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Abstract

Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we
propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion
classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to
recognize long-range dependencies between successive temporal patterns. We propose to represent data using
features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear
model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are
compared, showing that features derived from the Lyon cochlear model give better recognition results in
comparison with those obtained with the traditional MFCC representation.

1. Introduction

For many years human-computer interaction researchers
focused their attention on the synthesis of audio-visual
emotional expressions. Despite the great progress made
in human-computer interaction, most of the existing
interfaces are unidirectional and unfriendly in the sense
that they do not allow the computer to understand the
emotional state of the user [1-3]. During the recent
years, many researchers have faced the problem of
designing interfaces that are able to express and also to
perceive emotions. This has introduced a specific
research field, known as Speech Emotion Recognition,
which is aimed to extract the emotional state of a
speaker from his or her speech.

Speech emotion recognition is useful for applications
requiring natural man-machine interaction, such as web
movies and computer tutorial applications, where the
response to the user depends on the detected emotions.

In order to perform recognition of speech emotion, two
issues are of fundamental importance: the role of speech
features on the classification performance, and the classi-
fication system employed for recognition [4].

Since humans have far superior recognition abilities
than any other existing artificial classification system, a
common research trend is to simulate the recognition
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mechanisms of biological systems to design artificial sys-
tems having a greater degree of fidelity with respect to
the biological counterparts. This design approach
involves the study of the physiology of biological systems
and the research of methods that are able to model the
particular biological structures.

Artificial neural networks are based on this idea, since
they were designed to mimic the biological neural net-
works found in the human brain. They are formed of
groups of artificial neurons connected together in much
the same way as the brains neurons. Connections between
artificial neurons are determined by learning processes,
similarly as connections between human brain neurons
are determined and modified by learning and experience
acquired during time. Commonly, feed-forward neural
networks are employed, in which neurons are connected
using a “feed-forward” structure that allows signals to tra-
vel from input to output only. Recurrent neural networks,
including loop connections that allow signals to travel
both directions, are potentially very powerful and more
biologically plausible than feed-forward neural networks.
This encourages the application of recurrent neural net-
works to complex recognition tasks.

Starting from this idea, several emotion recognition
approaches have been proposed in the literature (see
Section 2), which use a specific recurrent neural net-
work called long short-term memory (LSTM) [5], whose
model is closely related to a biological model of memory
in the prefrontal cortex.
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In this article, we present an approach for emotion
recognition from speech that combines LSTM architec-
ture with two different representation models of the
emotion speech signal: the Lyon cochleagram model,
and the more classic Mel frequency cesptral representa-
tion. These two representations are compared with a
view to unveil differences between the two models in
terms of emotion recognition rate.

The basic idea of the proposed approach is to use bio-
logically inspired models not only for emotion recogni-
tion but also for signal representation. This is in line with
recent study in the literature, which faced the problem to
model and recognize the sound on the basis of the
human ear and human brain studies [6]. Specifically, our
idea is to use a classifier, modeled on the human brain
combined with a signal representation modeled on the
human auditory system. In the proposed approach, two
different biologically inspired representations are investi-
gated and compared. The first is based on the traditional
mel-frequency cepstral coefficients (MFCC) [7], which
are extracted by filters whose bandwidths are distributed
with respect to a nonlinear frequency scale according to
the human perception of pitch. The other representation
considered in our study is the Lyon Cochlear model [8],
which is based on the study of the human auditory sys-
tem and models the behavior of the cochlea, or inner ear.

The rest of the article is organized as follows. Section
2 presents a brief overview of the research in the field of
speech emotion recognition. The description of the pro-
posed approach is provided in Section 3. The experi-
mental results and discussion are provided in Section 4.
Finally, some conclusions are provided in Section 5.

2. Background

Many theories of emotion have been proposed [9], and
some of these have not been verified until some mea-
surements of physiological signals have become avail-
able. In general, emotions are short-term states, whereas
moods are long-term states, and temperaments or per-
sonalities are very long-term states [10].

