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Abstract

Print media collections of considerable size are held by cultural heritage organizations and will soon be subject to
digitization activities. However, technical content quality management in digitization workflows strongly relies on
human monitoring. This heavy human intervention is cost intensive and time consuming, which makes
automization mandatory. In this article, a new automatic quality assessment and improvement system is proposed.
The digitized source image and color reference target are extracted from the raw digitized images by an automatic
segmentation process. The target is evaluated by a reference-based algorithm. No-reference quality metrics are
applied to the source image. Experimental results are provided to illustrate the performance of the proposed
system. We show that it features a good performance in the extraction as well as in the quality assessment step
compared to the state-of-the-art. The impact of efficient and dedicated quality assessors on the optimization step
is extensively documented.

1 Introduction
1.1. Significance of quality assessment in print media
domain
Print media collections of considerable size are held by
cultural heritage organizations (e.g., libraries and
archives) and other content owners (e.g., publishers,
financial institutions, hospitals or insurances) have been
or will soon be subject to digitization activities. These
organizations typically aim at

• digitally archiving their print media collection and/
or;
• making the content available for end-users at a
grand scale.

As the former is cost-intensive [1] and the latter may
involve machine-based media analysis (e.g., text indexing
for search or semantic clustering of texts) next to usabil-
ity considerations [2], content owners face the challenge
to safeguard the information contained within the print
assets during transference from the analog to the digital
domain. This involves measuring, interpreting, and, if
required, optimizing the quality of each digital object

alongside

(1) analog-to-digital conversion,
(2) media processing workflow and
(3) final image formats,

especially if the latter were produced using lossy
compression.
In this article, technical content quality is understood

as the amount of information contained within analog
and digital media respectively. To optimally preserve
information of the analog media

• Color fidelity
• Spatial resolution
• Contrast/brightness
• Image geometry
• Sharpness
• Noise

and many other parameters [3] have to be faithfully
conveyed by the analog-to-digital converter (e.g., camera
or scanner) [4-6] and further processing steps in the
digital domain. In addition, the detection of unwanted
objects like dust, fingers (belonging to the digitization
operator) etc. is of similar importance. Recent research
approaches in this field are almost exclusively carried
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out by the industrial sector [2-9] or the cultural sector
[1,10-13] while there are only few publications from the
field of basic research dating back to the 1990s [14-16]
including a review of results related to image quality
research [17].
Current research carried out in the industry sector

focuses on methodologies to measure the analog-to-digi-
tal conversion quality of a digitization device using var-
ious test targets [2-9]. Among other goals industry
research aims at identifying evaluation methodologies
and quantifiable parameters (like modulation transfer
function, noise, sharpness etc.) that determine the qual-
ity of the digitization device. Hence, by using a defined
set of parameters that are critical for a faithful analog-
to-digital-conversion a quantitative method to standar-
dize the measurement of the quality of digitization
devices and to certify digitization service providers may
be established.
Present research from the cultural heritage sector

mainly addresses technologies and most of all best prac-
tices to improve the quality of the digitization process
[10,13,18] and subsequent optical character recognition
(OCR) of archived print media. In contrast to the indus-
trial approach–where the quality of digitization devices
is primarily addressed– research of the cultural heritage
sector focuses on the detection of device-independent
errors that typically appear in digitization projects (e.g.,
detection of missing pages, unwanted objects, irregular
illumination of the book or document page).

Benefits of automatic quality assessment and quality
optimization
With respect to the management of technical content
quality, today’s digitization workflows heavily rely on
human monitoring and decision making [7]. The major
disadvantages of manual quality assessment are:

• Not scalable and costly.
• Subjectively estimated technical content quality
parameters are prone to errors [8].
• Quality levels cannot be objectively benchmarked
or standardized [9].
• Quantitative content quality policies cannot be
applied.

For example, using a state-of-the-art book scannera,b,c

more than 10,000 pages per machine and day can be
digitized, which is considerably low when compared to
the throughput of document scanners. Given an opera-
tor may be able to check the quality of 1,000 digitized
pages per day, the workflow would require 10 operators
for 100% coverage. Thus, considering the throughput of
a set of simultaneously operating machines rather than
just one scanner, manual quality assessment makes

efficient and cost-effective mass digitization almost
impossible.
Vice versa, when using algorithms for quality assess-

ment highly automated digitization workflows can be
established and quantitative content quality thresholds
or, more general, content quality policies can be intro-
duced. This is of great importance as the quality
requirements of an institution may vary with respect to
the purpose a collection and even to individual print
media items, for example: reproduction (like art prints),
automated media analysis like optical character recogni-
tion (e.g., books) or viewing on a computer monitor
(like invoices).
As of today, quality requirements for various usage

scenarios are implemented by rule of thumb rather than
quantitative criteria. Not matching the quality require-
ments may lead either to high costs (for processing and
storage if the digital object is larger than necessary) or
poor results (for automated media analysis like OCR,
long-term preservation or reproduction). Thus, auto-
mated tools will lower the costs by greatly improving
the degree of automation as well as lowering the efforts
to implement the content owner’s quality requirements.
In addition, as mass digitization is carried out by a

growing number of organizations and by various service
providers, general content quality policies cannot be
applied. This in turn hampers for example a quality-
based cross-institutional content aggregation, a problem
that is very common to the cultural sector [10], and pre-
vents the establishment of quantitative quality guidelines
for specific sectors (like medical files in the health care
sector).
To sum up, tools for automated quality analysis are a

prerequisite for the management of technical content
quality in mass digitization environments–not only in
the cultural heritage domain, but across various types of
organizations that still depend on printed analog media
like for example the financial sector, jurisprudence, and
health care sector.

