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Abstract

This article addresses the blind separation of linear mixtures of synchronous signals (i.e., signals with locked phases),
which is a relevant problem, e.g., in the analysis of electrophysiological signals of the brain such as the
electroencephalogram and the magnetoencephalogram (MEG). Popular separation techniques such as independent
component analysis are not adequate for phase-locked signals, because such signals have strong mutual
dependency. Aiming at unmixing this class of signals, we have recently introduced the independent phase analysis
(IPA) algorithm, which can be used to separate synchronous sources. Here, we apply IPA to pseudo-real MEG data. The
results show that this algorithm is able to separate phase-locked MEG sources in situations where the phase jitter (i.e.,
the deviation from the perfectly synchronized case) is moderate. This represents a significant step towards performing
phase-based source separation on real data.

1 Introduction
In recent years, the interest of the scientific community
in synchrony has risen. This interest is both in its phys-
ical manifestations and in the development of a theory
unifying and describing those manifestations in various
systems such as laser beams, astrophysical objects, and
brain neurons [1].
It is believed that synchrony plays a relevant role in the

way different parts of the human brain interact. For exam-
ple, when humans engage in a motor task, several brain
regions oscillate coherently [2,3]. Also, several pathologies
such as autism, Alzheimer, and Parkinson are associated
with a disruption in the synchronization profile of the
brain, whereas epilepsy is associated with an anomalous
increase in synchrony (see [4] for a review).
To perform inference on the synchrony of networks

present in the brain or in other real-world systems, one
must have access to the phase dynamics of the individual
oscillators (which we will call “sources”). Unfortunately, in
brain electrophysiological signals such as encephalograms
(EEG) and magnetoencephalograms (MEG), and in other
real-world situations, individual oscillator signals are not
directly measurable, and one has only access to a super-
position of the sourcesa. In fact, EEG and MEG signals
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measured in one sensor contain components coming from
several brain regions [5]. In this case, spurious synchrony
may occur, as we will illustrate later.
The problem of undoing this superposition is called

blind source separation (BSS). Typically, one assumes that
the mixing is linear and instantaneous, which is a valid
approximation in brain signals [6]. One must also make
some assumptions on the sources, such as in indepen-
dent component analysis (ICA) where the assumption is
mutual statistical independence of the sources [7]. ICA
has seen multiple applications in EEG and MEG pro-
cessing (for recent applications see, e.g., [8,9]). Different
BSS approaches use criteria other than statistical indepen-
dence, such as non-negativity of sources [10,11] or time-
dependent frequency spectrum criteria [12,13]. In our
case, independence of the sources is not a valid assump-
tion, because phase-locked sources are highly mutually
dependent. Also, phase-locking is not equivalent to fre-
quency coherence: in fact, two signals may have a severe
overlap between their frequency spectra but still exhibit
low or no phase synchrony at all [14]. In this article, we
address the problem of how to separate such phase-locked
sources using a phase-specific criterion.
Recently, we have presented a two-stage algorithm

called independent phase analysis (IPA) which performed
very well in noiseless simulated data [15] and with mod-
erate levels of added Gaussian white noise [14]. The
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separation algorithm we then proposed uses temporal
decorrelation separation [16] as a first step, followed by
the maximization of an objective function involving the
phases of the estimated sources. In [14], we presented
a “proof-of-concept” of IPA, laying down the theoreti-
cal foundations of the algorithm and applying it to a toy
dataset of manually generated data. However, in that arti-
cle we were not concerned with the application of IPA
to real-world data. In this article, we study the applica-
bility of IPA to pseudo-real MEG data. These data are
not yet meant to allow inference about the human brain;
however, they are generated in such a way that both the
sources and the mixing process mimic what actually hap-
pens in the human brain. The advantage of using such
pseudo-real data is that the true solution is known, thus
allowing a quantitative assessment of the performance of
the algorithm. We also study the robustness of IPA to the
case where the sources are not perfectly phase-locked.
It should however be reinforced that the algorithm pre-
sented here makes no assumptions that are specific of
brain signals, and should work in any situation where
phase-locked sources are mixed approximately linearly
and noise levels are low.
This article is organized as follows. In Section 2, we

introduce the Hilbert transform. We also introduce there
the phase locking factor (PLF), a measurement of syn-
chrony which is central to the algorithm; finally, we show
that synchrony is disrupted when the sources undergo
a linear mixing. Section 3 describes the IPA algorithm
in detail, including illustrations using a toy dataset. In
Section 4, we explain how the pseudo-real MEG data
are generated and show the results obtained by IPA on
those data. These results are discussed in Section 5 and
conclusions are drawn in Section 6.

