
RESEARCH Open Access

High-resolution image segmentation using fully
parallel mean shift
Balázs Varga* and Kristóf Karacs

Abstract

In this paper, we present a fast and effective method of image segmentation. Our design follows the bottom-up
approach: first, the image is decomposed by nonparametric clustering; then, similar classes are joined by a
merging algorithm that uses color, and adjacency information to obtain consistent image content. The core of the
segmenter is a parallel version of the mean shift algorithm that works simultaneously on multiple feature space
kernels. Our system was implemented on a many-core GPGPU platform in order to observe the performance gain
of the data parallel construction. Segmentation accuracy has been evaluated on a public benchmark and has
proven to perform well among other data-driven algorithms. Numerical analysis confirmed that the segmentation
speed of the parallel algorithm improves as the number of utilized processors is increased, which indicates the
scalability of the scheme. This improvement was also observed on real life, high-resolution images.

Keywords: High resolution imaging, Parallel processing, Image segmentation, multispectral imaging, Computer
vision

1 Introduction
Thanks to the mass production of fast memory devices,
state of the art semiconductor manufacturing processes,
and vast user demand, most contemporary photograph
sensors built into mainstream consumer cameras or even
smartphones are capable of recording images of up to a
dozen megapixels or more. In terms of computer vision
tasks such as segmentation, image size is in most cases
highly related to the running time of the algorithm. To
maintain the same speed on increasingly large images,
the image processing algorithms have to run on increas-
ingly powerful processing units. However, the traditional
method of raising core frequency to gain more speed–
and thus computational throughput–has recently become
limited due to high thermal dissipation, and the fact that
semiconductor manufacturers are attacking atomic bar-
riers in transistor design. For this reason, future trends of
different types of processing elements–such as digital
signal processors, field programmable gate arrays or gen-
eral-purpose computing on graphics processing units
(GPGPUs)–point toward the development of multi-core
and many-core processors that can face the challenge of

computational hunger by utilizing multiple processing
units simultaneously [1].
Our interest in this paper is the task of image segmenta-

tion in the range of quad-extended and hyper-extended
graphics arrays. We have designed, implemented and
numerically evaluated a segmentation framework that
works in a data parallel way, and which can therefore effi-
ciently utilize many-core mass processing environments.
The structure of the framework follows the bottom-up
paradigm and can be divided into two main sections. Dur-
ing the first, clustering step, the image is decomposed into
sub-clusters. The core of this step is based on the mean
shift segmentation algorithm, which we embedded into a
parallel environment, allowing it to run multiple kernels
simultaneously. The second step is a cluster merging pro-
cedure, which joins sub-clusters that are adequately simi-
lar in terms of color and neighborhood consistency. The
framework has been implemented on a GPGPU platform.
We did not aim to exceed the quality of the original mean
shift procedure. Rather, we have showed that our parallel
implementation of the mean shift algorithm can achieve
good segmentation accuracy with considerably lower run-
ning time than the serial implementation, which operates
with a single kernel at a time. Numerical evaluation was
run on miscellaneous GPGPUs with different numbers of
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stream processors to demonstrate algorithmic scaling of
the clustering step and speedup in segmentation
performance.
The paper is organized as follows: in Sect. 2, we dis-

cuss the fundamentals of the mean shift algorithm, the
available speedup strategies and the most important
mean shift-based image segmentation methods. Section
3 discusses the basic steps of our version of the algo-
rithm, while Sect. 4 describes the main parametric and
environmental aspects of the numerical evaluation. The
results are summarized in Sect. 5 and a conclusion is
given in Sect. 6.

2 Related work
The first part of this section gives a brief overview of
prominent papers that describe the evolution of the
mean shift algorithm and also reveals the most impor-
tant parts of its inner structure. The second part focuses
on acceleration strategies, while the third considers state
of the art algorithms that deal explicitly with high defi-
nition images and that rely partially or entirely on mean
shift.

2.1 Mean shift origins
The basic principles of the mean shift algorithm were
published by Fukunaga and Hostetler [2] in 1975, who
showed that the mean shift iteration always steps toward
the direction of the densest feature point region. Twenty
years later, Cheng [3] drew renewed attention to the
algorithm by pointing out that the mode seeking process
of the procedure is basically a hill climbing method, for
which he also proved convergence. Comaniciu and
Meer [4] successfully applied the algorithm in the joint
spatial-range domain for edge preserving filtering and
segmentation. Furthermore, in [5] they gave a clear and
extensive computational overview, proved the smooth
trajectory property, studied bandwidth selection strate-
gies and their effects on different feature spaces.
The standard mean shift algorithm is briefly summar-

ized in the next subsection.