Emotional states are often correlated with particular
physiological states [11], which in turn present predict-
able effects on speech features, especially on pitch, tim-
ing, and voice quality. For instance, when one is in a state
of anger, fear, or joy, the sympathetic nervous system is
aroused, the heart rate and blood pressure increase, the
mouth becomes dry, and there are occasional muscle tre-
mors. Speech is then loud, fast and enunciated with
strong high-frequency energy. When someone is bored
or sad, the parasympathetic nervous system is aroused,
the heart rate and blood pressure decrease, and salivation
increases, which results in slow, low-pitched speech with
a weak high-frequency energy. In [12], the authors have
shown that physiological effects are rather universal, that
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is, there are common tendencies in the correlation
between some acoustical features and basic emotions
across different cultures. For instance, Tickle [13] per-
formed some experiments to show that there is little per-
formance difference between detecting emotions
expressed by people speaking the same language or dif-
ferent languages. These results indicate that emotion
recognition from speech could be performed indepen-
dently of the language semantics. For this reason, in this
study, we are not interested in recognizing words. Rather,
we want to recognize the emotions expressed during the
pronunciation of words, namely, we consider the recogni-
tion of emotions in speech signals.

In order to define an artificial system capable of
recognizing emotions from speech, three main issues
have to be addressed: how to determine the emotions to
be recognized, how to represent them, and how to clas-
sify them. Each issue can be addressed by different
approaches. A brief overview is given in the following.

2.1. Emotion identification

This problem can be seen as an emotion labeling problem,
which requires different emotions to be clustered into few
emotion categories. A discussion of the literature describ-
ing human vocal emotion, and its principal findings, is pre-
sented in [14,15]. Usually, two different methods are used
to label emotions. The first approach is to associate emo-
tions to labels denoting discrete categories, i.e., human
judges choose from a prescribed list of word labels, such as
anger, disgust, fear, joy, sadness, and surprise. One problem
with this approach is that speech signals may contain
blended emotions. In addition, the choice of words may be
too restrictive, or culture dependent. The other approach is
to consider multiple dimensions or scales to describe emo-
tions. Instead of choosing discrete labels, observers can
indicate their impression of each stimulus using several
continuous scales, for example, pleasant-unpleasant, atten-
tion-rejection, simple-complicated, etc. Two common
scales are valence and arousal. Valence describes the plea-
santness of the stimuli, with positive (or pleasant), on one
hand, and negative (or unpleasant) on the other. For exam-
ple, happiness has a positive valence, while disgust has a
negative valence. The other dimension is arousal or activa-
tion. For example, sadness has a low arousal, whereas sur-
prise has a high arousal level. The different emotional
labels could be plotted at various positions on a two-
dimensional (2D) plane spanned by these two axes to con-
struct a 2D emotion model [16]. Scholsberg [17] suggested
a 3D model in which the attention-rejection dimension is
added to the valence and arousal dimensions.

2.2. Emotion representation
Another important problem in emotion recognition
from speech is the extraction of significant features



Caponetti et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:24

http://asp.eurasipjournals.com/content/2011/1/24

from the speech signal to define salient characteristics
suitable to perform emotion classification. The problem
to explore which features could describe better emotions
has been widely addressed [18-20]. All authors agree
that the most crucial aspects of emotion are related to
prosody. Prosody can be considered a parallel channel
for communication, carrying some information that can-
not be simply deduced from the lexical channel. Prosody
is related to pitch contour (in this context called F0),
intensity contour, and duration of utterances [21].
Therefore, muscle motions transmit all aspects of pro-
sody. Main factors that influence the pitch are the vocal
fold tension and the subglottal pressure. These are both
smoothly changing functions of time, controlled by
nerve impulses, Newtonian mechanics, and the viscoe-
lasticity of tissue [22]. The overall relationship between
muscle activation and pitch is smooth, nearly linear, and
the effects of the different muscles can be combined
into smooth frequency changes. Detailed physiological
models for FO are described in [23]. Although pitch and
energy are the most important features describing pro-
sody [24,25], duration and amplitude are also important
prosody features, as indicated in [26,27]. Others meth-
ods to derive features representing emotions analyze the
signal in frequency bands defined with different auditory
models. In this study, we adopt two different representa-
tions of the signal, one is based on the Lyon cochlea-
gram model. and the other on the more classic mel
frequency cesptral representation.