2 Background
2.1 Hilbert transform: phase of a real-valued signal
Usually, the signals under study are real-valued discrete
signals. To obtain the phase of a real signal, one can use
a complex Morlet (or Gabor) wavelet transform, which
can be seen as a bank of bandpass filters [17]. Alterna-
tively, one can use the Hilbert transform, which should
be applied to a locally narrowband signal or be pre-
ceded by appropriate filtering [18] for the meaning of
the phase extracted by the Hilbert transform to be clear.
The two transforms have been shown to be equivalent
for the study of brain signals [19], but they may differ for
other kinds of signals. In this article, we chose to use the
Hilbert transform. To ensure that this transform yields
meaningful results, we will precede its use by band-pass
filtering the pseudo-real MEG sources used in this arti-
cle (see Section 4.1). Note that this is a very common
preprocessing step in the analysis of real MEG signals (cf.,
[20-22]).

The discrete Hilbert transform xh(t) of a band-limited
discrete-time signal x(t), t ∈ Z, is given by a convolution
[18]

xh(t) ≡ x(t)∗h(t), where h(t) ≡
⎧⎨
⎩
0, for even t
2
π t

, for odd t.

Note that the Hilbert transform is a linear operator. The
Hilbert filter h(t) is not causal and has infinite duration,
which makes direct implementation of the above formula
impossible. In practice, the Hilbert transform is usually
computed in the frequency domain, where the above
convolution becomes a product of the discrete Fourier
transforms of x(t) and h(t). A more thorough mathemat-
ical explanation of this transform is given in [18,23]. We
used the Hilbert transform as implemented by MATLAB.
The analytic signal of x(t), denoted by x̃(t), is given by

x̃(t) ≡ x(t) + i xh(t), where i = √−1 is the imaginary
unit. The phase of x(t) is defined as the angle of its ana-
lytic signal. In the remainder of the article, we drop the
tilde notation; it should be clear from the context whether
the signals under consideration are the real signals or the
corresponding analytic signals.

2.2 Phase-locked sources
Throughout this article, we assume that the sought
sources, in number of N and denoted by sj, j = 1, . . . ,N ,
are phase-locked. In other words, sj, j = 1, . . . ,N are com-
plex valued signals with nonnegative amplitudes and equal
phase up to a constant plus small perturbations. Formally,

sj(t) = aj(t)ei(αj+φ(t)+δj(t)), (1)

where aj(t) are the amplitudes of the sources, which are
by definition non-negative and real-valued. αj is the con-
stant dephasing (or phase lag) between the sources (it does
not depend on the time t), φ(t) represents an oscillation
common to all the sources (it does not depend on the
source j), and δj(t) is the phase jitter, which represents
the deviation of the jth source from its nominal phase
αj + φ(t). Throughout this article, we will assume that the
phase jitter is Gaussian with zero mean and a standard
deviation σ .
One situation where signals follow themodel in (1) is the

one described by the (time-dependent) Kuramoto model,
under some circumstances. This simple model has exten-
sively been used in the context of, e.g., modeling neuronal
excitation and inhibition interactions, as well as large-
scale experimental neuroscience data [20,24]. Under this
model, the interactions between oscillators are weak rela-
tive to the stability of their limit cycles, and thus affect the
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oscillators’ phases only, not their amplitudes. The phase of
oscillator j is governed by [1,25,26]

φ̇j(t) = ωj(t) + 1
N

N∑
k=1

κjk sin
[
φk(t) − φj(t)

]
, (2)

where φj(t) is the phase of oscillator j (it is unrelated to
φ(t) in Equation (1)), ωj(t) is its natural frequency, and κjk
measures the strength of the interaction between oscil-
lators j and k. If the κjk coefficients are large enough
and ωj(t) = ωk(t) for all j, k, then the solutions of the
Kuramoto model are of the form (1) with small δj(t).

2.3 PLF
Given two oscillators with phases φj(t) and φk(t) for t = 1,
. . . ,T , the real-valuedb PLF, or phase locking value,
between those two oscillators is defined as

	jk ≡
∣∣∣∣∣
1
T

T∑
t=1

ei[φj(t)−φk(t)]
∣∣∣∣∣ =

∣∣∣
〈
ei(φj−φk)

〉∣∣∣ , (3)

where 〈·〉 is the time average operator. The PLF satisfies
0 ≤ 	jk ≤ 1. The value 	jk = 1 corresponds to two oscil-
lators that are fully synchronized (i.e., their phase lag is
constant). In terms of Equation (1), a PLF of 1 is obtained
only if the phase jitter δj(t) is zero. The value 	jk = 0 is
attained, for example, if the phase difference φj(t) − φk(t)
modulo 2π is uniformly distributed in [−π ,π [. Values
between 0 and 1 represent partial synchrony; in general,
higher values of the standard deviation of the phase jitter
δj(t) yield lower PLF values.
Note that a PLF of 1 is obtained if and only if φj(t)−φk(t)

is constantc. Thus, studying the separation of sources with
constant phase lags can equivalently become the study of
separation of sources with pairwise PLFs of 1.
Throughout this article, phase synchrony is measured

using the PLF; two signals are perfectly synchronous if
and only if they a PLF of 1. Other approaches exist, e.g.,
for chaotic systems or specific types of oscillators [27].
Studying separation algorithms based on such other defi-
nitions is outside of the scope of this article. The definition
used here has the advantages of being tractable from an
algorithmic point of view, and of being applicable to any
situation where φj(t)−φk(t) is constantd, regardless of the
type of oscillator.

