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Abstract

In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The
problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and
noise signals. More specifically, the eigenvectors from the joint diagonalization corresponding to the least significant
eigenvalues are used to form a filter, which effectively estimates the noise when applied to the observed signal. This
estimate is then subtracted from the observed signal to form an estimate of the desired signal, i.e., the speech signal.
In doing this, we consider two cases, where, respectively, no distortion and distortion are incurred on the desired
signal. The former can be achieved when the covariance matrix of the desired signal is rank deficient, which is the
case, for example, for voiced speech. In the latter case, the covariance matrix of the desired signal is full rank, as is the
case, for example, in unvoiced speech. Here, the amount of distortion incurred is controlled via a simple, integer
parameter, and the more distortion allowed, the higher the output signal-to-noise ratio (SNR). Simulations
demonstrate the properties of the two solutions. In the distortionless case, the proposed filter achieves only a slightly
worse output SNR, compared to the Wiener filter, along with no signal distortion. Moreover, when distortion is
allowed, it is possible to achieve higher output SNRs compared to the Wiener filter. Alternatively, when a lower output
SNR is accepted, a filter with less signal distortion than the Wiener filter can be constructed.
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1 Introduction
Speech signals corrupted by additive noise suffer from
a lower perceived quality and lower intelligibility than
their clean counterparts and cause listeners to suffer
from fatigue after extended exposure. Moreover, speech
processing systems are frequently designed under the
assumption that only a single, clean speech signal is
present at the time. For these reasons, noise reduction
plays an important role in many communication and
speech processing systems and continues to be an active
research topic today. Over the years, many different meth-
ods for noise reduction have been introduced, including
optimal filtering methods [1], spectral subtractive meth-
ods [2], statistical methods [3-5], and subspace methods
[6,7]. For an overview of methods for noise reduction,
we refer the interested reader to [1,8,9] and to [10] for a
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recent and complete overview of applications of subspace
methods to noise reduction.
In the past decade or so, most efforts in relation to

noise reduction seem to have been devoted to track-
ing of noise power spectral densities [11-14] to allow
for better noise reduction during speech activity, exten-
sions of noise reduction methods to multiple channels
[15-18], and improved optimal filtering techniques for
noise reduction [1,8,19-21]. However, little progress has
been made on subspace methods.
In this paper, we explore the noise reduction problem

from a different perspective in the context of single-
channel noise reduction in the time domain. This per-
spective is different from traditional approaches in several
respects. Firstly, it combines the ideas behind subspace
methods and optimal filtering via joint diagonalization of
the desired and noise signal covariance matrices. Since
joint diagonalization is used, the method will work for
all kinds of noise, as opposed to, e.g., when an eigen-
value decomposition is used where preprocessing has to
be performed when the noise is not white. Secondly, the
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perspective is based on obtaining estimates of the noise
signal by filtering of the observed signal and, thereafter,
subtracting the estimate of the noise from the observed
signal. This is opposite to a normal filtering approach
where the observed signal is filtered to get the estimated
signal straight away. The idea of first estimating the noise
is known from the generalized sidelobe canceller tech-
nique in a multichannel scenario [22]. Thirdly, when the
covariance matrix of the desired signal has a rank that
is lower than that of the observed signal, the perspective
leads to filters that can be formed such that no distortion
is incurred on the desired signal, and distortion can be
introduced so that more noise reduction is achieved. The
amount of distortion introduced can be controlled via a
simple, integer parameter.
The rest of the paper is organized as follows. In

Section 2, the basic signal model and the joint diagonal-
ization perspective are introduced, and the problem of
interest is stated. We then proceed, in Section 3, to intro-
duce the noise reduction approach for the case where no
distortion is incurred on the desired signal. This applies
in cases where the rank of the observed signal covari-
ance matrix exceeds that of the desired signal covariance
matrix. In Section 4, we then relax the requirement of
no distortion on the desired signal to obtain filters that
can be applied more generally, i.e., when the ranks of the
observed and desired signals are the same. Simulation
results demonstrating the properties of the obtained noise
reduction filters are presented in Section 5, whereafter we
conclude on the work in Section 6.

