨
⎪⎪⎩
L1 j = 4m
L2 j = 4m + 1
L3 j = 4m + 2
L4 j = 4m + 3

for m = 0, 1, 2, . . . ,

which is shown in Figure 4. As we can see, the graph
is connected on average and p(l, n) > 0 for {l, n} Î E(j),
satisfying the conditions on the connectivity graph
Laplacian required in Theorem 1.
Figure 9 shows the prediction covariance matrix

P̂n(k|k − 1) and Kalman gain Kn(k) of the filter in (20),
respectively. It can be seen that as the Kalman filter
reaches the steady state, both the prediction covariance
matrix and the Kalman gain converge, as asserted by
Theorem 4. Note that the limit of the Kalman gain is
different for different nodes in Figure 9 because the
observation matrix Hn is different for different nodes.

5 Conclusions
In this paper, we considered the problem of distributed
tracking with consensus on a time-varying graph with
incomplete data and noisy communication links. We
developed a framework consisting of tracking and con-
sensus updates to handle the issues of time-varying net-
work topology and incomplete data. We discussed the
conditions for achieving consensus, quantified the con-
vergence rate and analyzed the steady-state performance
when applicable. Our simulation results showed that the
proposed distributed tracking with consensus algorithm
improves the estimation quality at each node and its
performance is close to that of the distributed local Kal-
man filtering with centralized fusion. The proposed
algorithm shows advantages of fully distributed imple-
mentation, robustness and scalability, which is preferable
in practical application.

Appendix A
Proof of Lemma 3
Proof Since λ2(L) > 0 and p(l, n) > 0 for {l, n} Î E(j),
the undirected time-varying connectivity graph G(j) is
connected on average with non-zero link probability.
For j large enough, each node will receive the informa-
tion from one another and generate its updated local

estimates. For a fixed k, let Jk = inf{j|(Sjk)c = ∅, j ≥ 0}.
Then, we have the effective network graph is the same
as connectivity graph G̃(j) = G(j), L(j) = L(j) and Γ(j) = g
(j) IN for j ≥ Jk.
Since P[X(j)|X(j − 1), . . . ,X(0)] = P[X(j)|X(j − 1)],

the process {X̄(j)}j≥0 is Markov. Define
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V(j,X) = X
T
(L ⊗ IM)X. Since we assume the graph is

undirected and connected on average, L is positive semi-
definite. Then, the potential function V(j,X) is non-
negative. Since X εC is an eigenvector of L ⊗ IM with
zero eigenvalue, V(j,X) ≡ 0,X ∈ C, limX→Csupj≥0V(j,X) = 0.

From Courant-Fisher Theorem [31,41], for Z Î ℝN M

and Z⊥C, we have

ZT(L ⊗ IM)Z ≥ λ2(L ⊗ IM)ZTZ. (26)

A 
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Figure 6 Comparison of the proposed distributed tracking with consensus algorithm and distributed Kalman filter with centralized
fusion in a two-dimensional tracking problem. (a) Trajectory; (b) mean squared error.
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Figure 7 Performance of the distributed tracking with consensus algorithm for complete data and noiseless communication case. (a)
Node consensus estimates x̄n(k, J) versus tracking time step; (b) node estimates x̄n(k, j) versus consensus iteration number; (c) variance of
node estimates var(k, j) versus consensus iteration number.
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B 

Figure 8 Steady-state performance of the distributed tracking with consensus algorithm for complete data and noiseless
communication case. (a) Prediction covariance matrix P̂n(k|k − 1) Kalman gain Kn(k).
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From Lemma 1 and the complement of the �-neigh-
borhood of a set in (10), we have
X ∈ Vε(C) ⇒ ∥∥XC⊥

∥∥ ≥ ε. Then, for X ∈ Vε(C), from
(26) and the properties of Kronecker product and eigen-
values, we will have

V(j,X) = X
T
(L ⊗ IM)X = X

T
C⊥(L ⊗ IM)XC⊥ + X

T
C(L ⊗ IM)XC ,

≥ λ2(L ⊗ IM)
∥∥XC⊥

∥∥2 = λ2(L)
∥∥XC⊥

∥∥2 ≥ λ2(L)ε2.
(27)

Since λ2(L) > 0, we get
infj≥0,X∈Vε(C)V(j,X) ≥ λ2(L)ε2 > 0. Consider the gener-
ating operator L and (11). Using the fact that L(j) = L(j)
for j ≥ Jk, we obtain

LV(j,X) = E[X(j + 1)T(L ⊗ IM)X(j + 1)|X(j) = X] − X
T
(L ⊗ IM)X,

= E
[
[X − γ (j)(L(j) ⊗ IM)X − γ (j)	(j)]

T
(L ⊗ IM)

×[X − γ (j)(L(j) ⊗ IM)X − γ (j)	(j)]
]− X

T
(L ⊗ IM)X for j ≥ Jk.