2.4 Effect of linear mixing on synchrony
Assume that we haveN sources which have PLFs of 1 with
each other. Let s(t), for t = 1, . . . ,T , denote the vector of
sources and x(t) = As(t) denote the mixed signals, where
A is the mixing matrix, which is assumed to be square
and non-singulare. Our goal is to find a square unmix-
ing matrix W such that the estimated sources y(t) =
WTx(t) = WTAs(t) are as close to the true sources as
possible, up to permutation, scaling, and sign change.

The effect of linear mixing on the PLF matrix is illus-
trated in Figure 1 for a set of simulated sources. This set
has three sources, with PLFs of 1 with each other. These
sources are of the form (1) with negligible phase jitter, and
the phase lags αj are 0, π

6 , and
π
3 radians, respectively. The

common oscillation is a time-dependent sinusoid. The
amplitudes are generated by adding a small constant base-
line to a random number of “bursts” with Gaussian shape.
Each “burst” has a random center and a random width,
and each source amplitude has 1 to 5 such “bursts”.
The first row of Figure 1 shows on the left the original

sources and on the right their PLFmatrix. The second row
depicts the mixed signals x(t) on the left and their PLFs
on the right; the mixing matrix has random entries uni-
formly distributed between −1 and 1. It is clear that the
mixed signals have lower pairwise PLFs than the sources,
although signals 2 and 3 still exhibit a rather high mutual
PLF. This example suggests that linear mixing of syn-
chronous sources reduces their synchrony, a fact that will
be proved in Section 3.3, ahead; this fact will be used
to extract the sources from the mixtures by trying to
maximize the PLF of the estimated sources.

3 Algorithm
In this section, we describe the IPA algorithm. As men-
tioned in Section 1, this algorithm first performs subspace
separation, and then performs separation within each sub-
space. In this article, we only study the performance of
IPA in the case where all the sources are phase-locked; in
this situation, the inter-subspace separation can entirely
be skipped, since there is only one subspace of locked
sources. Therefore, we will not discuss here the part of IPA
relating to subspace separation; the reader is referred to
[14] for a discussion on that subject.

3.1 Preprocessing
3.1.1 Whitening
As happens in ICA and other source separation tech-
niques, whitening is a useful preprocessing step for IPA.
Whitening, or sphering, is a procedure that linearly
transforms the data so that the transformed data have
the identity as its covariance matrix; in particular, the
whitened data are uncorrelated [7]. In ICA, there are
clear reasons to pursue uncorrelatedness: independent
data are also uncorrelated, and therefore whitening the
data already fulfills one of the required conditions to find
independent sources. If D denotes the diagonal matrix
containing the eigenvalues of the covariance matrix of
the data and V denotes an orthonormal matrix which
has, in its columns, the corresponding eigenvectors, then
whitening can be performed in a PCA-like manner by
multiplying the data x(t) by a matrix B, where [7]

B = D−1/2VT. (4)
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Figure 1 Top row: The three original sources (left) and PLFs between them (right). Bottom row: The three mixed signals (left) and PLFs
between them (right). On the right column, the area of the square in position (i, j) is proportional to the PLF between the signals i and j. Therefore,
large squares represent PLFs close to 1, while small squares represent values close to zero. In this example, the second and third sources have phase
lags of π

6 and π
3 radians relative to the first source, respectively.

The whitened data are given by z(t) = BAs(t). Therefore,
whitening merely transforms the original source separa-
tion problem with mixing matrix A into a new problem
with mixing matrix BA. The advantage is that BA is an
orthogonal mixing matrix, and its estimation becomes
easier [7].
The above reasoning is not valid for the separation

of phase-locked sources. However, under rather general
assumptions, satisfied by the data studied here, it can be
shown that whitening places a relatively low upper bound
on the condition number of the equivalent mixing matrix
(see [28] and references therein). Therefore, we always
whiten the mixture data before applying the procedures
described in Section 3.2.