2.3. Emotion classification

Given a set of features describing the emotion in speech,
the other important issue in the development an auto-
matic speech emotion recognizer is the choice of the
classification method. Various types of classification
models have been used for this task, such as the hidden
markov model (HMM), the Gaussian Mixture Model,
the neural networks, and the support vector machines
(SVM) [11,28,29].

Dellaert et al. [30] compare different classification
algorithms and feature selection methods. They achieve
79.5% accuracy with four emotion categories and five
speakers speaking 50 short sentences per category. In
[31], some tests of human performance in recognizing
emotions in speech are performed, obtaining an average
classification rate of about 65%.

Chen [32] proposes a rule-based method for classifica-
tion of audio data into one of the following emotion cate-
gories: happiness, sadness, fear, anger, surprise, and
dislike. The audio data were derived from speech of two
speakers: one speaking Spanish, and the other speaking
Sinhalese. These languages were chosen to avoid subjec-
tive judgments to be influenced by the linguistic content,

Page 3 of 10

as the listeners did not comprehend either of the two
languages.

n [33], those authors obtained preliminary results
using MFCC representation and spiking neurons net-
work that recognizes short, complex temporal patterns
with a recognition percentage of 67.92%.

In [34], those authors reported results obtained using
HMM under the NATO project “speech under stress,”
who aimed to obtain reliable stress measures and to
study the effect of speech under stress on the perfor-
mance of speech technology equipment. A variety of cali-
brated data are collected under realistic uncontrolled
conditions or simulated conditions. Data under simulated
conditions are collected in two databases, the SUSAS and
DLP databases, which include simulated stress by asking
subjects to respond to an externally controlled condition,
such as speaking rate (DLP), or speaking style (SUSAS),
or dual-tracking computer workload (SUSAS). Para-
meters indicating a change in speech characteristics as a
function of the stress condition (e.g., pitch, intensity,
duration, and spectral envelope) are applied to several
samples of stressed speech. The effect on speech obtained
for perceptual noise and some physical stressors is evalu-
ated. It is shown that the effect of stressed speech on the
performance of automatic speech recognizers and auto-
matic speaker recognizers is marginal for some types of
stress (DLP), while the speaking style has a major effect.
In the speaker recognition task, their evaluation shows
that when stress is present, the recognition rates decrease
significantly especially for speech under loud and angry
condition.

In the recent years, the LSTM neural networks [35]
have become a new effective approach to support appli-
cation of speech analysis and recognition in which the
modeling of long time dependencies is relevant. LSTM
neural networks has been proven to efficiently learn
many difficult tasks involving recognition of temporally
extended patterns in noisy input sequences and extrac-
tion of information conveyed by the temporal distance
between events.

Several approaches using LSTM networks have been
proposed. In [36], Graves has proposed to apply a long
short-term memory (LSTM) architecture to speech
recognition to provide a more robust and biologically
alternative to statistical learning methods such as
HMMs. The reported results are comparable to the
HMM-based recognizers on both RIDIGTS and TI46
speech corpora.

In [37], an approach for continuous emotion recognition
based on LSTM network is introduced, where emotion is
represented by continuous values on multiple attribute
axes, such as valence, activation, or dominance. This
approach includes modeling of long-range dependencies
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between observations, and thus outperforms techniques
like support-vector regression. In their study [37], those
authors used the HUMAINE database, containing data
extracted from audio-visual recordings of natural human-
computer conversations and labeled continuously in real
time by four annotators with respect to valence and activa-
tion. The same authors provide results with different clas-
sifiers and show that classification by LSTM network is as
good as human annotation, which confirms that modeling
long-range time dependencies is advantageous for contin-
uous emotion recognition.