B

 A

Figure 9 Steady-state performance of the distributed tracking with consensus algorithm for incomplete data and noiseless
communication case. (a) Prediction covariance matrix P̂n(k|k − 1); (b) Kalman gain Kn(k).
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From (6), we have E[‖ 	(j)‖2] ≤ η. By using the inde-
pendence of L(j) and 	(j) with respect to X̄(j) and

X
T
LX ≤ λN(L) ‖ XC⊥‖2[32], after some work, we have that

LV
(
j,

−→
X
)
= −2γ (j)X

T(
L ⊗ IM

)2
X + γ 2(j)X

T(
L ⊗ IM

)3
X

+E
[
γ 2(j)

[(
L̃(j) ⊗ IM

)
X
]T (

L ⊗ IM
) (

L̃(j) ⊗ IM
)
X
]

+E
[
γ 2(j)	(j)T

(
L ⊗ IM

)
	(j)

]
,

≤ −2γ (j)X
T(
L ⊗ IM

)2
X + γ 2(j)

[
λ3
N(L)

∥∥XC⊥
∥∥2 + λN

(
L
)
E
[∥∥∥(L̃(j) ⊗ IM

)
X
∥∥∥2]

+λN
(
L
)
E
[∥∥	(j)

∥∥2]] ,
≤ −2γ (j)X

T(
L ⊗ IM

)2
X + γ 2(j)

[
λ3
N

(
L
) ∥∥XC⊥

∥∥2 + 4N2λN
(
L
) ∥∥XC⊥

∥∥2 + λN
(
L
)
η
]
.

The last step follows from the fact that all the eigen-
values of L̃(j) are less than 2N in absolute value, by the
Gershgorin circle theorem. Using the fact that

X
T (

L ⊗ IM
)
X ≥ λ2

(
L
) ∥∥XC⊥

∥∥2 from (27), we have

LV (j,X) ≤ −2γ (j)X
T(
L ⊗ IM

)2
X + γ 2(j) [λN

(
L
)
η +

(
λ3
N

(
L
)

λ2
(
L
) +

4N2λN
(
L
)

λ2
(
L
)
)

×X
T (

L ⊗ IM
)
X
]
,

≤ −2γ (j)ϕ
(
j,X
)
+ g(j)

[
1 + V

(
j,X
)]

for j ≥ Jk,

where ϕ
(
j,X
)
= 2X

T(
L ⊗ IM

)2
X, g(j) = γ 2(j)max

(
λN
(
L
)
η,

λ3
N

(
L
)

λ2
(
L
) +

4N2λN
(
L
)

λ2
(
L
)
)
.

Then, the theorem follows by using Lemma 2.

Appendix B
Proof of Theorem 4
Proof Step 1: Bound on the error covariance
From (1), it can be easily shown that the controllabil-

ity matrix has full rank and the system is controllable.
Since (F, Hn) is detectable, ∃K ′

n such that (F − K ′
nHn) are

stable. Consider the suboptimal filter

x̂n (k + 1|k) = Fx̂n (k|k − 1) + K ′
n

(
yn(k) − Hnx̂n (k|k − 1)

)
,

Since consensus is reached in consensus update part,
x̂n (k|k − 1) = x̂l (k|k − 1) = x̂ (k|k − 1) for 1 ≤ n, l ≤ N.
Then,

x̂ (k + 1|k) = 1
N

(
F

m∑
n=1

βn−
m∑
n=1

K ′
nHnβn

)
x̂ (k|k − 1) +

1
N

m∑
n=1

K ′
nyn(k)βn.

It is easily verified that

x̃ (k + 1|k) = x(k + 1) − x̂ (k + 1|k) ,

=

(
F − 1

N

m∑
n=1

K ′
nHnβn

)
x̃ (k|k − 1) − 1

N

m∑
n=1

K ′
nυn(k)βn + w(k),

where the last step follows from the fact that the esti-

mate is unbiased and
1
N

∑m
n=1 βn = 1. Since (F − K ′

nHn)

is stable,
(
F − 1

N

∑m

n=1
K ′

nHnβn

)
is also stable. It fol-

lows that the covariance matrix
∏

(k) = Cov
[
x̃ (k|k − 1)

]
is bounded, where Cov(x) denotes the covariance matrix

of x. However, the filter above is suboptimal, so that P
(k|k - 1) ≤ ∏ (k).
Step 2: Monotonicity of the error covariance
Recall that the mapping f : P̂n(k|k − 1) → P̂n(k + 1|k)

as P̂n(k + 1|k) = minKng(P̂n(k|k − 1),Kn), where

g(P̂n,Kn) = (F − KnHn)P̂n(F − KnHn)T + KnRnK
T
n +Q.