2.2 Mean shift basics
The mean shift technique considers its feature space as
an empirical probability density function. A local maxi-
mum of this function (namely, a region over which it is
highly populated) is called a mode. Mode calculation is
formulated as an iterative scheme of mean calculation,
which takes a certain number of feature points and cal-
culates their weighted mean value by using a kernel
function, such as the Gaussian. If we assume that the
covariance matrix is an identity matrix multiplied with
the variance (or with other words, the kernel is radially
symmetric), the generalized form of the Gaussian is:
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where x-s are the considered feature point samples, x0
stands for the mean value, s2 denotes the variance and
d is the number of dimensions of x.
The algorithm can handle various different types of fea-

ture spaces, such as edge maps or texture, but in most
cases of still image segmentation, a composite feature
space consisting of topological (spatial) and color (range)
information is used. Consequently, each feature point in
this space is represented by a c = (xr; xs) 5D vector,
which consists of the 2D position xs = (x, y) of the corre-
sponding pixel in the spatial lattice, and its 3D color
value xr in the applied color space (for instance, in the
current paper, we use xr = (Y, Cb, Cr) coordinates).
The iterative scheme for the calculation of a mode is

as follows: let ci and zi be the 5D input and output
points in the joint feature space for all i Î [1, n], with n
being the number of pixels in color image I. Then, for
each i

1. Initialize χk = 0
j with the original pixel value and

position;
2. Compute a new weighted mean position using the

iterative formula
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where g denotes the Gaussian kernel function with hs
and hr being the spatial and range bandwidth para-
meters respectively, until

‖ χk+1
i − χk

i ‖< thresh (3)

that is, the shift of the mean positions (effectively a
vector length) falls under a given threshold (referred to
as saturation).

3. Allocate zi = χk+1
i .

In short, when starting the iteration from ci, output
value zi stores the position of the mode that is obtained
after the last, (k + 1) th step. Clusters are formulated in
such a way that those zi modes that are adequately close
to each other are concatenated, and all elements in the
cluster inherit the color of the contracted mode, result-
ing in a non-overlapping clustering of the input image.
In this manner, segmentation is done in a nonpara-
metric way: unlike in the case of some other clustering
methods such as K-means, mean shift does not require
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the user to explicitly set the number of classes. In addi-
tion, as a result of the joint feature space, the algorithm
is capable of discriminating scene objects based on their
color and position, making mean shift a multipurpose,
nonlinear tool for image segmentation.
Despite the listed advantages, the algorithm has a nota-

ble downside. The naive version, as described above, is
initiated from each element of the feature space, which–as
pointed out by Cheng [3]–comes with a computational
complexity of O(n2) . The fact that running time is quad-
ratically proportional to the number of pixels makes it
slow, especially when working with high definition images.
Several techniques were proposed in the past to speed

up the procedure, including various methods for sampling,
quantization of the probability density function, paralleli-
zation and fast nearest neighbor retrievement among
other alternatives. In next two subsections, we enumerate
the most common and effective types of acceleration.

2.3 Acceleration strategies tested in standard definition
DeMenthon et al. [6] reached lower complexity by apply-
ing an increasing bandwidth for each mean shift iteration.
Speedup was achieved by the usage of fast binary tree
structures, which are efficient in retrieving feature space
elements in a large neighborhood, while a segmentation
hierarchy was also built.
Yang et al. [7] accelerated the process of kernel density

estimation by applying an improved Gaussian transform,
which boosts the summation of Gaussians. Enhanced by a
recursively calculated multivariate Taylor expansion and
an adaptive space subdivision algorithm, Yang’s method
reached linear running time for the mean shift. In another
paper [8], they used a quasi-Newton method. In this case,
the speedup is achieved by incorporating the curvature
information of the density function. Higher convergence
rate was achieved at the cost of additional memory and a
few extra computations.
Comaniciu [9] proposed a dynamical bandwidth selec-

tion theorem, which reduced the number of iterations till
convergence, although it requires some a priori
knowledge.
Georgescu et al. [10] speed up the nearest neighbor

search via locality sensitive hashing, which approximates
the adjacent feature space elements around the mean. As
the number of neighboring feature space elements is
retrieved, the enhanced algorithm can adaptively select the
kernel bandwidth, which enables the system to provide a
detailed result in dense feature space regions. The perfor-
mance of the algorithm was evaluated by performing a
texture segmentation task as well as the segmentation of a
50 dimensional hypercube.
Usage of anisotropic kernels by Wang et al. [11] was

aimed at improving quality. The benefit over simple

adaptive solutions is that such kernels adapt to the
structure of the input data; therefore, they are less sensi-
tive to the initial kernel bandwidth selection. However,
the improvement in robustness is accompanied by an
additional cost of complexity. The algorithm was tested
on both images and video, where the 5D feature space
was enhanced with a temporal axis.
Several other techniques were proposed by Carreira-

Perpiñán [12] to achieve speedups: he applied variations
of spatial discretisation, neighborhood subsets, and an
EM algorithm [13], from which spatial discretisation
turned out to be the fastest. He also analyzed the suit-
ability of the Newton method and later on proposed an
alternative version of the mean shift using Gaussian
blurring [14], which accelerates the convergence rate.
Guo et al. [15] aimed at reducing the complexity by

using resampling: the feature space is divided into local
subsets with equal size, and a modified mean shift itera-
tion strategy is performed on each subset. The cluster
centers are updated on a dynamically selected sample
set, which is similar to the effect of having kernels with
iteratively increasing bandwidth parameter; therefore, it
speeds up convergence.
Another acceleration technique proposed by Wang

et al. [16] utilized a dual-tree methodology. During the
procedure, a query tree and a reference tree is built, and
in an iteration a pair of nodes chosen from the query
tree and the reference tree is compared. If they are simi-
lar to each other, a mean value is linearly approximated
for all points in the considered node of the reference
tree, while also an error bound is calculated. Otherwise
the traversal is recursively called for all other possible
node pairs until it finds a similar node pair (subject to
the error boundary) or reaches the leafs. The result of
the comparison is memory-efficient cache of the mean
shift values for all query points speeding up the mean
shift calculation. Due to the applied error boundary, the
system works accurately, however the query tree has to
be iteratively remade in each mean shift iteration at the
cost of additional computational overhead.
Zhou et al. [17] employed the mean shift procedure