2 Signal model and problem formulation
The speech enhancement (or noise reduction) problem
considered in this work is the one of recovering the
desired (speech) signal x(k), k being the discrete-time
index, from the noisy observation (sensor signal) [1,8,9]:

y(k) = x(k) + v(k), (1)

where v(k) is the unwanted additive noise which is
assumed to be uncorrelated with x(k). All signals are con-
sidered to be real, zero mean, broadband, and stationary.
The signal model given in (1) can be put into a vec-

tor form by considering the Lmost recent successive time
samples of the noisy signal, i.e.,

y(k) = x(k) + v(k), (2)

where

y(k) = [
y(k) y(k − 1) · · · y(k − L + 1)

]T (3)

is a vector of length L, the superscript T denotes trans-
pose of a vector or a matrix, and x(k) and v(k) are defined
in a similar way to y(k) from (3). Since x(k) and v(k) are

uncorrelated by assumption, the covariancematrix (of size
L × L) of the noisy signal can be written as

Ry = E
[
y(k)yT (k)

]
= Rx + Rv, (4)

where E[ ·] denotes mathematical expectation, and Rx =
E

[
x(k)xT (k)

]
and Rv = E

[
v(k)vT (k)

]
are the covariance

matrices of x(k) and v(k), respectively. The noise covari-
ance matrix, Rv, is assumed to be full rank, i.e., equal to L.
In the rest, we assume that the rank of the speech covari-
ance matrix, Rx, is equal to P ≤ L. Then, the objective
of speech enhancement (or noise reduction) is to estimate
the desired signal sample, x(k), from the observation vec-
tor, y(k). This should be done in such a way that the noise
is reduced as much as possible with little or no distortion
of the desired signal.
Using the joint diagonalization technique [23], the two

symmetric matrices Rx and Rv can be jointly diagonalized
as follows:

BTRxB = �, (5)
BTRvB = IL, (6)

where B is a full-rank square matrix (of size L × L), � is
a diagonal matrix whose main elements are real and non-
negative, and IL is the L× L identity matrix. Furthermore,
� and B are the eigenvalue and eigenvector matrices,
respectively, of R−1

v Rx, i.e.,

R−1
v RxB = B�. (7)

Since Rx is semidefinite and its rank is equal to P, the
eigenvalues of R−1

v Rx can be ordered as λ1 ≥ λ2 ≥ · · · ≥
λP > λP+1 = · · · = λL = 0. In other words, the last L − P
eigenvalues of the matrix product R−1

v Rx are exactly zero,
while its first P eigenvalues are positive, with λ1 being
the maximum eigenvalue.We denote by b1,b2, . . . ,bL, the
corresponding eigenvectors. The noisy signal covariance
matrix can also be diagonalized as

BTRyB = � + IL. (8)

We end this section by defining the input and output
signal-to-noise ratios (SNRs):

iSNR = tr (Rx)

tr (Rv)
= σ 2

x
σ 2
v
, (9)

where tr(·) denotes the trace of a square matrix, and σ 2
x =

E
[
x2(k)

]
and σ 2

v = E
[
v2(k)

]
are the variances of x(k) and

v(k), respectively, and

oSNRnr(h) = σ 2
x,nr

σ 2
v,nr

, (10)

where h is a filter applied to the observation signal (see
Section 3), and σ 2

x,nr and σ 2
v,nr are the variances of x(k) and

v(k) after noise reduction.
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3 Noise reduction filtering without distortion
In this section, we assume that P < L; as a result, the
speech covariance matrix is rank deficient.
The approach proposed here is based on two successive

stages. Firstly, we apply the filter of length L:

h = [
h0 h1 · · · hL−1

]T (11)

to the observation signal vector, y(k), to get the filter
output:

z(k) = hTy(k) = hTx(k) + hTv(k). (12)