Existing quality management systems for print media
Existing systems for automatic quality assessment are
mostly based on reference based measurement methods.
Thus, they can only be used in combination with their
respective targets and are not able to measure quality
independently in a no-reference scenario. Most of the
existing software for automatic quality assessment of
digitized print media rely heavily on expertise of the
operator and are not suitable for mass processing.
The Software iQ-ANALYZER 5d by German company

Image Engineering allows for the automatic assessment
of standardized test targets (Image Engineering have
contributed to the development of the Universal Test
Target for this specific purpose). The output of the iQ-
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ANALYZER provides a detailed analysis of many aspects
of image quality, yet offers only minimal user assistance
for batch processing. The software is specifically tailored
for characterization of a machine’s capabilities, not for
continuous performance monitoring.
The US-based company certifi media offers an inte-

grated software Certifi Pedigree QPe that also uses spe-
cialized test targets for image analysis. Pedigree QP
offers the creation of quality profiles for batch proces-
sing, but is not able to operate no-reference analysis of
files that do not include scanned reference targets.

2 Overall system
The algorithms described in this article could be used as
building blocks for an integrated quality assessment and
processing system for still images that originate from a
digitization of printed media.
Some of the automated quality assessment (QA) algo-

rithms for still images as proposed by the authors rely
on the presence of reference targets within every digi-
tized image file. This is achieved by digitizing the source
media and reference target by the same digitization
machine in one single pass so that both are contained in
one single image file. The color reference target and
source media could be located anywhere within the raw
digitized image–with the prerequisite that the reference
target is contained fully within the raw image files and
is not overlapping the source media.
A system encompassing a compilation of the algo-

rithms presented in this article would then be able to
handle the following processing and analysis steps:

• 1. Image segmentation The spatial analysis of the
raw digitized images, leading to detection of the digi-
tized media (essence), the color reference target and
the scanner background. The bounding boxes
obtained by segmentation can then be used for an
independent analysis of these elements (cf. Section
3).
• 2. Reference-based assessment of quality Measure-
ment of color rendering accuracy by analysis of the
extracted reference targets (cf. Section 4.1).
• 3. No-reference assessment of quality Measurement
of in-picture contrast, brightness, sharpness, compres-
sion block artifacts and overall quality within the
extracted source image (cf. Section 4.2).
• 4. Quality optimization Application of quality ana-
lysis to efficient image optimization (cf. Section 4.3).
• 5. Presentation of layer derivatives The separation
of targets and source material can be used for auto-
matic image cropping to create presentation ready
derivatives from the raw scans containing both
media and targets.

3 Color reference target detection
The employment of reference targets in the process of
professional digitization or photography is ubiquitous
today. Practically all current digitization guidelines
aimed at the preservation of cultural heritage material
highly recommend the inclusion of reference targets in
each of the originals being scanned. Many agencies go
even further, advocating the use of several targets in
order to allow for a more accurate quantization of the
variables involved in the digitization process. A promi-
nent example are the numerous federal agencies from
the US adhering to the Federal Agencies Digitization
Guidelines Initiative (FADGI) [11]. The FADGI suggests
as a minimal requirement the use of photographic gray
scale as a tone and color reference, as well as the utiliza-
tion of an accurate dimensional scale. Color reference
targets, also known as color checkers are therefore of
central importance in any mass digitization process.
Depending on their type, reference targets allow a pre-

cise measurement of many different parameters influen-
cing the digitization. Examples of such parameters are:
the scale, rotation and any distortions present in the
digitized asset, as well as the color and illumination
deviation/uniformity. In the following we briefly present
a few of the most popular color reference targets in use
today:

• The classic color checker [19], initially commercia-
lized starting from 1976 as the “Macbeth” color
checker [20]. It contains 24 uniformly-sized and
-colored patches printed on a 8.5” × 11.5” cardboard.
The colors are chosen so that they represent many
natural, frequently occurring colors such as human
skin, foliage, and blue sky. Nowadays it is still the
most common tool employed for color comparison
due to its small size and ease of use (cf. Figure 1a).
• The digital color checker SG [21] contains an
extended color palette in the form of 140 quadratic
patches. It is tailored to offer a greater accuracy and
consistency over a wide variety of skin tones, as well
as the provision of more gray scale steps ensuring a
finer control of the camera balance and the ability to
maintain a neutral aspect regardless of light source
(cf. Figure 1b).
• The Universal Test Target (UTT) [12] is one of the
most recent open-source efforts for the development
of a single reference target covering a large array of
scanning parameters. The development of the UTT
is an ongoing process directed by the National
Library of the Netherlands as part of Metamorfoze
[22], the Dutch national program for the preserva-
tion of article heritage. It is available with various
options in the DIN sizes A3 to A0 and has as main
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purpose a general applicability in all kinds of digiti-
zation projects, preservation and access, carried out
by libraries, archives and museums (cf. Figure 1c).