for volume segmentation. In this case the feature space
was tessellated with kernels resulting in a sampling of
initial seed points. All mean shift kernels were iterated
in parallel and as soon as the position of two means
overlapped, they were concatenated subject to the
assumption that their subsequent trajectory will be iden-
tical. Consequently, complexity was reduced in each
iteration giving a further boost to the parallel inner
scheme. Sampling on the other hand was performed
using a static grid which may result in loss of informa-
tion in the case when there are many small details on
the image.
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Jia et al. [18] also utilized feature space sampling along
the nodes of a static-sized grid pattern. Next, 3-8 itera-
tions of the k-means algorithm was run in order to pre-
classify the feature space. Finally the mean shift segmen-
tation was initialized from the seed positions into which
the k-means converged into. The framework was imple-
mented in a GPGPU environment in which the authors
managed to reach close to real-time processing for VGA-
sized grayscale images.
Zhang et al. [19] approached the problem of complexity

from the aspect of simplifying the mixture model behind
the density function, which is done using function approx-
imation. As the first step, similar elements are clustered
together, and clustering is then refined by utilizing an
intra-cluster quantization error measure. Simplification of
the original model is then performed using an error
bound being permanently monitored. Thus the mean shift
run on the simplified model gives results comparable in
quality to the variable bandwidth mean shift utilized on
the original model, but at a much lower complexity and
hence with a lower computational demand.
Although the performance, scaling and feasibility of the

above approaches have not been tested on high definition
images, they are discussed here due to their valuable con-
tribution to the theory and the applications of mean shift.
As the final step before entering the high definition image
domain, the most prominent recent segmentation meth-
ods are briefly considered, which do not employ mean
shift, but are mentioned here because of their real-time, or
outstanding volumetric segmentation capability achieved
via the utilized parallel scheme.
Hussein et al. [20] and Vineet et al. [21] proposed a par-

allel version of graph cuts, Sharma et al. [22] and Roberts
et al. [23] both introduced a version of a parallel level-set
algorithm, Kauffmann et al. [24] implemented a cellular
automaton segmenter on GPGPUs, while Laborda et al.
[25] presented a real-time GPGPU-based segmenter using
Gaussian mixture models.
Finally, Abramov et al. [26] used the Potts model, a gen-

eralized version of the Ising superparamagnetic model for
segmentation. In this system pixels are represented in the
form of granular ferromagnets having a finite number of
states. Equilibrium is found through two successive stages.
As the first step, preliminary object boundaries are
returned using a twenty-iteration Metropolis-Hastings
algorithm, and the resulting objects of the binary image
mask are then labeled. In the second step, segment labels
are finalized in a five Metropolis iterations. To avoid false
minima that may cause domain fragmentation, annealing
iterations are performed slowly, which has an additional
time demand, but still the system runs with 30 FPS at a
resolution of 320 × 256, making it suitable for online
video processing.

2.4 Acceleration strategies tested in high definition
In this section we discuss recently published, mean
shift-related papers, all of them explicitly providing seg-
mentation performance in the megapixel range.
Paris and Durand [27] employed a hierarchical seg-

mentation scheme based on the usage of Morse-Smale
complexes. They used explicit sampling to build the
coarse grid representation of the density function. Clus-
ters are then formulated using a smart labeling solution
with simple local rules. The algorithm does not label
pixels in the region of cluster boundaries; this is done
by an accelerated version of the mean shift method.
Additional speedup was obtained by reducing the
dimensionality of the feature space via principal compo-
nent analysis.
Freedman and Kisilev [28,29] applied sampling on the

density function, forming a compact version of the ker-
nel density estimate (KDE). The mean shift algorithm is
then initialized from every sample of the compact KDE,
finally each element of the original data set is mapped
backwards to the closest mode obtained with the mean
shift iteration.
Xiao and Liu [30] also proposed an alternative scheme

for the reduction of the feature space. The key element
of this technique is based on the usage of kd-trees. The
first step of the method is the construction of a Gaus-
sian kd-tree. This is a recursive procedure that considers
the feature space as a d-dimensional hypercube, and in
each iteration splits it along the upcoming axis in a cir-
cular manner until a stopping criterion is met, providing
a binary tree. In the second step of this algorithm, the
mean shift procedure is initialized from only these
representative leaf elements resulting in modes. Finally,
the content of the original feature space is mapped back
to these modes. The consequence of this sampling
scheme is decreased complexity, which, along with the
utilization of a GPGPU, boosted the segmentation per-
formance remarkably.

3 Computational method
Our framework is devoted to accelerate the segmenta-
tion speed of the mean shift algorithm with a major
focus on its performance on high resolution images.
The acceleration strategies used are summarized below:
1. Reduce the computational complexity by sampling

the feature space.
2. Gain speedup through the parallel inner structure

of the segmentation.
3. Reduce the number of mean shift iterations by

decreasing the number of saturated kernels required for
termination (referred to as abridging).
Figure 1 reveals the flowchart of the segmentation

framework.
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3.1 Sampling scheme
The motivation behind sampling is straightforward: it
reduces the computational demand, which is a cardinal
aspect in the million-element feature space domain. The
basic idea is that instead of using all n feature points,
the segmentation is run on n’ <<n initial elements. The
mean shift iteration is then started from these seed
points, and the other elements of the feature space are
assigned to the so-obtained modes by using certain local
rules [12,15,17,18,27,29].
There are however two major things one has to take