From (4) and (12), we deduce that the output SNR from
the filter is

oSNRf (h) = σ 2
x,f

σ 2
v,f

= hTRxh
hTRvh

, (13)

which, in this case, is not the same as the output SNR
after noise reduction stated in (10). Since the objective is
to estimate the noise, we find h that minimizes oSNRf (h).
Due to the relation bTi Rxbi = λi, it is easy to see that the
solution is

hP =
L∑

i=P+1
βibi, (14)

where βi, i = P+1, . . . , L, are arbitrary real numbers with
at least one of them different from 0.With the filter having
the form of (14), oSNRf (hP) = 0 and z(k) can be seen as
an estimate of the noise, v̂(k) = z(k) = hTP y(k).
Secondly, we estimate the desired signal, x(k), as

x̂(k) = y(k) − v̂(k) = x(k) + v(k) −
L∑

i=P+1
βibTi v(k).

(15)

An overview of the estimation process is shown in the
block diagram in Figure 1.

Figure 1 Block diagram of the estimation process.

Now, we find the βi’s that minimize the power of the
residual noise, i.e.,

Jrn = E

⎧⎨⎩
[
v(k) −

L∑
i=P+1

βibTi v(k)
]2⎫⎬⎭

= σ 2
v − 2

L∑
i=P+1

βiiTLRvbi +
L∑

i=P+1
β2
i , (16)

where iL is the first column of the L × L identity matrix.
We get

βi = iTLRvbi. (17)

Substituting (17) into (15), the estimator becomes

x̂(k) = x(k) + v(k) −
L∑

i=P+1
iTLRvbibTi v(k)

= x(k) + v(k) − iTLRv

⎛⎝R−1
v −

P∑
p=1

bpbTp

⎞⎠ v(k)

= x(k) +
P∑

p=1
iTLRvbpbTp v(k). (18)

The variance of x̂(k) is

σ 2
x̂ = σ 2

x + σ 2
v −

L∑
i=P+1

(
iTLRvbi

)2 = σ 2
x +

P∑
p=1

(
iTLRvbp

)2
.

(19)

We deduce that the output SNR after noise reduction is

oSNRnr(hP) = σ 2
x

σ 2
v − ∑L

i=P+1
(
iTLRvbi

)2
= σ 2

x∑P
p=1

(
iTLRvbp

)2 ≥ iSNR. (20)

It is clear that the larger L − P is, the larger is the value
of the output SNR. Also, from (18), we observe that the
desired signal is not distorted so that the speech distortion
index [1] is

υsd(hP) = E{[ xnr(k) − x(k)]2 }
E[ x2(k)]

= E{[hTP x(k)]2 }
E[ x2(k)]

= 0.

(21)

The noise reduction factor [1] is

ξnr(hP) = σ 2
v

σ 2
v,nr

= σ 2
v

σ 2
v − ∑L

i=P+1
(
iTLRvbi

)2 , (22)

and since there is no signal distortion, we also have the
relation:

oSNRnr(hP)
iSNR

= ξnr(hP). (23)
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From (18), we find a class of distortionless estimators:

x̂Q(k) = x(k) +
Q∑

q=1
iTLRvbqbTq v(k), (24)

where P ≤ Q ≤ L. We have x̂P(k) = x̂(k) and x̂L(k) =
y(k). The latter is the observation signal itself. It is obvious
that the output SNR corresponding to x̂Q(k) is

oSNRnr(hQ) = σ 2
x∑Q

q=1
(
iTLRvbq

)2 ≥ iSNR (25)

and

oSNRnr(hP) ≥ oSNRnr(hP+1) ≥ oSNRnr(hL) = iSNR.
(26)

4 Noise reduction filtering with distortion
In this section, we assume that the speech covariance
matrix is full rank, i.e., equal to L. We can still use the
method presented in the previous section, but this time
we should expect distortion of the desired signal.
Again, we apply the filter:

h′ = [
h′
0 h′

1 · · · h′
L−1

]T (27)

of length L to the observation signal vector. Then, the filter
output and output SNR are, respectively,

z′(k) = h′Tx(k) + h′Tv(k) (28)

and

oSNRf
(
h′) = h′TRxh′

h′TRvh′ . (29)

Now, we choose

h′
P′ =

L∑
i=P′+1

β ′
ibi, (30)

where β ′
i , i = P′ + 1, . . . , L, are arbitrary real numbers.