By using the information extracted with the help of
the reference targets, a human operator is able to cor-
rect any inaccuracies of the scanning procedure on-the-
fly. In case of a fully automated digitization process, a
computer algorithm has the possibility of performing
accurate corrections on the digitized assets for a better
reproduction of the original item. Very little research
has been done in the area of automatic color reference
target detection. To the best of the authors’ knowledge
there currently exist no fully automatic solutions to this
problem. A step in this direction was recently done by
Tajbakhsh and Grigat [23], who introduced a semi-auto-
matic method for color target detection and color
extraction. Their method focuses on images exhibiting a
significant degree of distortion (e.g., as caused by per-
spective, mechanical processes, camera lens). In the pro-
cess of mass document digitization however, such
pronounced distortions are extremely seldom mainly
due to the cooperation with professional scan service
providers. A commercial software which is also capable
of a semi-automatic color target detection is the X-Rite
color checker Passport Camera Calibration Software
[24]. The X-Rite software ultimately relies on the
human operator to manually mark/correct the detected
reference target in order to be able to perform any sub-
sequent color correction. Human intervention is of
course not practical in any mass digitization process, as
it would cause far too large disruptions in the process.
In the following section, we present a fully automatic

and robust algorithm for the detection of classic color
checker targets in digital document images. Our main
focus is its applicability in mass document processing,
where robustness and flexibility are of paramount
importance. The proposed algorithm can readily be
extended to other types of color reference targets,
including the digital color checker SG as well as the

UTT (cf. Figure 1). An evaluation on a set of 239 real-
life document and photograph scans is done to investi-
gate the robustness of our algorithm.

Proposed algorithm
As mentioned in the previous section, our algorithm tar-
gets professional scans, as normally found in any mass
digitization project. As such, in order to ensure a fully
automatic and robust operation, we make a few assump-
tions. The first assumption is that the scans exhibit no
or low perspective distortions. In this respect, the
method of Tajbakhsh and Grigat [23] complements well
the proposed algorithm in case or larger distortions.
The second assumption is that the scanning resolution
is known (exactly or approximately) for each scanned
image, which is virtually always true in case of profes-
sional scans. A last but very important requirement is
that the lighting is approximately constant on the whole
image. Note that the last restriction is not specific to
our system, but it applies to all methods employing
color targets. In case of uneven lighting conditions (e.g.,
shadows, multiple light sources possibly having different
spectral distributions), it is generally not possible to
obtain a meaningful automatic color difference measure-
ment/adjustment without a priori knowledge of the
lighting conditions. One may easily see this by consider-
ing the following exemplary basic situations: uneven
lighting solely on the color target or uneven lighting
restricted to the scanned object. In the former case, an
automated color evaluation would match the (possibly
correct) colors from the scanned object to the (partially)
wrong ones from the color target, thus reporting large
color differences and performing wrong color correc-
tions. The latter case would result in no correction
being applied to the object (possibly exhibiting large
color shifts), due to the perfect lighting in the region of
the color target.
Our algorithm consists of the four main steps (cf. Fig-

ure 2) presented in detail below, followed by the auto-
matic color quality assessment described in Section 4.

Figure 1 Examples of the color checkers (a) Classic color checker; (b) digital color checker SG; (c) basic UTT in A3 format.

Liu et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:109
http://asp.eurasipjournals.com/content/2012/1/109

Page 4 of 17



The first step is the application of a codebook-based
color reduction (cf. Figure 3b). More specifically, the
color Cp of each pixel p is replaced with the value of the
nearest codebook color:

Cp ← Codebookargmax
i

D (Cp,Codebooki), (1)

where

D (C1,C2) =
√

(r1 − r2)2 +
(
g1 − g2

)2
+ (b1 − b2)

2 (cf.

Figure 3e,f). The simple Euclidean distance in the sRGB
color space has performed well enough in our tests,
however, in order to obtain more perceptually accurate

color reduction results, one may use any more advanced
color measure, such as CIEDE2000 [25]. The codebook
consists of the set of colors existing on the color target.
Note that all color components for each patch are pre-
cisely known, being specified by the reference target
manufacturer as both sRGB and CIE L* a*b* triplets
[26]. In case of the classic color checker this step results
in a color-reduced image having exactly 24 colors.
In the next step, a connected component analysis [27]

is performed on the color-reduced image (cf. Figure 3c).
In practice, connected component analysis is extremely
fast even for large, high-quality scans because the com-
plexity of the algorithm is constant in the number of

Figure 2 Block diagram of proposed color target detection algorithm.
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pixels in the image. Subsequently we make use of the
known scanning resolution to perform a filtering of the
potential patch candidates based on their size, namely
we discard all connected components having a width or
height deviating more than 20% off the expected patch

size. Since the shapes as well as the average distances
between the color patches on the reference target are
also known in advance for each color target model, they
are used next as a refinement to the initial filtering. For
the classic color checker our algorithm uses the

Figure 3 Illustration and results of the color checker detection (a) Original scan with a completely occluded last color checker line (i.
e., no grayscale patches visible); (b) after color quantization; (c) with superimposed Delaunay triangulation (orange-painted edges
were discarded from the adjacency list used for matching); (d) correctly detected color target; (e), (f) visualizations of the
automatically extracted color quality results (chrominance, luminance).
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following restrictions:

• the (roughly) square aspect of each color patch, i.
e., width and height, are within 20% of each other;
• the size uniformity between the patches, i.e., area
of each bounding box, deviates less than 30% from
the median area;
• the average distance between direct horizontally or
vertically neighboring patches, i.e., distance to closest
patch candidate must lie within 15% of the median
minimum distance.