into account in the case of sampling: undersampling the
feature space can highly decrease segmentation quality,
while oversampling leads to computational and mem-
ory-related overheads.
To address the above concerns, we have designed a

recursive sampling scheme which works as follows:
1. Initialize a mean shift kernel in a yet unclustered

element i of the feature space and repeat the mode
seeking iteration until termination.
2. At this point cj feature space element is assigned to

a zi = χk+1
i = (xk+1r,i ; xk+1s,i ) mode that is obtained from ci

sampled initial mean shift centroid if, and only if

‖ xs,j − xls,i ‖< hs, (4)

and

‖ xr,j − xlr,i ‖< hr , (5)

where l Î [0, k + 1] denotes the mean shift iterations.
In case a pixel is covered by more than one kernel, it is
associated to the one with the most similar color.
3. If unclustered pixels remain after the pixel-cluster

assignment, resampling is done in the joint feature space,
and new mean shift kernels are initialized in those
regions, in which most unclustered elements reside.

3.2 Dynamic kernel initialization
Since resampling is driven by the progress of the clus-
tering of the feature space, both the number and the
position of mean shift kernels is selected in proportion
to the content of the image. Note that in the case of
real life images, the image usually contains high fre-
quency shading and gleams due to inconsistent lighting
conditions. These phenomena appear in the feature
space as outliers. For this reason, we applied a similar
solution to Meer and Comaniciu’s “M threshold” [4], but

Figure 1 Flowchart of the segmentation framework. The result of the recursive mode seeking procedure is a clustered output that is an
over-segmented version of the input image. The step of mode seeking is therefore succeeded by the merging step that concatenates similar
clusters such that a merged output is obtained. The term “FSE” refers to feature space element.
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instead of removing small classes from the fully clus-
tered image in a post-processing step, resampling is ter-
minated when the number of clustered elements in the
feature space reaches 99%, at which point all unclus-
tered elements are assigned to the closest mode.

3.3 Cluster merging
After the iterative clustering procedure finished, cluster
merging was performed. We used two simple rules for
concatenation: cluster i and j are joined if they satisfy the
following two criteria:
C1. The two clusters have a common border in terms

of eight-neighbor connectivity.
C2.

‖xr,i − xr,j‖ < hr (6)

where xr,i and xr,j are the range components of the
corresponding cluster modes.
If both criteria hold for a pair of observed classes, the

position of the mode in the feature space is recalculated as
follows: let Ni and Nj denote the number of pixels in clus-
ters i and j respectively, and let us suppose that the two
are merged into cluster k. Then the spatial and range
information carried by mode zk of the newly formed clus-
ter becomes a weighted average of the conjoined duet:

zk =
Ni ∗ zi +Nj ∗ zj

Ni +Nj
. (7)

3.4 Parallel extension
Constructing a parallel inner structure for the frame-
work is motivated by the following considerations:
1. The task is computationally intensive;
2. The task is highly data parallel [31].
The kernels of the mean shift segmenter perform the

same, iterative procedure [5] on the data corpus, which
allows for their efficient implementation on a parallel
processor array.
The recursive serial framework described in Sect. 3.2

was extended to work in a parallel way:
1. Initialize a given number of mean shift kernels on

the joint feature space.
2.a Perform the iterative mode seeking procedure

(Equation 2) of the concurrent kernels simultaneously
until termination.
2.b Perform pixel-cluster assignment according to

Equations 4 and 5 respectively and save the position of
the obtained modes.
3. Observe the topology of unclustered elements:
- If the feature space requires additional clustering, go

to step 1.
- If the feature does not require additional clustering,

proceed to cluster merging.

Merging is performed after the clustering is finished,
and it is also a recursive procedure:
1. Compute pairwise neighboring information of the

clusters (i.e. isolate clusters for which C1 is true).
2. Observe criterion C2 for adjacent clusters:
- If C2 does not hold for any cluster pair, terminate

the merging procedure.
- Otherwise, continue with step 3.
3.a Concatenate clusters for which both C1 and C2

hold by recalculating the feature space position of the
class-defining mode using Equation 7.
3.b Return to step 1.
While the theoretical advantages of parallel systems

are widely known, the parallel implementation of the
mean shift algorithm results in a few drawbacks that do
not occur in the serial version.
The most important aspect of the parallel implementa-

tion is the memory intensive behavior. The position of a
given mean is calculated using Equation 2 on the elements
residing in the kernel’s region of interest (ROI). However,
the feature space elements grouped by the different ROI
windows are stored in non-consecutive places in the
device memory. This pattern does not favor coalescent
memory access directly, which slows down the simulta-
neous mode seeking procedure. In order to accelerate
these ROI operations, the ROI windows of a given mode
seeking step are “cut” from the feature space and stored in
a continuous structure.
The implementation induces another important change

in the mean shift scheme. When running the mode seeking
process given by Equation 2 on multiple autonomous ker-
nels at once, it is not feasible to isolate saturated modes
and replace them with new kernels in a “hot swap” way,
due to the characteristics of block processing. Although
such a switching solution is theoretically possible, it
involves a lot of additional memory operations, which have
a negative influence on the speed of the segmentation pro-
cedure. For this reason, a new mean position is calculated
for each of the kernels utilized by the current sampling
operation, until Equation 3 is met by every single one of
them. Since this property is not present in the sequential
mean shift, two important remarks should be made here.
1. This property does not result in corruption con-

cerning image content retrieval. Kernels for which the
shift of the mean value is below the threshold (Equation
3) will continue stepping toward the steepest ascent [3].
2. This property results in an overhead in terms of

computational complexity.

