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Abstract

An original low-voltage current-mode high-accuracy function synthesizer circuit will be presented, allowing to
implement a multitude of continuous mathematical functions. The dynamic range is strongly extended as a result
of the superior-order approximation of the implemented functions. The current-mode operation and the
independence of the circuit performances on technological parameters are responsible for an additional
improvement of structure accuracy. The advantages of reduced design costs per function represent an immediate
consequence of the multiple functions realized by the proposed structure. The approximation error of the original
function synthesizer circuit is 0.3% for an extended range of the input signal. The function synthesizer is designed
for implementing in 0.18 μm CMOS technology and it is supplied at 1 V. An original application of the proposed
function synthesizer circuit is represented by a new fourth-order approximation exponential function generator,
having a dynamic range of approximately 33 dB, for an error smaller than 1 dB.

Keywords: Signal synthesizing, Approximation error, Exponential function generator, Current-mode operation,
Continuous mathematical function, CMOS analog designs
Introduction
Analog signal processing represents an important area of
analog integrated circuits analysis and design, with a
multitude of applications in many domains. Multiplier
and exponential circuits are useful in telecommunication
circuits [1-4], medical equipments [5,6], hearing devices
[7,8], or disk drives [9,10]. Squaring circuits represent the
core for implementing any continuous function, using the
limited Taylor series expansion. The Euclidean distance
function is very important in instrumentation circuits
[11,12], communication [1,2], neural networks [13,14],
display systems [15,16], or classification algorithms [17],
being also useful for vector quantization or nearest neigh-
bor classification [18,19].
The main problem in designing analog signal processing

structures is how to implement with minimal effort a large
number of nonlinear mathematical functions [3]. The
requirements for an analog signal processing structure are
mainly related to the circuit accuracy, to the possibility of
achieving a multitude of circuit functions with reasonable
design costs and to the controllability of the implemented
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function. In this context, analog processing performed in
focal-plane Vision Systems-on-Chip [20] can represent an
interesting choice. Important functions from the perspec-
tive of their applications are multiplying/dividing [21-30],
exponential [31-34], squaring/square-rooting [30,35-41],
or Euclidean distance [42,43] functions.
In bipolar technology, the multiplying/dividing function

can easily be obtained from the logarithmical characteris-
tic of the bipolar transistor. Important errors still remain
because of the nonzero values of the base currents and of
the temperature dependence of the bipolar transistor
parameters (the thermal voltage is linearly increasing with
temperature and the saturation current has an exponential
dependence on temperature). In order to achieve a low-
power operation of complementary metal oxide semicon-
ductor (CMOS) designs, the subthreshold biasing of metal
oxide semiconductor (MOS) transistors is an interesting
choice. Based on the logarithmical law of a MOS transis-
tor in weak inversion, the implementation of a CMOS
Multiplier/Divider circuit becomes very simple (even with
respect to the bipolar version). In consequence, the result
will be smaller silicon area consumption, the circuit being
also compatible with low-power very large-scale integra-
tion (VLSI) designs. For obtaining an important increasing
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of the circuit frequency response, the multiplying/dividing
function can be achieved by employing the square law
model of MOS transistors biased in saturation.
The exponential function is available in bipolar technol-

ogy using the exponential characteristic of the bipolar
transistor. In CMOS technology, the exponential law can
directly be implemented exploiting the weak inversion op-
eration of the MOS transistor. In order to obtain the ex-
ponential function using the squaring characteristic of the
MOS transistor in saturation (for improving the circuit
frequency response), the classical method is to approxi-
mate the exponential function with its nth-order expan-
sion (the polynomial series). The approximation error will
be proportional with the number of terms neglected in
the expansion.
There are many possibilities of implementing squaring

and square-rooting functions using the quadratic charac-
teristic of the MOS transistor biased in saturation. The
main goals of this class of circuits are the silicon-occupied
area, the independence of the output current on the
technological parameters and on temperature and the
small sensitivity to the multitude of second-order effects.
The classical approach in analog signal processing cir-

cuits is to implement, for each circuit function, a class of
computational structures. The proposed method for
obtaining a multitude of continuous mathematical func-
tions is to design a complex computational structure,
named function synthesizer circuit that is able to generate
these functions approximating them using an original
superior-order approximation function. The accuracy of
computation is correlated with the order of approxima-
tion. In conclusion, a tradeoff between the complexity of
the structure and its intrinsic accuracy must be made. The
advantages of the proposed method are mainly related to
the possibility of strongly reduce the power consumption
and circuit complexity per implemented function.
It exists in literature a relatively small number of func-