Using the same emotional space as in [37], the authors
of the study [38] investigate a data-driven clustering
approach based on k-means to find classes that better
match the training data and to model the effective states
that actually occur in the specific recognition task.
Firstly, a number of emotional states are identified by
clustering, and then an LSTM network is used to recog-
nize an emotional state between those predetermined by
clustering. The results of the latter show that discrimi-
native LSTM outperforms standard SVM. Finally, in
another study [39], a bidirectional LSTM is successfully
used for emotion recognition related tasks, such as key-
word spotting in emotionally colored spontaneous
speech.

As an extension of the above last approaches, in this
article, we propose to apply LSTM architecture to two
different representation models of emotion speech sig-
nal: the Lyon cochleagram model, and the more classic
mel frequency cesptral representation. These two repre-
sentations are compared, with a view to unveil differ-
ences between the two models in terms of emotion
recognition rate.

3. Biologically inspired approach

The main aim of this study is to define an approach for
the emotion recognition from speech taking into
account biologically inspired methods for signal repre-
sentation and classification. The general framework of
our approach, depicted in Figure 1, consists of three
main phases: preprocessing, representation, and emotion
classification.

Since we intend to recognize emotions expressed dur-
ing the pronunciation of spoken words, we consider only
the vowel and the voiced consonant parts of the words.
In fact, the parts containing unvoiced consonants do not
carry any information about emotions’, thus significantly
reducing the complexity of the input signals. Then, in
order to extract the voiced parts of the word, each utter-
ance is segmented using the Brandt’s generalized likeli-
hood ratio (GLR) method, based on detection of
discontinuities in a signal [40]. More specifically, the pre-
processing phase of the proposed approach is to divide
the speech signal into small segments. Each segment can
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Figure 1 Functional diagram of the emotion recognition

system.
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be further divided into a number of time frames in which
the signal is considered to be approximately stationary.
Then, each frame can be described using spectral features
as a short-time representation for the signal. It is recog-
nized that the emotional content of an utterance has an
impact on the distribution of the spectral energy across
the speech range of frequencies.

In this study, features for signal representation are
derived from two different auditory models: the mel-
frequency cepstral model, and the Lyon cochlear
model. Both models are biologically inspired. The first
is based on Cepstrum analysis that measures the peri-
odicity of the frequency spectrum of a signal, which
provides information about rate changes in different
spectrum bands. The MFCC represent cepstrum infor-
mation in frequency bands positioned logarithmically
on the mel frequency scale [7], which is a particular
range of pitches judged by listeners to be equal in dis-
tance from one another. The MFCCs are based partly
on an understanding of auditory perception: the log
energy scale matches the logarithmic loudness percep-
tion of the ear, and the mel frequency scale is based
on pitch perception. The mel frequency cepstral repre-
sentation is well known in the literature, thus no
further detail is given here. The second considered
model, namely the Lyon cochlear model, is described
in detail hereafter. Also, the LSTM recurrent network
used for emotion classification is described henceforth.

3.1. Lyon cochlear model

Lyon and Mead [8] presented a multi-level sound analy-
sis algorithm which models the behavior of the cochlea,
or inner ear, in much better detail than any other sound



Caponetti et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:24

http://asp.eurasipjournals.com/content/2011/1/24

analysis or speech analysis algorithms. The model can
also be viewed as an approach to speech analysis based
on the physiology of hearing, as opposed to more popu-
lar approaches based on the physiology of speech.

More specifically, Lyon found that active processes in
the cochlea could be modeled by tuning each section to
have a small resonant frequency band, in which the gain
from input to output is slightly larger than unity. Such a
model is not sharply tuned; no single filter stage has a
highly resonant response. Instead, a high gain effect is
achieved by the cumulative effect of many low gain
stages.