3.5 The abridging method
In order to suppress the number of redundant iterations
(in other words, the number of additional steps of the
kernels that are beyond saturation), we introduced a so-
called abridging method.
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The method uses a single constant called the abrid-
ging parameter A Î [0,1] that specifies the minimum
proportion of kernels that is required to saturate. At the
time instant this value is met, the ongoing mode seeking
procedure is terminated and the next resampling itera-
tion is initialized.
The usage of abridging is demonstrated through the

following example (see Figure 2): consider a parallel
mode seeking procedure, which is performed on n ker-
nels simultaneously, and let us say that it takes m mean
shift iterations until all kernels saturate. The ratio of

kernel saturation follows an exponential pattern; such
that a remarkable fraction of the kernels saturates in the
first few shifting steps, so that in their case, each addi-
tional iteration is superfluous. The abridging parameter
gives us a simple tool to terminate the mode seeking pro-
cedure after a reasonable amount of steps, when the
number of saturated kernels is satisfactory.
The practical effect of the abridging parameter was stu-

died by running the segmentation on 100 images provided
by the “test set” of the Berkeley Segmentation Dataset and
Benchmark (BSDS) [32] using various bandwidths and

Figure 2 Demonstration of the kernel saturation tendency. The upper half of the figure gives an example for a mode seeking procedure
with n simultaneously iterated kernel windows. Consecutive iterations are marked with “IT”, and the length of the arrows are proportional to the
length of the shift of the given kernel’s mean. Saturated kernels are filled, with a thick black silhouette highlighting the first such iteration. Each
consecutive iteration for that kernel is redundant. The bottom half illustrates the number of mean shift steps versus the percentage of saturated
kernels.
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abridging parameters (see Sect. 4.4). The main conclusions
are discussed briefly in the following, whereas a more
detailed description is given in the sections as noted. The
following aspects were analyzed:
1. Impact on the number of mean shift iterations. The

main motivation for using the abridging method is its
strong reduction of the number of mean shift iterations.
Compared to a setting of A = 1, a framework with A = 0.6
requires 3.1 times less mean shift iterations on average. In
this case, the fact that in 95% of the cases the reduction
was at least 2.04 times and standard deviation value of
0.79 underlines that the speedup is stable and present at a
broad selection of bandwidths.
2. Impact on the number of resampling iterations. Abrid-

ging increases the number of resampling iterations, but
has a small and strictly monotonically decreasing effect,
which is inversely proportional to the bandwidth para-
meters. The number of resampling iterations showed an
increase of 1-15% on average in a system with an abridging
parameter of 0.6, which corresponds to 0.02-1.77 addi-
tional resamplings depending on the selected bandwidth
parameters.
3. Impact on segmentation speed. The usage of the abrid-

ging parameter reduces the time demand of the mode
seeking procedure, because although it may increase the
number of resampling operations, it drastically cuts back
the number of required mean shift iterations. Sect. 5.2
gives a complete overview.
4. Impact on output quality. The position of the mean

values of kernels that did not saturate at the instant the
abridging parameter caused termination are not situated
at the local maxima of the underlying probability density
map. Due to our pixel-cluster assignment scheme, this
only implies the formulation of clusters that have more
localized color information, and in practice, appears in the
form of a slight over-segmentation. See Sect. 5.1 for a
complete numerical evaluation.
5. The actual number of saturated kernels. The ratio

of kernels saturated at termination generally exceeds the
prescribed threshold ratio by 15-28% on average.

4 Experimental design
One of the most important jobs within a data parallel
environment is controlling the simultaneous data access.
In contrast to a simple threaded serial system, in which
processing consists of consecutive–and therefore mutually
exclusive–read and write memory accesses, a parallel
environment requires additional buffering steps to prop-
erly handle simultaneous memory operations, and addi-
tional memory space to feed the processors.
Another issue with data parallel programming is that the

host to device memory transfers (and vice versa) are slow,
compared to accesses to local memory on the device. For
this reason, fitting the data representation into device

memory is a key element in context of speed, and also
gives us a basic guideline during the selection of the num-
ber of (re)sampled kernel windows.
Lastly, limitations in the size of quickly accessible

device memory calls for compact data representation,
which again costs memory operations, and therefore
time.
For the above reasons, parallelization of a given algo-

rithm can only be considered effective if the speedup
can be achieved in spite of all the enumerated con-
straints, and without sacrificing accuracy.
Our research prototype implementation of the segmen-

tation framework was analyzed concerning three different
aspects: the quality of the output, the scaling on different
devices with various number of processors and the time
demand of the algorithm on images with different size.
Quality analysis was done with a broad selection of para-
meters in an exhaustive search-like scheme, which pre-
sents two notable benefits:
1. We obtained a broad overview about the robustness

of the framework’s output quality.
2. We obtained optimal parametrizations both in

terms of speed and quality, which were used during the
timing measurements as the two alternative settings to
fully evaluate.