3.1.2 Number of sources
Aswill be seen below, IPA assumes knowledge of the num-
ber of sources, and also assumes that the mixing matrix
is square: if this is not the case, a simple procedure can
be used to detect the number of sources and to transform
the data to obey these constraints. If the mixing process is
noiseless and is given by x(t) = As(t), where A has more
rows than columns and has maximum rankf, the number
of non-zero eigenvalues of the covariance matrix of x is
N, where N is the number of sources (or equivalently, the
number of columns of A). If the mixture is noisy with a
low level of i.i.d. Gaussian additive noise, the former zero-
valued eigenvalues now have small non-zero values, but
detection of N is still easy to do by detecting how many
eigenvalues are large relative to the plateau level of the
small eigenvalues [7]g. After N is known, the data need
only be multiplied by a matrix B′ = D′−1/2V′T in a sim-
ilar fashion to Equation (4), where D′ is a smaller N × N

diagonal matrix containing only the N largest eigenvalues
in D and V′ is a rectangular matrix containing only the
N columns of V corresponding to those eigenvalues. The
mixture to be separated now becomes

x′(t) = B′x(t) = B′As(t). (5)

Since B′A is a square matrix and the number of sources is
now given simply by the number of components of x′, the
problem now has a known number of sources and a square
mixing matrix.
A remark should be made about complex-valued data.

The above procedure is appropriate when both the mixing
matrix and the sources are real-valued. If both the mixing
matrix and the sources are complex-valued, Equation (4)
still applies (V will now have complex values). However,
in our case the sources and measurements are complex-
valued (due of the Hilbert transform), but the mixing
matrix is real. When this is the case, Equation (4) is not
directly applicable. The above procedure must instead be
applied not to the original data x(t), but to new data
x0 with twice as many time samples, given by x0(t) =
R(x(t)) for t = 1, . . . ,T and x0(t) = I(x(t − T)) for
t = T + 1, . . . , 2T , where R and I denote the real and
imaginary parts of a complex number, respectively. The
matrix B which results from applying Equation (4) to x0
(or B′ if appropriate) is then applied to the original data
x as before, and the remainder of the procedure is similar
[28].

3.2 Separation of phase-locked sources
The goal of the IPA algorithm is to separate a set of
N fully phase-locked sources which have linearly been
mixed. Since these sources have a maximal PLF with each
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other and the mixture components do not (as motivated
in Section 2.4 above and proved in Section 3.3 below), we
can unmix them by searching for projections that maxi-
mize the resulting PLFs. Specifically, this corresponds to
finding aN×N matrixW such that the estimated sources,
y(t) = WTx(t) = WTAs(t), have the highest possible
PLFs.
The optimization problem that we shall solve is

max
W

(1 − λ)

N∑
j,k=1
j>k

	2
jk + λ log | detW| (6)

s.t. ‖wj‖ = 1, for j = 1, . . . ,N

where wj is the jth column ofW. In the first term, we sum
the squared PLFs between all pairs of sources. The second
term penalizes unmixing matrices that are close to singu-
lar, and λ is a parameter controlling the relative weights
of the two terms. This second term serves the purpose
of preventing the algorithm from finding, e.g., solutions
where two columns j and k of W are colinear, which triv-
ially yields 	jk = 1 (a similar term is used in some ICA
algorithms [7]). Each column of W is constrained to have
unit norm to prevent trivial decreases of that term.
The optimization problem in Equation (6) is highly non-

convex: the objective function is a sum of two terms, each
of which is non-convex in the variable W. Furthermore,
the unit norm constraint is also non-convex. Despite this,
as we show below in Section 3.3, it is possible to character-
ize all the global maxima of this problem for the case λ = 0
and to devise an optimization strategy taking advantage of
that result.
The above optimization problem can be tackled through

various maximization algorithms. Our choice was to use
a gradient ascent algorithm with momentum and adap-
tive step sizes; after this gradient algorithm has run for
200 iterations, we use the BFGS algorithm implemented
in MATLAB to improve the solution. The result of this
optimization for the sources shown in Figure 1 is shown
in Figure 2 for λ = 0.1, illustrating that IPA successfully
recovers the original sources for this dataset.

3.3 Unicity of solution
In [14], we proved that a few mild assumptions on the
sources, which are satisfied in the vast majority of real-
world situations, suffice for a useful characterization of the
global maxima of Problem (6): it turns out that there are
infinitely many such maxima, and that they correspond
either to correct solutions (i.e., the original sources up
to permutation, scaling, and sign changes) or to singular
matrices W. More specifically, we proved the following:
assume that we have a set of complex-valued and linearly
independent sources denoted by s(t), which have a PLF
of 1 with one another. Consider also linear combinations

of the sources of the form y(t) = Cs(t) where C is a
square matrix of appropriate dimensions. Further assume
that the following conditions hold:

1. Neither sj(t) nor yj(t) can identically be zero, for all j.
2. C is non-singular.
3. The phase lag between any two sources is different

from 0 or π .
4. The amplitudes of the sources, aj(t) = |sj(t)|, are

linearly independent.