tion synthesizer circuits implemented in CMOS technol-
ogy [4,33,44-46], these applications being dedicated to the
realization of a limited number of mathematical functions.
In [44], the approximation of the implemented function
can be obtained by adding the weighted output currents
of a number of basic building blocks, built around a basic
current squarer, and a constant current, the circuit pre-
senting the disadvantage of a relatively large complexity.
The circuit proposed in [45] is based on approximating
the required function using the first three terms of its Tay-
lor series expansion. The approximations can be imple-
mented by adding the output currents of a weighted
current square, a weighted current amplifier (or attenu-
ator), and a constant current. The errors are mainly
caused by the small value (two) of the approximation
order and, in consequence, they are relatively large. Add-
itionally, from the same reason, the range of the input
signal is strongly restricted. A structure for synthesis of
analog exponential functions, based on approximating the
exponential function using rational functions, is proposed
in [46]. The circuit presents the important limitations of
realizing only the exponential function and of an imple-
mentation in bipolar technology.
The article is multidisciplinary, starting from a rigor-

ous mathematical analysis and continuing with original
implementations of the proposed electronic computa-
tional circuits. A new implementation of a current-mode
function synthesizer circuit with an extended capability
of generating continuous mathematical functions will be
presented. The proposed structure is based on a fourth-
order original approximation function, having the im-
portant advantages of an improved accuracy and of re-
configuration capability.

Main text
Fundamental methodology
In order to implement an improved accuracy analog
function synthesizer circuit, the proposed method is to
use a general continuous approximation function, g(x),
having a Taylor series that can be made to fourth-order
match a multitude of continuous mathematical func-
tions, f(x).

g xð Þ ¼ 1þ aOx
1þ a1x

þ a2x
1þ x

þ a3xþ a4 ð1Þ

aO. . .a4 represent constant coefficients, having values
imposed by the necessity that the Taylor series of g(x)
function to be identical (in a fourth-order approxima-
tion) with the Taylor series of f(x) function, that can be
expressed by the following polynomial relation:

f xð Þ ¼ mþ nxþ px2 þ qx3 þ rx4 þ sx5 þ tx6 þ . . .

ð2Þ
m� t represents constant coefficients of the expan-

sion, depending on the expression of f(x) function that
must be implemented.
The motivation for choosing this particular g(x) approxi-

mation function is correlated with the possibilities of its
facile implementation in CMOS technology (the multiply-
ing/dividing function has a relatively simple realization).
In comparison with this original approximation function,
the Pade approximation [24] (having also good accuracy)
presents a much more complicated implementation in
CMOS technology, requiring squaring and superior-order
computational circuits that strongly increase the overall
complexity of the function synthesizer. The requirements
for an extremely accuracy of the function synthesizer cir-
cuit impose a relatively high order of approximation for g
(x) function. The increasing of the order of approximation
strongly increases the complexity of the designed circuit,
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Figure 1 The block diagram of the function synthesizer with
fourth-order approximation.
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being necessary to realize a tradeoff between the circuit
complexity and its overall accuracy. From this point of
view, an optimal choice that allows to obtain a very good
accuracy and a relative large dynamic range of the func-
tion synthesizer using a reasonable circuit complexity is
based on a fourth-order approximation.
The fourth-order identity between the Taylor series of

f(x) and g(x) functions is equivalent with the identity be-
tween the first five terms from the Taylor series of the
previous functions, being evident the reason of choosing
five coefficients aO. . .a4 for defining g(x) function. It
results

aO ¼ pþ qð Þ3
r þ qð Þ r þ pþ 2qð Þ �

r þ q
pþ q

ð3Þ

a1 ¼ � r þ q
pþ q

ð4Þ

a2 ¼ pþ qð Þ2
r þ pþ 2q

� p ð5Þ

a3 ¼ nþ p� pþ qð Þ2
r þ q

ð6Þ

a4 ¼ m� 1 ð7Þ

The approximation error will have the following gen-
eral expression:

Eg xð Þ
f xð Þ xð Þ ffi q2 � 2rp� qr

pþ q
� s

� �
x5

f xð Þ ð8Þ

In order to further reduce the approximation error of
the synthesizer circuit, it is possible to increase the order
of approximation. For example, a possible fifth-order ap-
proximation function that requires a reasonable com-
plexity of CMOS implementation can be generally
expressed as follows:

g 0 xð Þ ¼ bOx
1þ b1x

þ b2x
1þ x

þ b3x
2 þ b4xþ b5 ð9Þ

bO. . .b4 represent constant coefficients, having values
imposed by the necessity that the Taylor series of g’(x)
function to be identical (in a fifth-order approximation)
with the Taylor series (2) of f(x) function. The additional
complexity of the circuit that implements g’(x) function
comparing with the computation structure required by
g’(x) is represented by a current-mode squaring circuit
(for obtaining the b3x

2 term).
Current-mode implementation of the function synthesizer
circuit
Block diagram of the function synthesizer with fourth-order
approximation
The block diagram of the function synthesizer, based on
the original proposed approximation function (1), is pre-
sented in Figure 1. The “Multiplier/Divider” circuits are
current-mode structures [30,47,48], having the new im-
plementation and the description of their operation pre-
sented in the following paragraph. The expressions of
IOUTa and IOUTb currents are

IOUTa ¼ IOI1a
I2a

ð10Þ

and

IOUTb ¼ IOI1b
I2b

ð11Þ

The output current of the circuit having the block dia-
gram presented in Figure 1 will have the following ex-
pression:

IOUT ¼ IOUTa þ IOUTb þ a3IIN þ a4IO ð12Þ

Using the notation x= IIN/IO and relation (1), it results
that IOUT current represents the fourth-order approxi-
mation of f(x) function:

IOUT ¼ IO
1þ aOx
1þ a1x

þ a2x
1þ x

þ a3xþ a4

� �

¼ IOg2 xð Þ ffi IOf xð Þ ð13Þ
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The implementation of the “X2” block
The functional core for designing the “Multiplier/Div-
ider” circuit is represented by a current-mode squaring
circuit, having the original implementation presented in
Figure 2. The aspect ratios of MOS transistors are 1μ/
0.54μ for M1–M4 transistors and 0.8μ/0.54μ for M5–
M7 transistors.
Noting with VGS(I) the absolute value of the gate–source

voltage of a MOS transistor biased at a drain current equal
with I the equation of the translinear loop can be
expressed as follows:

2VGS IOð Þ ¼ VGS IDð Þ þ VGS ID þ IINð Þ ð14Þ
resulting

2
ffiffiffiffiffi
IO

p
¼ ffiffiffiffiffi

ID
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ID þ IIN

p
ð15Þ

Reducing the radicals by squaring the terms and sim-
plifying, it results

4IO � 2ID � IIN ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ID ID þ IINð Þ

p
ð16Þ

equivalent with:

16I2O þ I2IN � 16IDIO � 8IOIIN ¼ 0 ð17Þ
So

ID ¼ IO � IIN
2

þ I2IN
16IO

ð18Þ

The expression of the output current will be

IOUT ¼ ID þ IIN
2

� IO ¼ I2IN
16IO

ð19Þ

The previous relations can be used only for strong satu-
rated devices and for not too small devices. In order to
ID
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Figure 2 The implementation of the “X2” block.
increase the accuracy of the computations, quasi-identical
source–drain voltages for M1–M2 and M3–M4 transistors,
respectively, must be imposed. The source–drain voltage of
M3 transistor can be expressed as follows

VSD3 ¼ V � VGS1 ffi V � VGS2 ¼ VSD4 ð20Þ

because, considering IIN < < IO, M1 and M2 transistors
are identical and biased at drain currents that differ
only with a small amount. Additionally, for biasing
M1 and M2 transistors at approximately equal drain–
source voltages, V’ potential must be imposed, from
the IOUT external terminal, to be equal with V poten-
tial. This particular biasing of M1 and M2 transistors
will impose quasi-identical source–drain voltages also
for M5 and M6 transistors, this fact increasing the
accuracy of M5–M6 current mirror.
The M3–M7 transistors are not affected by the sub-

strate effect, as their bulks are connected to their
sources terminals. The M1 and M2 transistors have the
bulk connected to the ground, so their non-zero bulk-
source voltage will be responsible for small errors intro-
duced by the substrate effect. As a result, the expression
of IOUT current will slightly be affected by undesired de-
pendencies on technological parameters. The impact of
these errors on the overall accuracy of the proposed
function synthesizer circuit is small and they can be
compensated using specific design techniques. The bias-
ing current of the squaring circuit from Figure 2 is ap-
proximately 200μA.