All previously mentioned thresholds have been experi-
mentally determined via an independent training image
set consisting of a random sample of images with a
similar provenience as the images from the test set. The
thresholds allow our algorithm to successfully cope with
minor perspective distortions, image blur, as well as lens
distortions (e.g., chromatic- and spherical aberrations).
The remaining connected components constitute the
final list of patch candidates. For each candidate we now
determine its dominant color as the mean color of the
pixels from the original scan located within its con-
nected component. Since the original colors within each
patch are relatively close to each other (they were
assigned to the same cluster center by the color reduc-
tion), such a mean can be computed safely even in the
sRGB color space. It is important to observe that gener-
ally computing a simple mean is not possible because of
resulting color interpolation artifacts, which are highly-
dependent on the employed color space, such as color
bleeding. Another possibility for assigning a single
representative color to each patch would be the use of
the median, computed either channel-by-channel or by
considering each color as a vector.
A third step consists of the determination of all direct

neighborhood relations between the final list of patch
candidates (cf. Figure 3d). This is accomplished via a
Delaunay triangulation [28] using as seed points the
centers of the patch candidates. Next, the obtained tri-
angulation is pruned of the edges diverging significantly
from the horizontal or vertical, as regarded from a coor-
dinate system given by the main axes of the color target.
Discarding edges which deviate more than 20% from the
median edge length represents an efficient pruning
method. Finding one of the axes of the color target can
at this point be readily accomplished by determining the
median skew angle from the remaining edges. The other
axis of the reference target is always considered to be
perpendicular to the determined axis.
As a final step, we may now determine the exact

orientation of the color target by employing the direct
neighborhood relations extracted, as well as the domi-
nant color for each patch candidate (cf. Figure 4). For

this purpose, we employ an exhaustive search over all
four possible orientations (0°, 90°, 180°, 270°) of the
target in order to compute the best matching one.
The optimization criterion used is the minimization of
the sum of the per-patch color distances under the
neighborhood restrictions extracted in the previous
step. Note that the search algorithm used in this step
has a relatively small importance with respect to the
running time in case of the classic color checker, as
the size of the candidate list and the number of neigh-
borhood relations is generally low. However, for large/
complex color targets one may wish to use a more
sophisticated search algorithm such as A* [29] or one
of its variants.

Experimental results
Our test set consists of 239 test images including photo-
graphs and various printed documents (newspaper
excerpts, book pages) digitized by the German National
Library as part of the use case Contentus in the Theseus
program [30]. The test images were scanned using dif-
ferent resolutions ranging from 300 dpi to 600 dpi. The
position of the color target varied considerably as the
human scanning operator was allowed to put the color
target anywhere in the vicinity of the item to digitize.
Table 1 depicts the color target orientations in the data-
set. As can be seen, our detection algorithm yields an
average precision of 97.1%. We can thus conclude that
it is robust to color checker orientations.
From the analysis of the test data, we have identified

two main causes for the detection failures. The majority
of the cases were caused by errors in the metadata of
the input scan, namely the units for the scanning resolu-
tion were incorrectly specified as being dots per centi-
meter instead of dots per inch. The resulting grossly
different scan resolution value caused the candidate
patch filtering process to fail and further prevented the
correct recognition of the color reference targets. Since
all scans have the same provenience and were taken in
the same time interval, it seems most likely that these
inaccuracies are simply glitches in the image metadata.
Such errors are practically unavoidable when large
amounts of data are involved. The other cause of failure
was a very high or complete occlusion of the color
checker. In case less than a single row of color patches
is visible on the scan (cf. Figure 5), our algorithm fails
because of its inability to find enough initial patch can-
didates required for establishing a reliable orientation
match. It is interesting to observe that in such extreme
situations with very few reference color patches visible,
the identification of a color target may not even be
desirable because of the inherent inability to perform a
subsequent meaningful color quality evaluation and/or
correction.
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4 Objective quality assessment and optimization
Although human observers can effectively and easily
judge the quality of an image, this is highly time and
resource consuming. Therefore, subjective measurements
are not suitable in most cases. Three measure classes, i.e.,
full-reference (FR), reduced-reference (RR) and no-refer-
ence (NR) exist in the area of objective image quality
assessment. The FR metrics predict the quality of an
image based on differences to a reference image. Mean
square error (MSE), peak signal-to-noise ratio (PSNR),
and structure similarity (SSIM) [31] are popular repre-
sentatives of FR metrics. They are also often used as
benchmarks for evaluating RR and NR metrics. As print
media must be digitalized before objectively assessing
their quality, little reference information can be
exploited. Hence, only RR and NR measurements can be
used in this context. On the contrary to RR metrics,
which use indirect information as a reference, NR metrics
predict the quality of images by extracting and modeling
prior knowledge on specific distortions. Thus, an objec-
tive NR metric will typically be designed for measuring a
particular distortion type [32].
In the following sections, the proposed quality assess-

ment system will be presented in two steps. First, color
deviations via an RR metric will be analyzed. Second,

the distortions of the scanned image will be assessed via
NR metrics. We will thereby distinguish between struc-
tural distortions, which distort the structures of textures
like blocking artifacts and blurriness, and non-structural
distortions such as brightness and contrast [31]. These
NR metrics will additionally be combined into an overall
quality metric.

4.1 Color-checker-based quality assessment
Commonly used professional scanners, either flatbed
scanners or high-resolution DSLR cameras, capture the
RGB components of the scanned image. These RGB
components are then calibrated by some specific color
calibration programs [33]. However, even after the cali-
bration step, the color distribution of the scanned docu-
ment may still significantly deviate from that of the
original because of different photosensitive materials,
refraction and reflection of different materials or the illu-
mination conditions. The degree of color shift is an
important a priori information, which should be assessed
before the quality evaluation of the scanned document.
The digitization of print media is based on embedded

ICC (International Color Consortium) profiles. The CIE
L*a*b* is used, instead of the sRGB color space, to eval-
uate the color deviation between the print media and
their scanned version, because the CIE L* a*b* color
space is applied to most ICC profiles for color manage-
ment of scanners and printers [34]. The �E∗

ab , defined
by the International Commission on Illumination (CIE),
describes the difference between the original and the
scanned color checkers. The �E∗

ab between two color
samples (L*,a*,b*)1 and (L* ,a*,b*)2 is defined as,

�E∗
ab =

√
(L∗

1 − L∗
2)

2 + (a∗
1 − a∗

2)
2 + (b∗

1 − b∗
2)

2. (2)

Figure 4 Examples of identified color reference targets, illustrating correct target detection for multiple orientations and robustness
to partial occlusion.