Then, the only linear combination y(t) = Cs(t) of the
sources s(t) in which the PLF between any two compo-
nents of y is 1 is y(t) = s(t), up to permutation, scaling,
and sign changes [14].

3.4 Comparison to ICA
The above result is simple, but some relevant remarks
should be made. If the optimum is found using λ = 0
and the second assumption is not violated (or equiva-
lently, det(C) = det(W)det(A) �= 0, which is equivalent
to det(W) �= 0 if A is non-singular), then we can be
certain that the correct solution has been found. How-
ever, if the optimization is made using λ = 0, there is
a possibility that the algorithm will estimate a bad solu-
tion where, for example, some of the estimated sources are
all equal to one another (in which case the PLFs between
those estimated sources is trivially equal to 1). On the
other hand, if we use λ �= 0 to guarantee that W is
non-singular, the unicity result stated above cannot be
applied to the complete objective function. We call “non-
singular solutions” and “singular solutions” those in which
det(W) �= 0 and det(W) = 0, respectively. The result
expressed in Section 3.3 is thus equivalent to stating that
“all non-singular global optima of Equation (6) with λ = 0
correspond to correct solutions”.
This contrasts strongly with ICA, where singular solu-

tions are not an issue, because ICA algorithms attempt
to find independent sources and one signal is never inde-
pendent from itself [7]. In other words, singular solutions
always yield poor values of the objective function of ICA
algorithms. Here we are attempting to estimate phase-
locked sources, and any signal is perfectly phase-locked
with itself. Thus, one must always use λ �= 0 in the objec-
tive function of Equation (6) when attempting to separate
phase-locked sources.
We use a simple strategy to deal with this problem.

We start by optimizing Equation (6) for a relatively large
value of λ(λ = 0.4), and once convergence has been
obtained, we use the result as the starting point for a new
optimization, this time with λ = 0.2. The same process
is repeated with the value of λ halved each time, until
five such epochs have been run. The early optimization
steps move the algorithm away from the singular solutions
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Figure 2 The three sources estimated by IPA (left), PLFs between them (middle), and the gain matrixWTA (right). Black squares represent
negative values of the gain matrix, while white squares represent positive values. Since the gain matrix is very close to a permutated diagonal matrix,
we can conclude that IPA successfully recovered the sources, up to permutation, scaling, and sign change.

discussed above, whereas the final steps are done with a
very low value of λ, where the above unicity conditions are
approximately valid. As the following experimental results
show, this strategy can successfully prevent singular solu-
tions from being found, while making the influence of the
second term of Equation (6) on the final result negligible.

4 Experimental results
4.1 Data generation
As mentioned earlier, the main goal of this study is to
study the applicability of IPA to real-world electrophysio-
logical data from human brain EEG andMEG. The choice
of the data for this study was not trivial, since we need
to know the true sources in order to quantitatively mea-
sure the quality of the results. On the one hand, to know
the actual sources in the brain would require simultane-
ous data from outside the scalp (EEG or MEG, which
would be the mixed signals) and from inside the scalp
(intra-craneal recordings, corresponding to the sources).
If intra-craneal recordings are not available, results can-
not quantitatively be assessed; they can only qualitatively
be assessed by experts who can tell whether the extracted
sources are meaningful or not. On the other hand, due
to their extreme simplicity, synthetic data such as those
used so far to illustrate IPA, shown in Figure 1, cannot be
used to assess the usefulness of the method in real-world
situations.
In an attempt to obtain “the best of both worlds”, we

have generated a pseudo-real dataset from actual MEG
recordings. By doing this, we know the true sources and
the true mixing matrix, while still using sources that are of
a nature similar to what one observes in real-world MEG.
We begin by describing the process that we used to gen-
erate a perfectly phase-locked dataset; we then explain
how we modified these data to analyze non-perfect cases
as well. It is important to stress that the generation pro-
cess described below has no relation to the one used to
generate the data of Figure 1, even though both processes
generate sources with maximum PLF.

Our first step was to obtain a realistic mixing matrix.
To do so, we used the well-known EEGIFT software pack-
age [29]. This package includes a real-world sample EEG
dataset with 64 channels. Using all the default options of
the software package, we extracted 20 independent com-
ponents from the data of Subject 1 in that dataset. The
results that was important for us, in this process, were
not the independent components themselves (which were
discarded), but rather the 64 × 20 mixing matrix. As dis-
cussed in Section 3.1, we have opted for using a square
mixing matrix, with little loss of generality. Therefore, we
selected N random rows and N random columns of that
mixing matrix (without repetition), and formed an N ×N
mixing matrix from the corresponding values of the origi-
nal 64 × 20 matrix. We will later show results for datasets
ranging from N = 2 to N = 5 sources; in the following,
assume, for the sake of concreteness, that N = 4.
Having generated a physiologically plausible mixing