The implementation of the “multiplier/divider” block
The original proposed “Multiplier/Divider” circuit is pre-
sented in Figure 3a, being designed using two current-
mode squaring circuits, similar with the structures pre-
sented in Figure 2 (M1–M4 and M3–M6, respectively).
The full CMOS implementation of the “Multiplier/Div-
ider” circuit is shown in Figure 3b. The complexity of
the “Multiplier/Divider” circuit is minimized by re-using
M3–M4 transistors for both squaring circuits. The as-
pect ratios of MOS transistors are 1μ/0.54μ for M1–M6
transistors and 0.8μ/0.54μ for M7–M8 transistors. The
output current has the following expression:

IOUT ¼ ID1 � ID2 þ 2IO ð21Þ

where two translinear loops similar with the loop ana-
lyzed for the “X2” circuit implement the following
expressions of ID1 and ID2 currents (derived from (19)):

ID1 ¼ I2 � I1 þ IOð Þ þ I1 þ IOð Þ2
4I2

ð22Þ

and
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Figure 3 (a) The core of the Multiplier/Divider circuit. (b) The implementation of the Multiplier/Divider circuit.
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ID2 ¼ I2 � I1 � IOð Þ þ I1 � IOð Þ2
4I2

ð23Þ

resulting an output current of the circuit having the fol-
lowing expression:

IOUT ¼ IO
I1
I2

ð24Þ

The original proposed Multiplier/Divider circuit pre-
sents two important advantages. First, the current-mode
operation increases the frequency response of the compu-
tational structure. Second, the independence of the output
current expressed by (24) on technological parameters
removes, in a first-order analysis, the temperature- and
technological-caused errors, the overall accuracy of the
proposed circuit being increased in this way. Additionally,
the resulted concrete implementation of the function
synthesizer circuit based on the block diagram proposed
in Figure 4 has a smaller complexity comparing with pre-
viously reported similar computational structures.
Using MOS transistors implemented in 0.18μm CMOS

technology, the maximal frequency of operation of the
proposed function synthesizer circuit is approximately
hundreds kHz - MHz, depending on the particular
model of MOS active devices. The biasing current of the
“Multiplier/Divider” circuit is approximately 300μA,
while the maximal biasing current of the function
synthesizer circuit is smaller than 800μA.

Error mechanisms for function synthesizer circuit
Real circuits are affected by a multitude of errors [3,4]
that slightly affects their overall accuracy. The most



Figure 4 Graphical comparison between g(x) approximation
function and f(x) = exp(x).
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important errors that must be taken into account for
evaluating the function synthesizer accuracy are pre-
sented in the following paragraphs.

The deviation of the MOS transistor characteristic from the
square-law, bulk effect, leakage
The saturated MOS transistor squaring characteristic is
affected by the second-order effects: mobility degradation
(25), channel-length modulation (26), and bulk effect (27):

K ¼ KO

1þ θGðVGS � VT Þ½ �ð1þ θDVDSÞ ð25Þ

ID ¼ K
2

VGS � VTð Þ2 1þ λVDSð Þ ð26Þ

VT ¼ VTO þ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ� VBS

p
�

ffiffiffiffi
Φ

p� �
ð27Þ
Table 1 Comparison between g(x) approximation
function and f(x) = exp(x)

x g(x) (dB) f(x) (dB) e (dB)

0 0 0 0

0.2 4.075 4 0.075

0.4 8.029 8 0.029

0.6 12.011 12 0.011

0.8 16.028 16 0.028

1.0 20.095 20 0.095

1.2 24.239 24 0.239

1.4 28.495 28 0.495

1.6 32.914 32 0.914

1.65 34.001 33 1.001
The errors introduced by the bulk effect [3,4] can be
reduced by proper designs that avoid the dependence of
the circuit parameters on the threshold voltage. The de-
sign of circuits for obtaining a zero bulk-source voltage
cancels out the errors introduced by the bulk effect.
Additional errors produced by the second-order
effects are given by the dependence of K transcon-
ductance parameter on VGS voltage. Taking into ac-
count only the K(VGS) dependence, a small changing
of K(VGS) voltage comparing with the analysis based
on the first-order model of MOS transistors can be
determined:

VGS ¼ VT þ
ffiffiffiffiffiffiffi
2ID
K

r
þ θG

K
ID ð28Þ

For latest CMOS VLSI nanometer designs, the leak-
age [3,4] becomes more important, the leakage current
depending on the properties of the layout and also on
the device structure. The determination of the total leak-
age cannot be made by adding individual leakage currents,
because of a correlation that exists between leakage
currents.
The subthreshold leakage is the current produced by

minority electrons flowing through p substrate from
source to drain, being modeled by an exponential func-
tion:

ISL ¼ IDO
W
L

exp
VGS � VT

nVTH

� �
1� exp � VDS

VTH

� �� �

ð29Þ

W/L is the aspect ratio of the MOS transistor, VTH is
the thermal voltage, n is a parameter, and IDO current is
an additional parameter. The subthreshold-off current
(obtained for VGS= 0 and VDS > >VT) can be expressed
as follows:

ISLoff ¼ IDO
W
L

exp
�VT

nVTH

� �
ð30Þ

The gate leakage current can be carried by tunnel-
ing electrons or holes, the carriers leaking to source,
drain, and channel. For junction leakage, low cur-
rents are carried by minority carriers drifting across
the junction, by the electron–hole generation in
junction or by the impact ionization at high reverse
bias, the electrons being able to pass the barrier by tun-
neling through it—Band-To-Band Tunneling current
[3,4].

Mismatches in current mirrors
Current mirrors implemented using real circuits present
some errors caused by the mismatches between the



Figure 5 SPICE simulation IOUT(IIN) for the squaring circuit.
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composing MOS transistors and also by the channel-
length modulation:

IO
IREF

¼ ðW=LÞO
ðW=LÞREF

1þ λVDSO

1þ λVDS REF
ð31Þ

The method for reducing the errors introduced by the
channel-length modulation is to impose to the current
mirror an output voltage that set VDSOffiVDSREF.

Different threshold voltages and Kn/Kp constants for NMOS/
PMOS devices
Real circuits present differences between the threshold
voltages and Kn/Kp constants for NMOS and PMOS tran-
sistors. In order to avoid additional inaccuracies intro-
duced by the practical situation, translinear loops that
represent the functional basis of many computational cir-
cuits must contain only NMOS or PMOS active devices
or must be implemented using quasi-symmetrical struc-
tures from the point of view of this complementarily (the
same number of NMOS and PMOS transistors).
Figure 6 Comparison between the simulated and the
theoretical estimated results for the current squarer.
Variations over the process, temperature, and supply
voltage
Most of MOS transistors parameters are affected by the
process in which the computational circuits are imple-
mented. On the other side, technological parameters
present important temperature dependencies. From this
perspective, in order to avoid important errors intro-
duced by process and temperature, the practical realiza-
tions of analog computational circuits must be done in
such a way that minimizes the number of technological
parameters in the expression of the output signal. Add-
itionally, the errors caused by the supply voltage varia-
tions can be minimized using self-biased cascode
configurations. In this context, a tradeoff between power
supply rejection ratio and minimal supply voltage has to
be considered.

Applications
An original exponential function generator circuit can
be designed using the fourth-order approximation func-
tion (1), replacing in general relations (3)–(7) the par-
ticular values of constant coefficients of expansion (2):
m= 1, n= 1, p= 1/2, q= 1/6 and r= 1/24. The g(x) func-
tion that fourth-order approximates the exponential
function can be expressed as follows:

g xð Þ ¼ 16þ 21x
16� 5x

þ 1
126

1
1þ x

� 7x
11

ð32Þ

Using (8), the approximation error of the exponential
function generator will have the following general ex-
pression:

Eg xð Þ
exp xð Þ xð Þ ffi x5

120 exp xð Þ ð33Þ

A comparison between g(x) approximation function
and f(x) = exp (x) is shown in Table 1.