With this choice of h′, the output SNR becomes

oSNRf
(
h′
P′

) =
∑L

i=P′+1 β2
i′λi∑L

i=P′+1 βi′2
. (31)

This time, however, the output SNR cannot be equal to
0, but we can make it as small as we desire. The larger
is the value of oSNRf

(
h′
P′

)
, the more the speech signal is

distorted. If we can tolerate a small amount of distortion,
then we can still consider z′(k) as an estimate of the noise,
v̂′(k) = z′(k) = hTP y(k).
In the second stage, we estimate the desired signal as

x̂′(k) = y(k) − v̂′(k)

= x(k) −
L∑

i=P′+1
β ′
ibTi x(k) + v(k) −

L∑
i=P′+1

β ′
ibTi v(k).

(32)

By minimizing the power of the residual noise:

J ′rn = E

⎧⎪⎨⎪⎩
⎡⎣v(k) −

L∑
i=P′+1

β ′
ibTi v(k)

⎤⎦2
⎫⎪⎬⎪⎭

= σ 2
v − 2

L∑
i=P′+1

β ′
i iTLRvbi +

L∑
i=P′+1

β ′
i
2,

(33)

we find that

β ′
i = iTLRvbi = 1

λi
iTLRxbi. (34)

Substituting (34) into (32), we obtain

x̂′(k) = x(k) −
L∑

i=P′+1

1
λi
iTLRxbibTi x(k)

+ v(k) −
L∑

i=P′+1
iTLRvbibTi v(k). (35)

The variance of x̂′(k) is

σ 2
x̂′ = σ 2

x −
L∑

i=P′+1

1
λi

(
iTLRxbi

)2 + σ 2
v −

L∑
i=P′+1

(
iTLRvbi

)2
.

(36)

We deduce that the output SNR and speech distortion
index are, respectively,

oSNRnr(h′
P′) = σ 2

x − ∑L
i=P′+1

1
λi

(
iTLRxbi

)2
σ 2
v − ∑L

i=P′+1
(
iTLRvbi

)2 (37)

and

υsd(h′
P′) = 1

σ 2
x

L∑
i=P′+1

1
λi

(
iTLRxbi

)2
. (38)

The smaller P′ is compared to L, the larger is the distor-
tion. Further, the speech distortion index is independent
of the input SNR, as is the gain in SNR. This can be
observed by multiplying either Rx in (5) or Rv in (6) by
a constant c, which leads to a corresponding change in
the input SNR. Insertion of the resulting λi’s and bi’s in
(37) and (38) will show that the output SNR is changed
by the factor c and that the speech distortion index is
independent of c.
The output SNR and the speech distortion index are

related as follows:
oSNRnr(h′

P′)

iSNR
= [

1 − υsd(h′
P)

]
ξnr(h′

P), (39)

where

ξnr(h′
P′) = σ 2

v

σ 2
v − ∑L

i=P′+1
(
iTLRvbi

)2 (40)

is the noise reduction factor.
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Figure 2 Spectrum of the signal vector, x(k), and the corresponding filter, hP .

Interestingly, the exact same estimator is obtained by
minimizing the power of the residual desired signal:

J ′rd = E

⎧⎪⎨⎪⎩
⎡⎣x(k) −

L∑
i=P′+1

β ′
ibTi x(k)

⎤⎦2
⎫⎪⎬⎪⎭

= σ 2
x − 2

L∑
i=P′+1

β ′
i iTLRxbi +

L∑
i=P′+1

λiβ
′
i
2.