matrix, the next step was to generate a set of four sources.
For this, we used the MEG dataset studied previously in
[30]h, which has 122 channels with 17,730 samples per
channel. The sampling frequency is 297Hz, and the data
have already been subjected to low-pass filtering with cut-
off at 90Hz. Since band-pass filtering is a very common
preprocessing step in the analysis of MEG data [20-22]
and is useful for the use of the Hilbert transform, we
performed a further band-pass filtering with no phase
distortion, keeping only the 18–24Hz bandi. The result-
ing filtered data were used to generate a complex signal
through the Hilbert transform; these data were whitened
as described in Section 3.1, and from the whitened data
we extracted the time-dependent amplitudes and phases.
We then selected four random channels of these filtered

MEG data. Since none of these MEG recordings were
actually phase-locked (recall that they were themselves
the result of a mixing process) and we wanted to study the
performance on fully phase-locked sources (possibly cor-
rupted by jitter, as explained below), we replaced the phase
of the second of these channels with the phase of the first
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channel with a constant phase lag of π
6 radians. The phase

of the third channel was replaced with the phase of the
first channel with a constant phase lag of π

3 radians, and
that of the fourth channel with the phase of the first chan-
nel with a lag of π

2 radians. The amplitudes of the four
sources were kept as the original amplitudes of the four
random channels themselves. The process is illustrated in
Figure 3. The above process, including the choice of the
4×4 submatrix, was repeated 100 times, with different ini-
tializations of the random number generator. This way of
constructing the data ensured that the sources were fully
phase-locked.
We also constructed datasets in which the sources were

not perfectly phase locked. For this, we used the same 100
sets of sources, but with those sources now corrupted by
phase jitter: each sample t of each source j was multiplied
by eiδj(t), where the phase jitter δj(t)was drawn from a ran-
dom Gaussian distribution with zero mean and standard
deviation σ . We tested IPA for σ from 0 to 20 degrees, in
5 degrees steps. One example with σ = 5 degrees is shown
in Figure 4, and one with σ = 20 degrees is shown in
Figure 5.
Finally, we studied the effect of N on the results of

the proposed algorithm. We created 100 datasets simi-
lar to the jitterless datasets mentioned earlier, using N =
2, 3 and 5. In all of these, and similarly to the data with
N = 4, we used sources with phase lags multiple of π

6 .

4.2 Results
We measured the separation quality using two measures:
the Amari performance index (API) [31] and the well-
known signal-to-noise ratio (SNR). The API measures
how far the gain matrix WTA is from a permutated diag-
onal matrix; the SNR measures how far the estimated
sources are from the true sources. In summary, the API
measures the quality of the estimation of the mixing
matrix, while the SNR measures the quality of the estima-
tion of the sources themselves.
Figure 6 presents the means and standard deviations of

these measures for the 100 runs mentioned in Section 4.1,
for each of the jitter levels. The results indicate that IPA

has very good performance on the jitterless case, in data
of this kind, and that this level of performance is approx-
imately maintained even in the presence of low levels of
phase jitter, up to 5 degrees of standard deviation. Some
deterioration in performance occurs from 5 to 10 degrees
of phase jitter standard deviation, but with a SNR of 27 dB
and an API below 0.1 the sources can still be considered
to be well estimated.
The results for high jitter levels (sigma equal to 15 or

20 degrees) show that there is a limit to IPA’s robust-
ness; this limit lies somewhere between 10 and 15 degrees.
Equivalently, in terms of the PLF, the algorithm shows
good robustness to PLF values smaller than 1 as long as
they are above 0.95, but below that value its performance
deteriorates progressively up to a PLF of approximately
0.9, at which point only partial separations are obtained.
Figure 7 shows the effect of varying the number of

sources N. The figure shows that IPA can handle val-
ues of N up to N = 5 with only a slight decrease in
performance.
Figure 7 also shows something rather peculiar: for N =

2, the results are mediocre (with an average API around
0.4)j. This is not an effect of lowering the number of
sources N, but rather an indirect effect of the phase lag
between the sources. To verify this, we generated datasets
of jitterless data with N = 2, using phase lags of π

12 ,
2π
12

(the value used in Figure 7), 3π
12 , and

4π
12 (100 datasets for

each of these values). Figure 8 shows that a phase lag of 2π
12

yields poor API values, as we already knew, but 3π
12 yields

very good values. Naively, one could conclude that when
the sources have a phase lag of 2π

12 , or less, the separation
cannot be accurately performed.
The effect is, however, not so clear-cut. The results for

N = 3, 4, 5 also involve sources with phase lags of π
6 , but

the API values for those experiments are very good. We
do not have a solid explanation for this fact; we conjec-
ture that the presence of some pairs of sources with larger
phase lags (e.g., for N = 4, the first and third sources
have a phase lag of π

3 and the first and fourth sources
have a phase lag of π

2 ) aids in the separation of all the
sources.