The Lyon model combines a series of notch filters
with a series of resonance filters, which, at each point in
the cochlea, filter the acoustic wave. Each notch filter
operates at lower frequencies; therefore, the net effect is
to gradually low-pass filter the acoustic energy. An addi-
tional resonator (or band-pass filter) picks out a small
range of the traveling energy and models the conversion
into basilar membrane motion (Figure 2). This motion
of the basilar membrane is detected by the inner hair
cells. A combination of a notch and a resonator is called
a stage (Figure 3). The output of the Lyon cochlear
model, named cochleagram, is a matrix of floating point
values, in which every column is a time frame and every
row is a frequency band. Each value (i, j) of this matrix
provides the energy of the ith frequency band as a func-
tion of the jth time frame.

3.3. LSTM neural network

Using a neural network to process a time-dependent sig-
nal, such as speech, requires splitting the signal into
time windows and treating the inputs as spatial [41].
Application of time-windowed networks to speech
recognition tasks introduces two major problems. First,
a fixed dimension for the time window has to be deter-
mined. Large windows lead to a high number of net-
work inputs, with consequent long training time and
high network complexity. Conversely, small windows
may ignore long time dependencies such as the position

Input

_D __D Notch filters

Resonators
Qutput
F1 F, Fy Fi Fy Channels
(High frequencies) (Low frequencies)

Figure 2 Block diagram of the filterbank used in the Lyon
cochlear model.
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of a word in a sentence. Second, often time-windowed
networks are inflexible with regard to temporal changes
in the rate of input (nonlinear time warping).

These problems can be overcome through the use of
recurrent neural networks that do not transform tem-
poral patterns into spatial ones. Rather, recurrent net-
works process a time-dependent signal one frame at a
time, using feedback connections that create a memory
of previous inputs.

This is in analogy to biological neural networks, which
are highly recurrent (although some functions, in parti-
cular sensory channels, are thought to be effectively
feed-forward). The human brain can be modeled as a
recurrent neural network, which is a network of neurons
with feedback connections. Therefore, recurrent neural
networks represent a valid biologically inspired approach
to speech recognition that overcomes such problems as
long time dependencies and temporal distortion.

In this article, we investigate the use of a particular
recurrent neural network called LSTM. LSTM is a
recurrent neural network that uses self-connected
unbounded internal neurons called “memory cells” to
store information over long time durations. Memory
cells are protected by nonlinear multiplicative gates,
which are employed to aid in controlling information
flow through the internal states. Memory cells are orga-
nized into blocks (Figure 4), each having an input gate
that allows a block to selectively ignore incoming activa-
tions; an output gate that allows a block to selectively
take itself offline, shielding it from error; and a forget
gate that allows cells to selectively empty their memory
contents. Thus, the gates learn to protect the linear unit
from irrelevant input events and error signals.

By means of gradient descent to optimize weighted
connections feeding into gates as well as cells, an LSTM
network can learn to control information flow. Error is
back-propagated through the network in such a way
that exponential decay is avoided. LSTM’s learning
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Figure 4 The memory cell of a LSTM network. The three gates
(dark-gray nodes) collect activations from both inside and outside
the block and control the cell via multiplicative units (small white
nodes). The (white) node in the center of the cell is the constant

error carousel (CEC), which ensures the constant error flow needed
for learning long time dependencies.

algorithm is local in space and time with computational
complexity per time-step and weights of O(1) for stan-
dard topologies.

4. Experiments and results

Two different emotion recognition systems have been
implemented by applying the LSTM network to each
representation model, namely, the MFCC model and the
cochleagram model.

4.1. The dataset

As dataset for our experiments, we used the speech
under simulated and actual stress (SUSAS) corpus,
which has been created in the Robust Speech Processing
Laboratory at Duke University under the direction of
Prof. John H. L. Hansen and sponsored by the Air Force
Research Laboratory. The database is partitioned into
five domains, encompassing a wide variety of stresses
and emotions. A total of 32 speakers (13 female, 19
male), with ages ranging from 22 to 76 were employed
to generate in excess of 16,000 utterances. SUSAS also
contains several longer speech files from four Apache
helicopter pilots.