Table 1 Color reference target detection results on a
heterogeneous dataset consisting of books, newspaper
excerpts, and photographs

Color checker Orientation

Horizontal Vertical Total

0° 180° 90° 270°

Total Scans 115 13 109 2 239

Failed Detections 2 0 5 0 7

Precision (%) 98.4 95.5 97.1
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Based on the CIE76 [35] criteria, if �E∗
ab > 2.3 , the

difference is already noticeable. However, if �E∗
ab > 5.0 ,

the difference can be evaluated as a different color [36]
and the ICC profile of the analog-to-digital device needs
to be re-customized.

4.2 No-reference image quality assessment
In this section, major structural and non-structural dis-
tortions are measured by different NR metrics. The sin-
gle NR metrics are finally integrated into an overall
quality metric.
4.2.1 Sharpness
Sharpness is one of the most important properties of
image quality. Many reasons may lead to the distortion
of image sharpness such as compression, smoothening/
denoising, defocusing, motion, discoloration of photos,
etc., [37]. Most of the objective NR sharpness metrics
are proposed in the frequency or the spatial domains
[38]. Although the metric just noticeable blur (JNB) [37]
and its improved version cumulative probability of blur
detection (CPBD) [39] feature a better performance than
other NR sharpness metrics, their runtime costs are very
high. We therefore propose a two-stage sharpness
metric that shows better runtime performance than JNB
and CPBD. First, the probability of local blurriness is
fragmentarily measured. Then, the visually salient high
frequency components are measured to extend the
probability of local blur to the whole image. The calcu-
lation of the blur probability of an edge pixel follows the
concept of the JNB proposed in [37] and is defined as,

p(ei) = 1 − exp

(
−

∣∣∣∣ w(ei)
wJNB(ei)

∣∣∣∣
β
)
, (3)

where wei is the width of edge ei [40] and wJNB(ei) is
the width of the JNB. If the standard contrast (cf.

Equation 10) of an edge region is larger than 50, the
corresponding wJNB(ei) is measured to be 3, otherwise to
be 5 [37]. The parameter b controls the curvature of the
psychometric probability function. b values are chosen
between 3.4 and 3.8 with a median at 3.6 by means of
least-square fitting [37].
Sparse local analysis Figure 6 illustrates the computa-
tion of the local blurriness probability. The image is first
partitioned into 64 × 64 blocks. However, we assume that
evaluation of dominant structures and textures may not
require to consider all blocks. Thus, we suggest selecting
the blocks fragmentarily to increase processing speed. Our
experiments have shown that best performance is achieved
if the total area of selected blocks is not less than 25% of
the image area independently of the content. The second
step consists in the block selection. The blocks may be
selected at m%2 = 0 and n%2 = 0, where m and n corre-
spond to coordinates at block resolution. Therefore, we
name this approach Sparse Local Analysis. Thirdly, a
block is classified as an edge block when at least 0.2% of
its pixels are marked as edge pixels [37]. The blur prob-
ability of an edge block is defined as the sum of blur prob-
abilities of each edge pixel within the block [37]. The
overall local blur probability is defined as,

SL =
Nb�n

�
, (4)

where Nb is the number of processed edge blocks, Γ is
the sum of the blur probabilities of all processed edge
blocks and Γn is a normalization factor defined as,

�n =

(∑
b

∣∣∣∣64 × 64 × 0.2%
wJNB(b)

∣∣∣∣
β
) 1

β

, (5)

which denotes the sum of the blur probabilities of all
edge blocks with the best sharpness values. wJNB(b) is

Figure 5 Examples of failed color target identifications caused by (partial) occlusion.
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the edge width of the JNB based on the contrast of the
block b.
Global analysis According to the curves and surfaces
theory, edges of objects, which have distinctive shapes,
are normally continuous in a small area [41]. Therefore,
it can be supposed that the edges in an unmeasured
edge block are similar to the edges in its analyzed neigh-
bor edge blocks. The proportion between the edge and
non-edge blocks is approximately equal to the propor-
tion between the high and low frequency components in
an image. Thus, the global sharpness of the image can
be estimated from the sparse local sharpness by an
extension with the weight of the high frequency compo-
nents. We suggest using higher order statistics (HOS) to
extract the high frequency components from images, as
they can suppress Gaussian noise and preserve non-
Gaussian information [42]. The fourth-order moments
of the HOS are calculated for all pixels within the lumi-
nance channel I of an M × N image,

HOS (y, x) =
1

4(ε + 1)2

y+ε∑
i=y−ε

x+ε∑
j=x−ε

(I(i, j) − μ(y, x))4, (6)

where μ(y, x) is the mean luminance of the pixel set {0
≤ y ± � <M, 0 ≤ x ± � <N} and � is set to the mean wJNB

of all measured edge blocks. The range of HOS values is
limited to [0, 2n − 1], where n denotes the bit-depth of
color space. Thus, the relationship between the low and
high frequency components can be formulated as the
following equation,

mL =
T∑
i=0

i · h(i) = η ·
2n−1∑
j=T

j · h(j) = η · mH, η > 0, (7)

where mL/mH denotes the mass of the low/high fre-
quency components in the histogram h of the corre-
sponding HOS map. The parameter h controls the ratio
of the low/high frequency components. For example, h
= 1 means mL = mH. The unknown threshold T, which
distinguishes between the low and high frequency com-
ponents of the histogram, can be calculated from the
Equation 7. Then, the weight of the high frequency
components is defined as,