4.1 Hardware specifications
Our choice for the parallel hardware architecture was the
GPGPU platform offered by NVIDIA. The measurements
were performed on five GPGPUs with various characteris-
tics. As a reference, the framework was also tested on
a single PC equipped with 4GB RAM and an Intel Core
i7-920 processor clocked at 2.66GHz, running Debian
Linux. The technical specifications of the hardware are
summarized in Table 1. Note that in the case of the NVI-
DIA S1070, only a single GPU was utilized (for this reason
it is referred later on as S1070SG).
Compute capability numbers consist of two values: a

major revision number that is indicating fundamental
changes in chip design and capabilities, and a minor
revision number referring to incremental changes in the
device core architecture.

4.2 Measurement specifications
In the case of the scaling and timing experiments, the
measurements were made on five different image sizes.
The naming conventions and corresponding resolutions
are summarized in Table 2.

4.3 Environmental specifications
The measurements were performed in the 5D joint fea-
ture space consisting of each pixel’s Y, Cb and Cr color
coordinates, and (x,y) spatial position. All channels were
normalized into the [0,1] interval, but the luminance
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channel was given an additional multiplier of 0.5 in
order to somewhat suppress the influence of gradients
that are often caused by the natural lighting conditions.
Furthermore, the spatial representation of the pixels was
equidistant in both dimensions, which basically means
that in the case of a rectangular image, the channel
representing the dimension with more pixels reached
value 1, while the other channel’s maximum was pro-
portional to the dimension’s aspect ratio. This way we
ensured the anamorph property of the kernel, and the
central symmetry suggested by Meer and Comaniciu [5].
The kernel window was selected to be the Gaussian,

with distinct hs and hr parameters for the spatial and
range domains respectively. In order to speed up the
segmentation, the spatial weight kernel was calculated
only once at the beginning of the segmentation, and was
shifted to the position of the corresponding mode in
each iteration. Furthermore, since the support of the
Gaussian kernel is infinite, we only considered it within
a radius, in which its value is above 0.1.

4.4 Quality measurement design
For output quality analysis, we used the Berkeley Seg-
mentation Dataset and Benchmark in order to provide
comparable quantitative results. The “test” set consisting
of 100 pictures was segmented multiple times using the
same parametrization for each image in a run. Three
parameters were alternated among two consecutive
runs: hr taking values between 0.02 and 0.05, hs with
values in the interval of 0.02 and 0.05, both utilizing a
0.01 stepsize, and the abridging parameter ranging from
0.4 to 1.0 with a stepsize of 0.2. In each case, the seg-
menter was started with 100 initial kernels, and in every
resampling iteration 100 additional kernels were utilized.
Note that since the BSDS benchmark evaluates quality

based on boundary information, we generated soft

boundary maps in the following way: the luminance
channel of the segmentation framework’s output was
subject to morphological dilation using a 3 × 3 cross-
shaped structuring element. The difference of the origi-
nal and the dilated channel resulted in an intensity
boundary map.
To enable easy comparison with other works, we have

chosen the F-measure as the main quality indicator:

F = 2
PR

P + R
, (8)

where F Î [0,1] is the F-measure value, P stands for
precision and R denotes recall. Precision is the ratio of
the retrieved true boundary pixels and the retrieved ele-
ments, therefore it characterizes exactness. Recall is the
quotient of the retrieved true boundary pixels and all
true boundary pixels, hence it is a measure of complete-
ness. Taking the harmonic mean of the two measures
ensures that the F-measure stays well-balanced.

4.5 Timing measurement design
Timing measurements aimed at registering the running
time of the algorithm on high resolution real life images.
We formulated an image corpus consisting of 15 high
quality images that were segmented in five different
resolutions, using the parameter settings “speed” and
“quality”, obtained during the quality measurements (see
Sect. 5.1). In each case, the segmenter was started with
10 initial kernels, and in every resampling iteration, 10
additional kernels were utilized.

4.6 Scaling measurement design
The mean shift iteration given in Equation 2 was timed
individually on the different devices (and as a reference,
on the CPU) to observe the scaling of the data parallel
scheme. In order to give a complete overview, all linear

Table 1 Parameters of the used GPGPU devices

Device name No. of stream processors Clock frequency (MHz) Device memory (MB) Compute capability

8800GT 112 1,500 1,024 1.1

GTX280 240 1,296 1,024 1.3

S1070SG 240 1,440 4,096 1.3

C2050 448 1,500 3,072 2.0

GTX580 512 1,544 1,536 2.0

Table 2 Naming convention and resolution data of the images used for the timing and scaling measurements

Name of extended graphics array Abbreviation Resolution Resolution in megapixels (MP)

Wide quad WQXGA 2, 560 × 1, 600 4.1

Wide quad super WQSXGA 3, 200 × 2, 048 6.6

Wide quad ultra WQUXGA 3, 840 × 2,400 9.2

Hexadecatuple HXGA 4, 096 × 3, 072 12.6

Wide hexadecatuple WHXGA 5, 120 × 3, 200 16.4
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combinations of spatial bandwidth parameters ranging
from 0.02 to 0.05 with a stepsize of 0.01, and kernel
numbers of 1, 10 and 20 were measured. Each displayed
value represents a result that was obtained as the aver-
age value of 100 measurements.