(41)

Again, minimizing J ′rn or J ′rd leads to the estimator x̂′(k).
Alternatively, another set of estimators can be obtained

by minimizing the mean squared error between x(k) and
x̂′(k):

J ′mse = E

⎧⎪⎨⎪⎩
⎡⎣v(k) −

L∑
i=P′+1

β ′
ibTi v(k) −

L∑
i=P′+1

β ′
ibTi x(k)

⎤⎦2
⎫⎪⎬⎪⎭

= σ 2
v − 2

L∑
i=P′+1

β ′
i iTLRvbi +

L∑
i=P′+1

(1 + λi)β
′
i
2,

(42)

which leads to

β ′
i = iTLRvbi

1 + λi
. (43)

In the special case where P′ = 0, the estimator is the well-
knownWiener filter.

5 Simulations
In this section, the filter design with and without distor-
tion is evaluated through simulations. Firstly, the distor-
tionless case is considered in order to verify that the basics
of the filter design hold and the filter works as expected.
Secondly, we turn to the filter design with distortion
to investigate the influence of the input SNR and the
choice of P′ on the output SNR and the speech distortion
index.
The distortionless filter design was tested by the use of a

synthetic harmonic signal. The use of such a signal makes
it possible to control the rank of the signal covariance

Figure 3 Desired signal, x(k), noisy observation, y(k), and estimated signal, x̂(k).
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Figure 4 Performance as a function of L for a signal with rank-deficient covariance matrix. (a) Output SNR and (b) speech distortion index as
a function of the filter length, L, for a real synthetic harmonic signal simulating voiced speech.

matrix, which is a very important feature in the present
study. Further, the harmonic signal model is used tomodel
voiced speech, e.g., in [24]. The harmonic signalmodel has
the form:

x(k) =
M∑

m=1
Am cos(m2π f0/fsk + φm) (44)

where M is the model order, Am > 0 and φm ∈[ 0, 2π ]
are the amplitude and phase of the mth harmonic, f0 ∈
[0,π/m] is the fundamental frequency, and fs is the sam-
pling frequency. The rank of the signal covariance matrix,
Rx, is then P = 2M. In the simulations M = 5, the
amplitudes are decreasing with the frequency, f, as 1/f ,
normalized to give A1 = 1, and the fundamental fre-
quency is chosen randomly such that f0 ∈ [ 150, 250] Hz,
the sampling frequency is 8 kHz, and the phases are ran-
dom. The covariance matrices of Rx and Rv are estimated
from segments of 230 samples and are updated along
with the filter for each sample. The number of samples is
1,000.

As an example, the spectrum of a synthetic signal is
shown in Figure 2 along with the frequency response of
the corresponding filter. The fundamental frequency is
in this case f0 = 200 Hz, and the filter has a length
of L = 110. After subtraction of the filter output from
the noisy observation, the estimate of the desired signal,
shown in Figure 3, results. The desired signal and the
noisy observation are shown as well. Comparing the sig-
nals, it is easily seen that the filtering has improved the
output SNR in the estimated signal relative to the noisy
observation.
In order to support this, 100 Monte Carlo simulations

have been performed for different lengths of the filter,
and the performance is evaluated by the output SNR
and speech distortion index. The output SNR is calcu-
lated according to (10) as the ratio of the variances of the
desired signal after noise reduction, [x(k) − hTP x(k)], and
the noise after noise reduction, [v(k) − hTP v(k)], whereas
the speech distortion index is calculated according to (21)
as the ratio of the variance of the filtered desired signal
to the variance of the original desired signal. As seen in

a b

Figure 5 Performance as a function of L for a signal with full-rank covariance matrix. (a) Output SNR and (b) speech distortion index as a
function of the filter length, L, for a signal generated by an AR process simulating unvoiced speech.
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Figure 6 Performance as a function of P′. (a) Output SNR and (b) speech distortion index as a function of P′ for a speech signal with full-rank
covariance matrix.