W =
mHC

2n−1
=

1
2n−1

mH∑2n−1

i=T i
, (8)

where mHC denotes the center of mass of the high fre-
quency components in the histogram h.
However, the spares local sharpness analysis does not

measure global image properties. The weight of the high
frequency components W, which is estimated as the dis-
tribution of edges-of-interest within the image, can be
used to extend the local metric to the whole image area.
Thus, the new proposed metric LGS based on both
Local and Global Sharpness analysis is defined as,

Sq = W · SL. (9)

In practice, the areas near the boundaries of an image
are less important for human observers than the rest
areas within the image [43]. They are thus ignored to
save runtime costs in this work.
4.2.2 Contrast and brightness
Contrast, in the terms of vision, is the difference in
luminance of the background and the objects of interest.
Visually apparent contrast is an important perceptual
attribute of an image for human observers to distinguish
objects from their background. The study of contrast

Figure 6 Workflow of sparse local blur analysis.
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sensitivity [44] shows that contrast is mainly dependent
on the brightness and the dynamic range of the image.
The contrast of an image is referred to as the Eucli-

dian distance between the mass centers of the upper
and lower parts of the luminance histogram projected
onto the bin axis [45].
Each part has the same mass as the other. The stan-

dard contrast metric is defined as

C =
|Lu − Ll|

La
, (10)

where Lu/Ll is the average mass of the upper/lower
part and La is the average mass of the luminance chan-
nel. Lu, Ll, and La are projected onto the bin axis.
However, if the average luminance is too large or too

small, the standard metric should be changed to the
Weber contrast [45]. Depending on different image
properties, different algorithms for measuring the con-
trast are applied accordingly. For practical applications,
we design a new contrast quality metric by normalizing
the standard contrast metric to avoid the inconsistency
of the standard metric. The proposed normalization fac-
tor is defined as,

norm =
|Lu − Ll|

Rl
. (11)

where Rl denotes the range of luminance intensity.
This factor represents the ratio of the luminance differ-
ence and the luminance intensity. Thus, the final metric
of contrast quality assessment (CQA) is

Cq = C · norm. (12)

The brightness measure corresponds to La in this
work. Brightness can be seen as a secondary attribute of
contrast. If the image has good contrast but poor bright-
ness, it means that, although the image has some bright
areas, most areas are dark.
4.2.3 Overall quality
Human observers judge an image subjectively based on
its overall quality [31]. The quantification of single
image properties by objective metrics is not enough to
simulate human perception. In contrast to the common
FR metrics, which can be used to measure generic dis-
tortions of an image, state-of-the-art NR metrics will
typically be applied to specific distortions [46]. We thus
propose a NR metric for overall quality assessment that
integrates the structural and non-structural distortion
[31] probabilities.
The Blocking Artifacts (BA) and Blurriness (Bl) are

the major Structural Distortions (SD). Blocking and blur
results from compression are not totally uncorrelated if
a hybrid block based video codec is used [47]. Non-

structural distortions (ND) is solely defined as the con-
trast (Co) measure, as the brightness is a component of
at measure. Our overall quality metric can be thus for-
mulated as,

Qo = Cq · (a · Bq + b · Sq), (13)

where a + b =1; a, b > 0. The higher Qo is, the better
quality the image has. All NR metrics are limited and
normalized to 0[1].
Bq corresponds to a metric for blocking artifacts as

defined in [48]. This NR blocking metric is modeled in
the spatial domain. It is based on three characteristics of
perceivable blocking artifacts, the strength of the block
boundaries, the discontinuities across the block bound-
aries and the flatness of the image. Compared to other
NR blocking metrics, this metric has a good balance
between complexity and performance. But the range of
this metric depends on its parameter sets. Thus, we nor-
malize this metric to achieve a range of 0[1].
4.2.4 Experimental results
The print materials used in our experiment were digi-
tized by Hasselblad H4D-50MSf to 8-bit TIFF format or
compressed to 8-bit JPEG formats. The images were
converted to the sRGB color space based on embedded
ICC profiles. The results of all NR metrics were normal-
ized to 0[1] to become resolution invariant. Outliers,
which were smaller than 0 or larger than 1 after normal-
ization, were also truncated to 0[1]. Two common image
databases, the CSIQ [49] and LIVE [50] databases, were
selected to evaluate the metrics. The CSIQ database
contains 30 reference images. There are a total 886 dis-
torted images generated from six types of distortions
with 4-5 corresponding levels per image. All images
were rated by 25 observers. The subjective ratings were
recorded by differential mean opinion scores (DMOS).
The resolution of each image is 512 × 512. The LIVE
database contains 29 reference images and 26-29 dis-
torted versions of each reference image. For all images
of the LIVE database, subjective quality rates generated
by 20-25 observers are provided in form of DMOS. The
resolution of each image is 768 × 512. Figures 7 and 8
show some exemplar images of the databases.
The Pearson (CC) and the Spearman (SROCC) coeffi-

cients [51] were used to measure the correlation of the
proposed metrics with mean opinion scores (MOS)
from subjective ratings. High CC score and SROCC
score relate to high accuracy, monotonicity and consis-
tency of the metric under test [52]. 95% confidence
intervals of CC and SROCC were calculated based on
Fisher’s transformation [53]. The computational com-
plexity of the metric is also a very important property
for practical applications. Therefore, the complexity of
each metric was evaluated by measuring the mean
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runtime in seconds per image (s/img) over all datasets.
The metrics evaluated in this section are all based on
luminance information. Thus, the sRGB images were
transformed into 8-bit grayscale images [54]. The best
performances of the evaluated NR metrics were high-
lighted in the corresponding tables. The operating sys-
tem used for the experimental environment was
Windows 7 64-bit Professional with i7-M620 2.67 GHz
CPU and 8.00 GB memory. Two full-reference objective
metrics, PSNR and SSIM [31], were also evaluated as
benchmarks.
Sharpness 150 Gaussian blurred and 150 JPEG2000
compressed images of the CSIQ database as well as 175
Gaussian blurred and 288 JPEG2000 compressed images
of the LIVE database were used to evaluate the sharp-
ness metrics. In this experiment, 1/16 pixels from each
image boundary were cut off. 3/4 of all partitioned
blocks were ignored by the proposed sharpness metric
LGS in its fragmentary local analysis. The metric CPBDr