5 Results
5.1 Quality results
As a result of alternating hr, hs and the abridging para-
meter, the framework was run with 64 different para-
metric configurations for each image of the 100 image
BSDS test corpus.
The obtained average F-measure values for the differ-

ent bandwidths and abridging parameters are displayed
in Figure 3.
The highest F-measure value was 0.5816 for parameters

hr = 0.03 and hs = 0.02 without any abridging, which fits
in well among purely data-driven solutions [33]. It can be
observed on Figure 3 that the output quality remained
fairly consistent when relatively small bandwidths were
selected. The system is more robust to changes made to
the spatial bandwidth, while the effect of a high range
bandwidth parameter decreases output quality. As one
may expect, abridging has a negative effect on quality, but
it can be seen that for certain parameter selection (namely,

for hs Î [0.02, 0.03] and hr Î [0.03, 0.04]) even an abridge
level of 0.6 results in acceptable quality. An interesting
observation is that when both bandwidth parameters are
set high, smaller abridging parameter values increase qual-
ity. The explanation for this is the following: as described
in Sect. 3.5, abridging induces over-segmentation, and in
this context, has an effect similar to having a smaller band-
width parameter. This way, additional edges appear in the
soft boundary map that is calculated for the benchmark.
Among these edges, many are coincident with the ground
truth reference of the benchmark, because the formulation
of the extra clusters was data driven.
Table 3 displays the F-measure values for the different

parametric constellations given as the percentage of the
best result.
Boldface numbers indicate the cases when quality loss

is less than 3% compared to the best result. Based on
these results, we selected two parametric settings for the
timing measurements:
1. the Quality setting was selected to be hr, hs, A =

(0.03, 0.02, 1), while
2. the Speed setting was selected to be hr, hs, A =

(0.04, 0.03, 6).
In the case of the quality setting the only guideline was

to result in the best quality, while in the case of the speed

Figure 3 F-measure values obtained for the different parametrizations of the segmentation framework. hs and hr denote the spatial and
range kernel bandwidths respectively, A values stand for different abridging constants.
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setting the preferences in order of precedence were the
quality (should be better than 97%), the value of the
abridging constant (smaller is faster) finally the size of
the bandwidth parameters (bigger is faster due to the
data parallel structure and the formulation of the pixel-
cluster assignment scheme).
Figure 4 shows a few example images from the 100

image BSDS “test” segmentation corpus among with the
segmented output and the obtained F-measure for both
settings of quality and speed.

5.2 Running time results
The average running times measured on the 15 image
corpus are summarized in Figure 5 using the speed set-
ting and the quality setting.
In the case of the measurements made on the GPGPUs,

the displayed values include all operations and memory
accesses that have been performed in order to obtain the
merged output image. The clock was started before the
host to device data transfer carrying the input image
started, and was stopped after the device to host data
transfer carrying the merged output was completed, such
that the output was retrieved into host memory. The same
rule applies to the CPU measurements, but in this case
obviously neither host to device transfers nor device to
host transfers were necessary. When using either the
GTX580 or the C2050, the average time demand for seg-
menting a 16 megapixel image was just above 18 seconds
in the case of the speed setting, and a bit more than 33
seconds on the GTX580 using the quality setting.

Compared to the running times of the CPU using the
same, 16 megapixel setup as the GTX580, this means an
acceleration of 16.93 times in the case of the quality set-
ting, and an acceleration of 14.34 times in the case of the
speed setting. Figure 6 displays the time spent on average
to cluster a million pixels on the different platforms. It can
be seen that by sacrificing 3% of the quality, a speedup of
two can be achieved in most of the cases.
Figure 7 shows a few examples of the high quality

input images from the 15 image segmentation corpus
and the segmented output before and after the merging
procedure.

5.3 Scaling results
As a result of the different parametrizations, the mean
shift iteration was timed in 60 different constellations on
the 5 GPGPU devices (plus the CPU) with each measure-
ment indicating an average value recorded on 100 itera-
tions (see Sect. 4.6).
The first aspect of evaluation was the scaling of perfor-

mance on the different GPGPU device generations. Fig-
ure 8 displays the obtained running time in milliseconds
for a single kernel measured using different resolutions
with bandwidth parameters hs = 0.02 and hs = 0.05. The
running times show a clear tendency: as a result of
improved device characteristics (such as the number of
stream processors, memory handling, caching and in
some cases, operating frequency), the performance of
newer device generations is superlinear compared to the
older ones.
The second aspect of evaluation was the robustness of

the operating time demand related to the number of
kernels. In order to obtain expectations for a linear run-
ning time demand, the running time results measured
when utilizing a single kernel were multiplied with 10
and 20 respectively. These expected values were then
subtracted from the measured running time results and
the outcome was evaluated for each device and the
CPU. Table 4 displays the obtained results. On this
table it can be seen that in the case when using 20 ker-
nels, the maximum difference is negative for all
GPGPUs. This means that the measured running time
performance is always better than the expected one. In
this context however there are exceptions, when 10 ker-
nels were used. But in this case the average difference is
negative for all of the devices, which indicates that on
average, the running time benefit is present. The closer
this value to zero, the more robust the running time on
the used device subject to the alternation of the number
of kernels is.
Finally, we investigated the running time of calculating

the mean shift iteration on the different devices in pro-
portion to the running time of the same task measured
on the CPU. Figure 9 displays an overview of the

Table 3 F-measure values obtained with different
abridging and bandwidth parametrization given as the
percentage of the best result

hr hs A = 0.4 (%) A = 0.6 (%) A = 0.8 (%) A = 1.0 (%)