For our experiments, we selected from SUSAS dataset
the stress conditions’ labels shown in Table 1. For each
stress condition, the aircraft communication words
listed in Table 2 have been considered. In Table 1.
labels “Loud” and “Soft” do not properly indicate stress
conditions but they are related to the voice quality. We
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Table 1 Stress conditions considered in our experiments.

Stress condition Description
Angry Simulated anger
Clear Clearly enunciated speech
Cond70 Computer workload, high task stress
Loud Loudly spoken speech
Soft Soft or whispered speech

have considered also these situations, since it is believed
that the emotional content of an utterance is strongly
related to voice quality. Experimental studies on listen-
ing human subjects demonstrated a strong relation
between voice quality and the perceived emotion [42].
For each stress condition, 1260 utterances were consid-
ered and for each utterance, nine different speakers
were considered, both male and female. For each
speaker, there are two examples of the same utterance.
All signals have been sampled with a sampling fre-
quency f; = 8 kHz.

4.2. Preprocessing

Since the SUSAS dataset contains isolated sampled utter-
ances, no segmentation was performed to extract the sin-
gle pronounced words. Therefore, the preprocessing
phase of our approach was used to convert each utter-
ance into a number of voiced parts (segments). Figure 5
shows the waveform obtained from the sampled word
“destination” related to an “angry” stress condition. It can
be noted that the vowels are the louder parts of the wave-
form: in the bottom of the plot, the pronounced vowels
and consonants corresponding to the signal are shown.

4.3. Representation
After the preprocessing phase, a representation for the
signal was derived according to the two considered
models, namely the MFCC and the Lyon cochleagram.
To obtain the first representation, we computed 24
MECC coefficients over a number of time frames
obtained by sampling each segment using a 0.015-s
Hamming window at every 0.05 s. The position of the
first filter of the mel filter bank was fixed at 100 mel

Table 2 Vocabulary set considered in our experiments
SUSAS vocabulary set
SUSAS vocabulary set

BRAKE EIGHTY GO NAV SIX THIRTY
Change ENTER HELLO NO SOUTH  THREE
DEGREE FIFTY HELP OH STAND  WHITE
DESTINATION  FIX HISTOGRAM ~ ON STEER WIDE
EAST FREEZE  HOT out STRAFE  ZERO
EIGHT GAIN MARK POINT  TEN
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Figure 5 Sampled sound waveform of the word “destination”.
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and the distance between filters is of 100 mel. Figure 6
shows a 2D representation of the MFCC for the speech
signal plotted in Figure 5 by means of an intensity
matrix. Each row of the matrix represents the values
(ranging from O to 4000 Hz) of a mel coefficient versus
time. To compute the MFCC, we used the PRAAT soft-
ware by P. Boersma and D. Weenink [43].

In the implementation of the Lyon cochlear model, we
used a filter bank having 64 stages, covering a range of
frequencies from 50 to 4 kHz on the same number of
frames used for MFCC. Each stage is a combination of a
second-order notch filter and a second-order resonance
filter. Filters in the filter bank are overlapped by 25%.
Figure 7 plots the Lyon cochleagram for the speech sig-
nal in Figure 5 as a matrix in which every column is a
time frame and every row is a frequency band ranging
from 0 to 4000 Hz. Each value (i, j) of this matrix pro-
vides the energy into the ith frequency band as a func-
tion of the jth time frame. To derive the Lyon
cochleagram of the speech signals, we used the Auditory
Toolbox developed by M. Slaney [44].

Coefficients

0 0883375
Time (s)

Figure 6 Mel-cepstrogram for the signal in Figure 5.
. J

Figure 7 Lyon cochleagram for the signal of the word

“destination” under angry condition.
- J

In order to show how the Lyon cochleagram can actu-
ally model different emotions in speech, in Figure 8, we
plot the Lyon cochleagram for the speech signal of the
same word “destination” pronounced by the same
speaker but with no emotion, i.e. neutral. Comparing
Figure 7 (angry) and Figure 8 (neutral), some differences
can be appreciated about the separation among different
segments of the signal. Indeed, it can be seen that in
Figure 7 the vowels are more separated and enhanced
with high values of energy, as we expect them to be
when speaking under angry condition.