is extended from CPBD, which also ignores 3/4 of all
blocks of the image as a benchmark. The parameter h
was set to 1, since we assume that the proportions of
the low/high frequency components are the same.
The performances of the evaluated sharpness metrics

on the CSIQ database are summarized in Table 2. Con-
sidering the evaluation, it is shown that the proposed

metric (LGS) and CPBD offer the best results in com-
parison with other NR metrics. LGS features higher CC
respectively lower SROCC than CPBD with Gaussian
blur. CPBD could be successfully used to measure
JPEG2000 distortions. According to the mean CC and
SROCC, LGS performs similarly to CPBD. In spite of
this fact, LGS has a speed-up of over three times, com-
pared to the metric JNB or CPBD. Further in-depth
information is shown in Figure 9a,b. It can be seen that
the differences of CC and SROCC between LGS and
CPBD are not significant. The confidence intervals of
JNB have noticeable deviations from other evaluated
sharpness metrics. It is observed that JNB is not suitable
for measuring low-depth-of-field [55] images. We sup-
posed similar results were obtained for the LIVE data-
base (cf. Figure 9c,d). Generally, the new metric
performs closely to the FR metrics. LGS features some
slight advantages compared to the FR metrics for Gaus-
sian blur. The performance of LGS on JPEG2000 images
is comparable to PSNR. However, the FR metrics are
not suitable for the proposed framework, since no refer-
ence is available.
Contrast/brightness Table 3 shows the performance of
the evaluated contrast metric with the contrast dataset
(150 images) of the CSIQ database. It is shown that the
proposed metric (CQA) is a good alternative to the

Figure 7 Examples of the CSIQ database (a) Gaussian blur; (b) JPEG2000; (c) contrast; (d) JPEG.

Figure 8 Examples of the LIVE database (a) Gaussian blur; (b) JPEG2000; (c) JPEG.
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standard metric. Slight gains are visible, but they are not
statistically significant. However, the standard metric
(Equation 10) cannot be directly integrated into our sys-
tem, because its interval does not lie within 0[1]. The
proposed normalization does not cost much. Therefore,
the computation speed of the CQA is very close to that
of the standard metric, and faster than that of the FR
metrics. CQA has good correlation and complexity for
practical applications. The performance of the FR
metrics on contrast is lower than on other structural
distortions. Figure 9e shows that there is no significant
difference among the evaluated metrics.
Overall quality The TID2008 database [56], which con-
tains 25 reference images and 1700 distorted images,
was used for training the parameters of the proposed
overall metric. The training shows that the combination
of the parameters leads to a good performance if a ≥ b.
a = 0.6 and b =0.4 were thus used in the experiment.

Tables 4 shows the performance of the evaluated overall
metric using the CSIQ and the LIVE databases. In our
evaluation, we use not only the single datasets but also
integrate both to a single database.
Figure 10 shows the 95% confidence interval of these

metrics with the CSIQ and LIVE database. There is no
significant deviations of CC between the proposed NR
overall metric (OQA) and SSIM. However, a small
deviation of SROCC can be observed in measuring the
JPEG2000 distortion. Compared to the FR metrics,
OQA still has some advantages in measuring contrast
and Gaussian blurred distortion. The performance of
these three metrics is close to, in the measurement of
the blocking artifacts caused by the JPEG compression.
There is also no significant difference between OQA
and the proposed single NR metrics. The proposed NR
overall metric is robust of measuring different unspeci-
fied distortions.

Table 2 Performance of sharpness measures using the CSIQ database

Metrics Dataset CC SROCC Mean CC Mean SROCC Complexity (s/img)

PSNR Gaussian blur JPEG2000 0.824
0.849

0.862
0.894

0.836 0.878 0.004

SSIM [31] Gaussian blur JPEG2000 0.850
0.878

0.925
0.921

0.864 0.923 0.083

JNB [37] Gaussian blur JPEG2000 0.588
0.769

0.717
0.776

0.679 0.746 1.447

CPBD [39] Gaussian blur JPEG2000 0.830
0.862

0.885
0.853

0.846 0.869 1.479

CPBDr Gaussian blur JPEG2000 0.830
0.866

0.881
0.856

0.848 0.869 1.434

LGS Gaussian blur JPEG2000 0.887
0.836

0.872
0.825

0.861 0.849 0.459

Figure 9 Performance of the evaluated sharpness and contrast metrics with 95% confidence interval (a) sharpness metrics using the
Gaussian Blur dataset of the CSIQ database; (b) sharpness metrics using the JPEG2000 dataset of the CSIQ database; (c) Sharpness
metrics using the Gaussian blur dataset of the LIVE database; (d) Sharpness metrics using the JPEG2000 dataset of the LIVE database;
(e) Contrast metrics using the contrast dataset of the CSIQ database.
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4.3 Quality optimization
Automated quality analysis methods can be applied for
efficient image optimization, both manual and auto-
mated. A prerequisite is the return of relevant image
parameters (as shown in this article) as metadata by the
quality analysis algorithm.
If a digital image does not match given quality bench-