Figure 3 The process used to generate the pseudo-real MEG sources.
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Figure 4 Example of a dataset where σ = 5degrees. Only a short segment of the signals is shown, for clarity. Top row: original sources (left) and
PLFs between them (right). Middle row: mixed signals (left) and PLFs between them (right). Bottom row: estimated sources, after manual
compensation of permutation, scaling, and sign (left); PLFs between them (middle); and the gain matrixWTA (right). The gain matrix is virtually
equal to the identity matrix, indicating a correct separation.

5 Discussion
IPA has a parameter, λ, which controls the relative weights
given to the optimization of the PLF matrix and to the
penalization of close-to-singular solutions. Our optimiza-
tion procedure starts with a high value of λ, which is
lowered as the optimization progresses. We confirmed
that this variation of the parameter’s value is necessary:
the quality of the results is noticeably degraded if λ is kept
at a constant value, nomatter how high or low it is. Table 1
confirms this: while λ = 0.1, the best fixed value, yields
decent results, the results with a varying value of λ are
considerably better. Furthermore, although the final epoch
in the optimization is not done with λ = 0, we have veri-
fied that the results are virtually the same as if we had used
λ = 0 at the last epoch.
The above paragraph illustrates something alreadymen-

tioned in Section 3.4: separation of phase-locked sources
is a non-trivial change from ICA because there are wrong,
singular solutions that yield exactly the same values of
the PLF matrix as the correct non-singular solutions. Our

approach to distinguish these two types of solutions con-
sists in adding a term depending on the determinant of the
matrix W. This approach works correctly, as our results
show. However, it is perhaps inelegant to do this through
matrix W, instead of doing it directly through the esti-
mated sources. It would be preferable to replace this term
with one depending directly on the estimated sources.
The size of the optimization variable, W, is N2; there

areN constraints on this variable, yieldingN(N −1) inde-
pendent parameters. This means that the IPA algorithm is
quadratic in the number of sources N, which is the main
reason why we do not present results for N > 5; while
running IPA on 100 datasets withN = 2 takes a few hours,
doing so for N = 5 takes several days.
The results that we obtained show that IPA can sepa-

rate perfectly locked MEG-like sources. However, while
the phase locking in the jitterless pseudo-real MEG data
is perfect, in real MEG data it will probably be less than
perfect. This is the reason why we also studied data with
phase jitter, which have pairwise PLFs smaller than 1. The
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Figure 5 Example of a dataset where σ = 20degrees. Only a short segment of the signals is shown, for clarity. Top row: original sources (left)
and PLFs between them (right). Middle row: mixed signals (left) and PLFs between them (right). Bottom row: estimated sources, after manual
compensation of permutation, scaling, and sign (left); PLFs between them (middle); and the gain matrixWTA (right). The gain matrix has significant
values outside the diagonal, indicating that a complete separation was not achieved. Nevertheless, the largest values are in the diagonal,
corresponding to a partial separation.

results indicate that IPA has some robustness to PLFs
smaller than 1, but the sources still need to exhibit con-
siderable phase locking for the separation to be accurate;
weaker synchrony results only in partial separation. Note,
however, that the partially separated data are usually still
closer to the true sources than the original mixtures.

The comments made in the previous paragraph raise
an additional optimization challenge: if the true sources
have PLFs smaller than 1, optimization of the objec-
tive function in Equation (6) can lead to overfitting. The
results presented here show that IPA has some robust-
ness to sources which have a PLF smaller than 1, while

Figure 6 Result of applying IPA to pseudo-real MEG data withN = 4, with varying phase jitter: SNR (left) and API (right).
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Figure 7 Effect of applying IPA to pseudo-real MEG data with varying values of N: SNR (left) and API (right).

being stationary (since the phase jitter is stationary, the
distribution of the PLF does not vary with time). In real-
world cases, it is likely that the PLF is non-stationary:
for example, some sources may be phase-locked at the
start of the observation period and not phase-locked
at its end. While simple techniques such as windowing
can be devised to tackle smaller time intervals where
stationarity is (almost) verified, one would still need to
find a way to integrate the information from different
intervals. Such integration is out of the scope of this
article.
One interesting extension of this article would be the

separation of specific types of systems, such as van der Pol
oscillators [27]. For those, fully entrained oscillators may
even present a PLF < 1, and a different measure of syn-
chrony, tailored to those oscillators, may need to be used.
Such a study would fall out of the scope of this article.
Nevertheless, it is expected that additional knowledge of
the oscillator type can be exploited to improve the algo-
rithm’s performance or its robustness to deviations from
the ideal case.
One can derive a relationship between additive