Figure 4a, it is definitely possible to increase the SNR, but
the extent is highly dependent on the length of the filter.
For short filter lengths, the filter has almost no effect and
oSNR≈ iSNR, but as the filter length is increased, the out-
put SNR is increased as well. Even though the estimates
of the covariance matrices worsen when the filter length
is increased, the longest filter gives rise to the best out-
put SNR. By increasing the filter length from 20 to 110, a
gain in SNR of more than 15 dB can be obtained. The cor-
responding speech distortion index, shown in Figure 4b,
is zero for all filter lengths, as was the basis for the filter
design. As a reference, results for theWiener filter (hw) are
shown as well. The Wiener filter is constructed based on
[15] where it is derived based on joint diagonalization. The
proposed method has a slightly lower output SNR, espe-
cially at short filter lengths. On the other hand, theWiener
filter introduces distortion of the desired signal at all filter
lengths, whereas the proposed filter is distortionless.
When the covariance matrix of the desired signal is

full rank, speech distortion is introduced in the recon-
structed speech signal. This situation was evaluated by

the use of autoregressive (AR) models, since these can be
used to describe unvoiced speech [25]. The models used
were of second order, and the coefficients were found
based on ten segments of unvoiced speech from the Keele
database [26], resampled to give a sampling frequency
of 8 kHz and a length of 400 samples after resampling.
Again, P′ was set to 10, the signal was added white Gaus-
sian noise to give an average input SNR of 10 dB, and
100 Monte Carlo simulations were run on each of the ten
generated signals in order to see the influence of the fil-
ter length when the signal covariance matrix is full rank.
The results are shown in Figure 5. As was the case for
voiced speech, it is possible to gain approximately 15 dB in
SNR by increasing the filter length from 20 to 110. How-
ever, this time the speech distortion is also dependent on
the filter length, and the longer the filter, the more signal
distortion. In this case, comparison to the Wiener filter
shows just the opposite situation than with the harmonic
model. Now, the gain in SNR is higher for the proposed
method for all filter lengths, but the signal is also more
distorted.

Figure 7 Performance as a function of P′ compared to other filtering methods. (a) Output SNR and (b) speech distortion index as a function
of P′ for a speech signal with full-rank covariance matrix compared to the Wiener filter and three filters from [10] at an iSNR of 10 dB.
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Figure 8 Performance as a function of the input SNR. (a) Output SNR and (b) speech distortion index as a function of the input SNR for a speech
signal with full-rank covariance matrix.

After having investigated the filter performance for dif-
ferent filter lengths using synthetic signals, the influence
of input SNR and the choice of P′ are investigated directly
in speech signals. Again, we used signals from the Keele
database with fs = 8 kHz. Excerpts with a length of 20,000
were extracted from different places in the speech signals
from two male and two female speakers. Noise was added
to give the desired average input SNR, and filters with a
length L = 110 and varying P′ were applied. Three differ-
ent kinds of noise were used - white Gaussian, babble, and
car noise - the last two from the AURORA database [27].
The output SNR and signal distortion index are depicted
as a function of P′ in Figure 6. Both the output SNR and
the speech distortion index are decreasing with P′, as was
depicted in Section 4. Thereby, the choice of P′ will be a
compromise between a high output SNR and a low speech
distortion index. In Figure 7, the proposed filter is com-
pared, at an input SNR of 10 dB, to the Wiener filter, and
three filters from [10] (hls,hmv,hmls), which are subspace-
based filters as well. These filters are based on a Hankel

representation of the observed signal, which we, from the
segment length of 230 samples, construct with a size of
151 × 80. Due to restrictions on the chosen rank (accord-
ing to P′), this is only varied from 1 to 71. The performance
of the Wiener filter is of course independent of P′, and
it is, therefore, possible to construct a filter that either
gives a higher output SNR or a lower speech distortion
than the Wiener filter, dependent on the choice of P′. The
filters from [10] are dependent on P′ as well, but the pro-
posed filter has a broader range of possible combinations
of output SNR and speech distortion. At P′ = 1, a gain in
output SNR of approximately 5 dB can be obtained while
the speech distortion is comparable. At the other extreme,
it is possible to obtain the same output SNR as hls while
the speech distortion index is lowered by approximately 5
dB.
The choice of the value of P′ is, however, not depen-

dent on the input SNR, as seen in Figure 8, since both the
gain in SNR and the speech distortion index are constant
functions of the input SNR, as was also found theoretically