Figure 7 SPICE simulation IOUT(I1) for the Multiplier/Divider circuit.
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A graphical comparison between g(x) approximation
function and f(x) = exp (x) is presented in Figure 4.
As a result of using a fourth-order approximation

function, the dynamic range of the proposed exponential
function generator is approximately 33 dB, for an error
smaller than 1 dB.
Simulations
The proposed function synthesizer circuit is designed for
implementing in 0.18μm generic CMOS technology, the
simulations being based on the square-law SPICE LEVEL
3 model. The parasitic and noise effects have been
neglected in the performed analysis, but it could be esti-
mated that their impact to the overall accuracy of the pro-
posed function synthesizer circuit are relatively small
comparing with other causes of errors (approximation
error or second-order effects). The overall accuracy of the
Figure 8 SPICE simulation IOUT(I2) for the Multiplier/Divider circuit.
proposed fourth-order function synthesizer circuit is 0.3%
for an extended range of the input signal.
SPICE simulation IOUT(I2) for the Multiplier/Divider

circuit proposed in Figure 3 is presented in Figure 5.
The IO and I1 currents have the following values: IO =
50μA and I1 = 20μA, while the range of I2 current
was chosen to be between 30μA and 100μA.
A comparison between the simulated and the theoret-

ical estimated results for the proposed current squarer is
shown in Figure 6.
SPICE simulation IOUT(I1) for the Multiplier/Divider

circuit proposed in Figure 3 is presented in Figure 7.
The IO and I2 currents have the following values: IO =
10μA and I2 = 100μA, while the range of I1 current
was chosen to be between 0 and 100μA.
SPICE simulation IOUT(I2) for the Multiplier/Divider

circuit proposed in Figure 3 is presented in Figure 8.
The IO and I1 currents have the following values: IO =



Figure 9 Comparison between the simulated and the
theoretical estimated results for the proposed current
Multiplier/Divider circuit.
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50μA and I1 = 20μA, while the range of I2 current
was chosen to be between 30μA and 100μA.
A comparison between the simulated and the theoret-

ical estimated results for the proposed current Multi-
plier/Divider circuit is shown in Figure 9. The values of
IO and I1 currents are IO= 50μA and I1 = 20μA, while I2
current has values between 30μA and 100μA.
As a result of the particular architecture proposed for

the realization of the function synthesizer structure, it
presents a low-voltage operation (a minimal supply volt-
age of IV for an implementation in the mentioned tech-
nology). This value of the minimal supply voltage was
obtained using the theoretical analysis of the proposed
function synthesizer circuit (VDDmin = 2VSG+VDSsat) and
also by performing simulations based on the square-law
SPICE LEVEL 3 model.
Methods
The necessity of implementing a multitude of continuous
mathematical functions in CMOS technology has been
solved by the original proposed function synthesizer circuit.
A very important advantage of this computational structure
is mainly related to its large capability of generating con-
tinuous mathematical functions: exponential, multiplying/
dividing, or squaring/square-rooting functions. The original
operating method was based on a new fourth-order ap-
proximation function, having a superior-order polynomial
series that match the polynomial series of the approximated
function. The current-mode operation and the independ-
ence of the circuit performances on the technological errors
are responsible for an additional improvement of structure
accuracy. The proposed function synthesizer circuit allows
a relatively simple implementation in CMOS technology
using only two current-mode Multiplier/Divider circuits.
The designed function synthesizer circuit has the
advantages of increased modularity and controllability
and of minimal design costs per implemented mathem-
atical function. The function synthesizer is designed for
implementing in 0.18μm CMOS technology and it is
supplied at IV. SPICE simulations confirm the theoret-
ical estimated results, showing an accuracy of 0.3% for
an extended range of the input signal. This accuracy is
exclusively referring to the precision of generating the
previous functions, not to the additional circuits that de-
serve the proposed function synthesizer structure.
The speed of the original proposed function generator

circuit is correlated with its overall accuracy, expecting the
necessity of making a tradeoff between the previous per-
formance parameters. Additionally, especially for extreme
small values of the approximation error, the noise of the cir-
cuit can slightly degrade the circuit performances.
As an immediate application of the function synthesizer

circuit, it was proposed a new exponential function gener-
ator based on a particular fourth-order approximation
function. The circuit has a dynamic range of approxi-
mately 33 dB, in the conditions of limiting the error to
1 dB.

Abbreviations
CMOS: complementary metal oxide semiconductor; MOS: metal oxide
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