Gaussian noise (e.g., from the sensors) and the phase jit-
ter used throughout this article. Figure 5 depicts, in the
complex plane, a sample of a noiseless signal x(t) ≡

a(t)eiφ(t), to which complex noise n(t) is added to form
the noisy signal xn ≡ a(t)eiφ(t) + n(t)k. That figure
also shows n⊥(t), which is the projection of n(t) on
the direction orthogonal to x(t), and xn⊥(t) ≡ x(t) +
n⊥(t). Also depicted are φ(t), φn(t) and φn⊥(t), which
are defined as the phases of x(t), xn(t) and xn⊥(t),
respectively.
It can easily be shown that, if |n(t)| << |x(t)| = a(t),

then φn(t) ≈ φn⊥(t) ≈ φ(t) + n⊥(t)
a(t) [32]. This is an

important relationship, because it shows that, under addi-
tive noise, portions of the signal with a large amplitude
will have a better phase estimate than portions with a
small amplitude, in which even small amounts of additive
noise can severely disrupt the phase estimation. We thus
believe that the PLF quantity, while attractive and elegant
in theory, and despite working well with low amounts of
additive noise [14], will probably need to be changed to
factor in the amplitude in an appropriate way to deal with
applications where considerable amounts of additive noise
are present.

6 Conclusion
We have shown that IPA can successfully separate phase-
locked sources from linear mixtures in pseudo-real MEG
data. We showed that IPA tolerates deviations from the

Figure 8 Effect of applying IPA to pseudo-real MEG data with varying phase lags between the sources, withN = 2: SNR (left) and API
(right).
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Table 1 Values of SNR and API for jitterless data with N = 3, for various fixed values of λ, as well as for the
varying-lambda strategy detailed in the text

λ 0.025 0.05 0.1 0.2 0.4

SNR Fixed 17.5 ± 21.2 27.5 ± 18.0 34.4 ± 4.3 27.2 ± 3.6 13.5 ± 5.5

Varying 48.9 ± 8.7

API Fixed 0.795 ± 0.570 0.369 ± 0465 0.048 ± 0.057 0.079 ± 0.027 0.327 ± 0.097

Varying 0.013 ± 0.015

While the best fixed value, λ = 0.1, yields decent results, the results using a varying value of λ are consistently better, with a large margin.

ideal case, yielding excellent results for low amounts of
phase jitter, and that it exhibits some robustness to mod-
erate amounts of phase jitter. We also showed that it can
handle numbers of sources up to N = 5. We believe
that these results bring us closer to the goal of suc-
cessfully separating phase-locked sources in real-world
signals.

Endnotes
aIn EEG and MEG, the sources are not individual neu-
rons, whose oscillations are too weak to be detected
from outside the scalp. In these cases, the sources
are populations of closely located neurons oscillating
together.
bThe term “real-valued” is used here to distinguish from
other phase-based algorithms where a complex quantity
is used [14].
cTechnically, this condition could be violated in a set with
zero measure. Since we will deal with a discrete and finite
number of time points, no such sets exist and this techni-
cality is not important.
dWe will also show results where this phase difference is
not exactly constant; see Figure 6.

Figure 9 Diagram illustrating the relationship between phase
jitter and additive noise. A single time sample is shown, and the
time argument has been dropped for simplicity.

eThese assumptions are not as restrictive as they may
sound; see Section 3.1.
fThis is usually called the over-determined case. The
under-determined case, where A has fewer rows than
columns, is more difficult and is not addressed here.
gThere are more rigorous criteria that can be used to
choose N. Two very popular methods are the Akaike
information criterion and the minimum description
length. It is out of the scope of this article to discuss these
two criteria; the reader is referred to [7] and references
therein for more information.
hFreely available from http://research.ics.tkk.fi/ica/
eegmeg/MEG data.html.
iThe choice of this specific band is rather arbitrary. The
band is narrow enough that the Hilbert transform will
allow correct estimation of instantaneous amplitude and
phase, but wide enough that the instantaneous frequency
of the signals retains some variability. The passband is also
of a similar width as in typical studies using MEG [20].
jIt might appear contradictory that the average SNR has a
good value, 40 dB, when the average API has a mediocre
score. In reality, when the standard deviation of the SNR
is very high, it is usually an indication that the separation
is poor. As an example, consider a case where one source
is very well estimated, with an SNR of 80 dB, and one is
poorly estimated, with an SNR of 0 dB. The average SNR
would be 40, but with a very high standard-deviation.
Good values of the average SNR are indicators of a good
separation only when the standard-deviation of the SNR
is small.
kIn most real applications, one will be dealing with mod-
els consisting of real signals to which real-valued noise
is added. However, the linearity of the Hilbert transform
allows the same type of analysis for that case as for the
case of complex signals with complex additive noise
which is considered here.
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