0.02 0.02 95.83 96.31 96.76 98.66

0.03 95.84 96.04 97.04 98.22

0.04 95.67 96.58 96.75 98.12

0.05 95.31 96.80 97.00 98.58

0.03 0.02 96.97 97.23 98.10 100

0.03 95.85 97.10 97.92 98.64

0.04 95.86 96.24 96.79 97.54

0.05 95.73 96.01 95.78 96.42

0.04 0.02 96.50 97.77 98.30 99.46

0.03 95.62 97.07 97.18 97.12

0.04 94.32 95.35 95.75 95.61

0.05 94.38 93.76 93.76 92.94

0.05 0.02 95.81 96.73 97.41 96.83

0.03 94.61 94.60 94.79 92.35

0.04 92.93 92.16 92.48 89.41

0.05 90.20 90.24 89.16 88.06

Boldface numbers indicate the cases when quality loss is less than 3%
compared to the best result. The two settings selected for performance
evaluation are highlighted with italic numbers
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speedup that is obtained by taking into account all of
the different parametrizations of hs Î [0.02, 0.05] and
the number of kernels being 1, 10 and 20.
As one may expect, the fastest performance was

observed on the GTX580: compared to the CPU, the
speed increase was greater than 28 for all parameter set-
tings, with an average speedup of around 120. One may
ask why the speedup of the mean shift iteration differs
from the overall speedup of the framework. The answer
to this question is that in the case of the former, only
arithmetic operations are involved, so that these results
represent more closely the speed of the GPGPU

processing units. In contrast, the overall speedup–with
all the data transfers, memory read and write operations
that are involved–represent the integrated performance
of the device.
Three factors affect the observed speedup of the mean

shift iteration, these are: the size of the image, the kernel
bandwidth and finally the number of kernels. In order to
clarify their individual effect, Figure 10 displays the
influence of varying these parameters on the observed
speedup.
Figure 10 shows a clear trend: the parameter with the

most influence on raising the speedup is the number of

Figure 4 Five segmentation examples from the 100 “test” image corpus of the BSDS. Results for both the quality and the speed setting
are shown. Quality evaluation was run using the soft boundary map generated from the merged output. For the sake of better visibility of the
extent of the clusters is displayed in the form of a cluster map as well. F values denote the obtained F-measures.
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kernels. This is resulted by the data parallel nature of
the task.

6 Conclusion
The details and design of an image segmentation frame-
work have been presented in this paper. The core of the
system is given by the parallel extension of the mean

shift algorithm, which we accelerated by utilizing an
abridging technique that can also be used in existing
parallel mean shift techniques, such as [17,18,30], and a
recursive sampling scheme that can narrow the com-
plexity of the feature space, and is applicable in other
solutions [18,19] as well. The framework was implemen-
ted on a many-core computation platform. A common

Figure 5 Running time values of the algorithm run on images with different sizes using five different GPGPUs and the CPU as the
reference. The left side displays running time obtained using the speed setting, the right side displays running times obtained using the quality
setting. Each measurement displays an average value obtained from running the algorithm on 15 images. In the case of “N/A” values the
onboard device memory sometimes became a bottleneck, which resulted in frequent caching operations that seriously slowed down the
segmentation performance.

Figure 6 Average running time of clustering one megapixel on the different devices (and on the CPU) as a function of the abridging
parameter. Difference in quality between the two settings is 3%.
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Figure 7 Three segmentation examples from the 15 image corpus. For the sake of better visibility, the extent of the clusters is also
displayed in the form of cluster maps before and after the merging procedure. NK refers to the number of clusters.

Figure 8 Running time tendencies of a mean shift iteration for single kernel on the different devices (and the CPU) using different
resolutions. Spatial bandwidth selection was 0.02 for the left side and 0.05 for the right. Other bandwidths within this domain follow the same
running time pattern.
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segmentation benchmark was used to evaluate the out-
put quality and to demonstrate its robustness concern-
ing parameter selection. Segmentation performance was
analyzed on numerous high resolution real life images,

using five different GPGPUs with miscellaneous specifi-
cations. The running time of a parallel mean shift itera-
tion was measured on the different devices in order to
observe the scaling of the data parallel scheme. The

Table 4 The robustness of the scaling on the different devices and the CPU.

Device
Type

Relative
standard

deviation (%)

Minimum
difference

(ms)

Maximum
difference

(ms)

Average
difference

(ms)

(a) Results obtained using 10 kernels

I7_920 90.57 3.9080 476.1333 162.7331

8800GT 162.39 -12.4617 2.4017 -2.3816

GTX280 70.80 -0.7733 1.1183 -0.5876

S1070SG 60.86 -0.7353 0.8477 -0.5672

C2050 19.24 -1.2275 -0.6879 -0.8152

GTX580 17.05 -0.8916 -0.4804 -0.7040

(b) Results obtained using 20 kernels

I7_920 77.17 140.1300 3,436.8667 1,210.0043

8800GT 95.69 -62.3233 -4.4693 -18.4375

GTX280 70.48 -14.2183 -1.3773 -5.7447

S1070SG 65.22 -14.0697 -2.2727 -5.8767

C2050 45.28 -7.7653 -2.4625 -4.2816

GTX580 34.21 -5.7427 -2.1987 -3.3567

The statistics display the values obtained by comparing the expected running time values (derived by a multiplying the running time measured when using a
single kernel) and the corresponding measured values. The relative standard deviation is the quotient of the standard deviation and the average

Figure 9 Speedup results obtained for different devices by pairwise comparison to the CPU. The basis of comparison were the running
time values representing the time demand of calculating new position(s) of mean(s) with all combinations of hs Î [0.02,0.05] with number of
kernels being 1, 10 and 20.
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algorithm has proven to work fast and to provide good
quality outputs.
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