Thus, if P̂n(k|k − 1) ≥ P̂′
n(k|k − 1)

P̂n(k + 1|k) = min
Kn

g(P̂n(k|k − 1),Kn) = g(P̂n(k|k − 1),K∗
n) ≥ g(P̂′

n(k|k − 1),K∗
n),

≥ min
Kn

g(P̂′
n(k|k − 1),Kn) = P̂′

n(k + 1|k).

Therefore, the mapping f from P̂n(k|k − 1) to

P̂n(k + 1|k) is monotonic. Because

P̂(k + 1|k) = 1
N2

∑m
n=1 P̂n(k + 1|k)β2

n, the mapping

f̂ : P̂(k|k − 1) → P̂(k + 1|k) is also monotonic.
Step 3: Use of zero initial covariance
Suppose P̂(0| − 1) = 0. Then P̂(1|0) ≥ P̂(0| − 1) = 0.

But from Step 2 it follows that P̂(k + 1|k) ≥ P̂(k|k − 1),

for k ≥ 0. Since
{
P̂(k|k − 1)

}
is bounded by Step 1, then

P̂(k|k − 1) → P for some P ≥ 0. Obviously, P must be a
stationary point of the covariance update equation,
hence solves the DARE.
Step 4:Asymptotic stability of the filter
With Kn the stationary gain corresponding to P, the

DARE is

P =

(
F − 1

N

m∑
n=1

K̄nHnβn

)
P

(
F − 1

N

m∑
n=1

K̄nHnβn

)T

+
1
N2

m∑
n=1

K̄nRnK̄T
nβ2

n + GGT ,

where GGT = Q. Let ν be a left eigenvector of(
F − 1

N

∑m

n=1
K̄nHnβn

)
with eigenvalue l. Then

(vPvT) = |λ|2(vPvT) + 1
N2

m∑
n=1

vK̄nRnK̄T
nv

Tβ2
n + vGGTvT.(28)

Since Rn and Q are positive semidefinite, it implies
that |l| ≤ 1. It only remains to show that |l| = 1 is
impossible. If |l| = 1, we have from (28) and the defini-
tion of v:

v

(
F − 1

N

m∑
n=1

K̄nHnβn

)
= λv, vK̄n = 0, and vG = 0,

which gives that ν[lI - F, G] = 0. This contradicts the
assumption that (F, G) is stabilizable.
Step 5: Nonzero initial covariances
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Suppose we use the stationary suboptimal filter
K ′
n ≡ K̄n to obtain the estimate x̂(k|k − 1). We show that

its error covariance converges to P.
Defining x̃(k|k − 1) � x(k) − x̂(k|k − 1), we obtain

x̃(k|k − 1) =

(
F − 1

N

m∑
n=1

K̄nHnβn

)
x̃(k|k − 1) − 1

N

m∑
n=1

K̄nvn(k)βn + w(k).

Since

(
F − 1

N

∑m

n=1
K̄nHnβn

)
is stable with eigenvalue |

l| < 1, it follows from above results on stationary behavior
that �(k) ≡ Cov[x̃(k|k − 1)] → P̃ ≥ 0, where P̃ is the
unique non-negative solution of the Lyapunov equation:

P̃ =

(
F − 1

N

m∑
n=1

K̄nHnβn

)
P̃

(
F − 1

N

m∑
n=1

K̄nHnβn

)T

+
1
N2

m∑
n=1

K̄nRnK̄T
nβ

2
n +Q.

However, substituting K̄n this is just the DARE which is
satisfied by P, hence P̃ = P. Now, x̂(k|k − 1) is suboptimal
so that P(k|k − 1) ≤ �(k) → P̃. On the other hand, by

monotonicity of mapping f̂ : P̂(k|k − 1) → P̂(k + 1|k), it
follows that P(k|k − 1) ≥ P0(k|k − 1) → P, where P0(k|k − 1)
is the covariance for P(0| - 1) = 0. Hence, P(k|k - 1) ® P.

Endnotes
aThe assumption here is that at the beginning of the
consensus update process, the filtered estimates at dif-
ferent nodes are statistically uncorre-lated. bNote that,

for n ∈ (Sjk)
c and

∑N
l=1 An,l(j) = 0, node n does not

receive information from any node that has local track-
ing estimate. Then, x̄n(k, j + 1) = x̄n(k, j) . cNote that,
similar results on the unbiasedness of consensus esti-
mate was obtained in [29]. dFor practical consideration,
due to energy constraints of sensor networks, the time
period J for consensus process is not too long such that
the nodes can still efficiently obtain new information
from the source [38]. Simulation results in Section IV
show how the algorithm performs in this case. eNote
that the convergence rate calculated here is for the per-
iod of Jk ≤ j ≤ J, where J ≫ 1 is the number of consen-
sus iterations. From persistence condition (9), limj®∞ g
(j) = 0. Then g(j) is very close to zero and the conver-
gence speed can be assumed negligible for j ≥ J and J
large enough [26,42].
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