4.4. Classification

Given a representation of an utterance (MFCC or
cochleagram), the LSTM network was applied to per-
form emotion recognition, i.e. to associate the name of
the emotion to each utterance. The classification process

Fregquency bands

0 Timels)

0.983375

Figure 8 Lyon cochleagram for the signal of the word

“destination” under neutral condition.
\ J
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is defined so that the final response of the classifier is
composed of a number of partial responses, as the input
pattern is composed by a number of time frames
extracted from the input word. Then, the final response
of the classifier is an average of the responses of the
LSTM network for each segment, computed as

where r; is the response vector of the classifier to the
ith segment, and N is the number of segments. The
LSTM network, used as a classifier, was implemented
using a different topology, depending on the signal
representation adopted. A preliminary experimental ses-
sion was aimed to find the best LSTM parameter con-
figuration for each representation. Precisely, for
experiments using MFCC, we found that the optimal
configuration for the network topology had an input
layer of size 24, a hidden layer containing 200 memory
blocks (with one cell in each block), and an output layer
of size 5. For experiments using the Lyon cochleagram,
the optimal configuration for the network topology had
an input layer of size 64, a hidden layer containing 350
memory blocks (with one cell in each block), and an
output layer of size 5. In both cases, all LSTM blocks
had the following activation functions:

«» Logistic sigmoid in the range [-2, 2] for the input
and output squashing functions of the cell;

+ Logistic sigmoid in the range [0, 1] for the gates,
with a gain term of 3.0.

The bias weights to the LSTM gates were initialized
with positive values for the input and output gates
[+0.5, +1.0, +1.5,...] and negative values for the forget
gates [-0.5, -1.0, -1.5,...].

In all the experiments, online learning was used with
weight update performed after every time step. Input
time frames for the networks correspond to the frames
(i.e. frequency content vectors) of the cochleagram com-
puted above, for each time step. The target consists of a
5D binary vector coding one of the five possible emo-
tion classes.

We carried out two experiments. In the first experi-
ment, we applied the LSTM network to the MFCC. In
the second experiment, we applied the LSTM network
to the Lyon cochleagram. In both experiments, we con-
sidered 20 different random splits of the whole dataset
into a training set (70% of the whole dataset) and test
set (remaining 30% of the whole data set). Results
obtained from the first experiment are shown in Table
3. The average recognition rate in this experiment was
71.5%. Results obtained from the second experiment are
shown in Table 5. The average recognition rate in this
experiment was 75.19%. Comparing the results obtained
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Table 3 Confusion matrix for MFCC based emotion
recognition system

Response  Angry Clear Cond70 Loud Soft
Presented
Angry 73.26 7.82 736 10.01 1.96
Clear 722 75.41 1247 29 2
Cond70 5.67 829 70.82 10.57 4.65
Loud 48 877 8.69 76.61 113
Soft 1.66 923 824 1.02 79.85

in the two experiments, it can be noted that the emo-
tion classifier composed by the LSTM network applied
to the Lyon cochlear representation works better for the
considered dataset.

A fair comparison of our approach with other existing
studies was difficult, because of the different datasets
and different emotion sets used in the literature. For
example, in [45], the authors of the cited study report
emotion recognition results from speech signals, with
particular focus on extracting emotion features from the
short utterances typical of interactive voice response
(IVR) applications. They use a database from the Lin-
guistic Data Consortium at University of Pennsylvania,
which is recorded by eight actors expressing 15 emo-
tions, from which they selected five emotions: hot anger,
happiness, sadness, boredom, and neutral emotion. In
[45], the results are reported about hot anger and neu-
tral utterances (37 and 70%, respectively). Further by the
confusion matrix, they conclude that sadness is mostly
confused with boredom, happiness is mostly confused
with hot anger, and neutral is mostly confused with sad-
ness (Table 4).