marks (like insufficient contrast for printed text), an
operator may improve the image by using image proces-
sing software. Alternatively, an automated image quality
optimization algorithm may adjust the image such as to
match insufficient image parameters to given quality
benchmarks–i.e., the amount of image optimization is
not fixed but rather depends on the actual image qual-
ity. In this case, images with sufficient quality bench-
marks will not be further processed. With digitized text
material, where OCR quality or human readability
depends on certain image parameters like contrast and
sharpness, the use of quality metadata will provide good
automated optimization results without overprocessing
the digitized text (like halos around letters that occur
due to oversharpening) [57]. This approach can be com-
pared to program dependent compression of an audio
signal in the domain of broadcasting where the amount
of signal processing is adjusted depending on the audio
source and the required sound quality.
Quality metadata may also be used in reporting sys-

tems that support operators to quickly detect images
below the quality threshold out of a large population. In
practice, the operator may be able to halt the digitiza-
tion process in case of scanner-related errors.

While it is obvious that, instead of checking the qual-
ity of thousands of scanned images per day manually,
operators making use of automated quality analysis algo-
rithms will save a tremendous amount time, it is also
important to consider the response time of error detec-
tion. In case of information loss due to scanning or
image processing errors–including all types of defects
which cannot be corrected using automated quality opti-
mization–books or documents have to be digitized once
again. If a significant error is detected with a low
response time, the book may have already been brought
back to the archive and thus, digitizing it once more
will consume even more human resources in addition to
the re-digitizing step itself.
In another case, images may be below quality thresh-

olds due to systematic scanner-related errors (e.g., offset
in color temperature due to deteriorated scanner light
bulbs). The larger the time lag between the occurrence
of a systematic error and its detection, the more books
or documents have to be re-digitized.
As a consequence, a high-throughput workflow that

quickly detects errors will elicit a rapid halt of produc-
tion and/or trigger an immediate redigitization. To sum
up, mass digitization workflows heavily rely on auto-
mated tools as described in this article for the image
quality to be instantaneously optimized.

4.4 Further work: integration of technologies in a
productive overall system
Future study will deal with the adaption of the technolo-
gies described in this article to production environments
of mass digitization workflows. In order to achieve this,
two challenges–one related to the function and another
relating to technical integration–have to be taken into
account. The former can be further subdivided into

1). Reliability:
a. Implementation of further metrics, as noise
and picture dynamic.
b. Correct measurement of quality parameters.
c. Quality analysis should be sufficiently robust
and configurable to account for variations
appearing in analog print media collections;

2). Performance:
a. Optimize the metric performances and the
respective complexity.
b. Optimize speed to analyze a given set of qual-
ity parameters.
c. Reduce required hardware resources to analyze
a given set of quality parameters.
d. Automated target detection when used;

3). Significance:
a. Providing the user meaningful interpretation of
measurement results.

Table 3 Performance of contrast measures using the CSIQ
database

Metrics CC SROCC Complexity (s/img)

PSNR 0.721 0.713 0.005

SSIM [31] 0.772 0.740 0.086

Standard 0.744 0.772 0.001

CQA 0.822 0.824 0.001

Table 4 Performance of the proposed overall metric
using the CSIQ and the LIVE database

Dataset Database CC SROCC Complexity (s/img)

JPEG CSIQ 0.889 0.870 0.524

LIVE 0.839 0.881 0.698

Gaussian blur CSIQ 0.884 0.850 0.488

LIVE 0.875 0.911 0.668

JPEG2000 CSIQ 0.811 0.799 0.513

LIVE 0.796 0.821 0.703

Contrast CSIQ 0.769 0.758 0.585

All CSIQ 0.825 0.808 0.527

LIVE 0.815 0.873 0.689
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b. Hiding irrelevant data, i.e., information not
immediately related to image quality;

4). Usability:
a. Displaying quality parameters in a graphical
way enabling the user a quick overview for a
large set of digitized images.
b. Usage has to take into account the qualifica-
tion level of digitization operators.
c. Quality reports should be both human- and
machine-readable and concise.
d. Quality metadata should be provided in an
achievable format,

while the latter challenge addresses requirements
related to implementation costs, hardware technology,
workflow framework, overall architecture etc., that are
important but beyond the scope of this article.
On one hand, best practice guidelines from the cul-

tural sector [58-60] have provided detailed image quality
metrics as a basis for a quantifiable quality management
in digitization workflows (for overview see [7]). On the
other hand, a considerable subset of image quality para-
meters which cultural heritage organizations require for

quality assessment in mass digitization workflows are
measured by technologies described in this article.
Hence, the results for mass digitization workflows com-
ply with “real world” requirements from cultural heri-
tage organizations and content holders such as
publishers likewise.

5 Conclusions
This article presents a new quality assessment and
improvement system for print media. After the digitiza-
tion of print media, an automatic segmentation is
applied to separate the scanned print media and the
color checker. The color disparities between the original
and the scanned color checkers are first measured to
give a priori quality assessment of the digitization. No-
reference quality metrics measure the eventual distor-
tions of the scanned print media. The no-reference
metrics are also integrated to an overall quality metric.
An automatic image quality optimization algorithm is
then applied to adjust the image to match given quality
benchmarks. The LIVE and the CSIQ databases were
used to evaluate the performance of these no-reference
metrics. The evaluation shows that the proposed no-

Figure 10 Performance of the evaluated overall metrics with 95% confidence interval (a) CC of the overall metrics using the CSIQ
database; (b) SROCC of the overall metrics using the CSIQ database; (c) CC of the overall metrics using the LIVE database; (d) SROCC
of the overall metrics using the LIVE database.
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reference metrics are robust in measuring the corre-
sponding distortions.
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