A rough comparison was made by considering thes-
tudy in [46] that used the same SUSAS dataset, but with
a selection of different samples. In [46], features such as
pitch, log energy, formant, mel-band energies, and
MECCs are extracted and analyzed using quadratic dis-
criminant analysis (QDA) and SVM. With the text-inde-
pendent SUSAS database, they achieved the best
accuracy of 96.3% for stressed/neutral style classification
and 70.1% for 4-class speaking style classification using

Table 4 Confusion matrix for Lyon cochleagram based
emotion recognition system

Response
Presented Angry Clear Cond70 Loud Soft
Angry 73.26 7.82 7.36 10.01 1.96
Clear 7.22 75.41 1247 29 2
Cond70 567 8.29 70.82 10.57 4.65
Loud 48 8.77 8.69 76.61 113
Soft 1.66 9.23 8.24 1.02 79.85
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Table 5 Comparison between different emotion
recognition systems

Emotion Kwon [46] Our best system
Clear 934 7541
Angry 67.2 73.26
Loud 480 76.61

Gaussian SVM. The comparative results, reported in
Table 5, show that our best approach (LSTM combined
with Lyon cochleagram) compares favorably with the
other approach.

Finally, some considerations can be done about our
approach and the approaches proposed in [37,38] that
apply the same LSTM network to emotion recognition
from speech, but use different feature sets. Our LSTM
architecture is similar to the one used in [37], but it has
different parameters, due to the different feature set
adopted. In general, the LSTM-RNN architecture con-
sists of three layers: an input layer, a hidden layer, and
an output layer. The number of input layer nodes corre-
sponds to the dimension of the feature vectors. The
number of hidden layer could be defined experimentally
on the basis of the number of input nodes and on the
performance obtained in the training phase. Therefore,
we have selected as hidden layer a number ranging from
200 to 350 blocks with one cell each. For the output
layer five nodes are used, corresponding to five different
emotions. In [37], the size of the input layer is equal to
the number of acoustic features (namely 39), and the
hidden layer contains 100 memory blocks of one cell.

Our results confirm the good behavior of the LSTM
network as recognizer of temporal dependencies in
speech, just as in [36,38], thus encouraging its applica-
tion in several tasks related to speech recognition. In
particular, we observed that, despite different databases
and features being used in [38], results similar to those
of this study are obtained in terms of recognition accu-
racy, but in the case of two emotional classes. For more
than two classes, results are worse than those of this
study, probably because detecting valence from acoustic
features is a hard task.

5. Conclusions

In this article, we have proposed a biologically inspired
approach for the recognition of emotion in speech. Two
different biologically plausible representations of the
speech signal have been investigated, namely, the mel-
scaled cepstrogram and the Lyon cochleagram. Each
representation of speech has been combined with the
LSTM, a biologically plausible model of artificial neural
network adopted as classifier. While previous applica-
tions of the LSTM network have mainly focused on arti-
ficially generated sequence-processing tasks, this study
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represents one of the first efforts to apply the LSTM
network in combination with biologically plausible
representations of speech with the aim of emotion
recognition in speech. From the experiments performed
on data from the SUSAS corpus, it can be concluded
that combining the LSTM classifier with the Lyon
cochlear representation gives better recognition results
in comparison with combining the same classifier with
the traditional MFCC representation. Of course, in
order to assess the validity of the presented approach,
further investigations are needed on different speech
datasets and for different classifier configurations.
Finally, it should be noted that the presented approach
can be well applied to other classification tasks involving
recognition of emotional components in speech or
sound signals. In particular, future study will concern
the application of the proposed approach to the problem
of music-style recognition.

End notes

A voiced sound involves a vibration of the vocal chords,
and it is characterized by an open configuration of the
vocal tract so that there is no build-up of air pressure
above the glottis. This contrasts with unvoiced sound
which is characterized by a constriction or closure at
one or more points along the vocal tract.
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