Figure 9 Performance as a function of the input SNR compared to other filtering methods. (a) Output SNR and (b) speech distortion index as
a function of the input SNR for a speech signal with full-rank covariance matrix compared to the Wiener filter and three filters from [10] at an input
SNR of 10 dB.
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Table 1 PESQ scores at different filter lengths and SNRs for
P′ = 31

SNR [dB]
hP′ , P′ = 31

L = 70 L = 90 L = 110

0 2.160 2.353 2.467

5 2.476 2.656 2.737

10 2.808 2.919 2.920

in Section 4. This means that it is possible to construct
a filter according to the desired combination of gain in
SNR and speech distortion, and then this will apply no
matter the input SNR. This is not the case for either the
Wiener filter or the filters from [10] as seen in Figure 9.
For these filters, the gain in SNR is decreasing with input
SNR (except for hls which is also constant) as is the speech
distortion index.
As a measure of the subjective evaluation, Perceptual

Evaluation of Speech Quality (PESQ) scores [28] have
been calculated for different filter lengths, different values
of P′, and different SNRs. The used speech signal contains
40,000 samples from the beginning of the speech signal
from the first female speaker in the Keele database. The
results are shown in Tables 1 and 2. It is seen that the
PESQ scores are increasing with increasing filter length
and SNR, even though the effect of going from a filter
length of 90 to 110 seems smaller than increasing the
length from 70 to 90. The PESQ score is rather low for
low values of P′, peaks for P′ = 31 or P′ = 41, depending
on the SNR, and then decreases again for higher val-
ues of P′. This is also heard in informal listening tests
of the resulting speech signal. At low values of P′, the
speech signal sounds rather distorted, whereas at high
levels of P′, the signal is noisy, but not very distorted,
which also confirms the findings in Figure 6. As reflected
in the PESQ score, a signal with a compromise between
the two is preferred if the purpose is listening directly
to the output. In such a context, the performance of the
Wiener filter is slightly better than the proposed filter
with PESQ scores approximately 0.3 units larger. However,
the purpose of noise reduction is sometimes as a pre-
processor to, e.g., a speech recognition algorithm. Here,
the word error rate increases when the SNR decreases
[29,30], but on the other hand, the algorithms are also

sensible to distortion of the speech signal [31,32]. In such
cases, it might, therefore, be optimal with another rela-
tionship between SNR and speech distortion than the
one having the best perceptual performance. This opti-
mization is possible with the proposed filter due to its
flexibility.
The effect of choosing different values of P′ is visual-

ized in Figure 10. Figure 10a shows the spectrogram of
a piece of a clean speech signal from the Keele database,
and in Figure 10b, babble noise was added to give an
average input SNR of 10 dB. Figure 10c,d shows the spec-
trograms of the reconstructed speech signal with two
different choices of P′. The former is a reconstruction
based on P′ = 10. Definitely, the noise content is reduced
when comparing to the noisy speech signal in Figure 10b.
However, a high degree of signal distortion has been intro-
duced as well, which can be seen especially in the voiced
speech parts, where the distinction between the harmon-
ics is blurred compared to both the clean speech signal
and the noisy speech signal. In the latter figure, P′ = 70,
and therefore, both noise reduction and signal distortion
are not as prominent as when P′ = 10. Here, the har-
monics are much more well preserved, but, as is seen
in the background, it comes with the price of less noise
reduction.
A feature of the proposed filter, which is not explored

here, is the possibility of choosing different values of P′
over time. The optimal value of P′ depends on whether
the speech is voiced or unvoiced, and how many harmon-
ics there are in the voiced parts. By adapting the value of
P′ at each time step based on this information, it should
be possible to simultaneously achieve a higher SNR and a
lower distortion.

6 Conclusions
In this paper, we have presented a new perspective on
time-domain single-channel noise reduction based on
forming filters from the eigenvectors that diagonalize both
the desired and noise signal covariance matrices. These
filters are chosen so that they provide an estimate of the
noise signal when applied to the observed signal. Then,
by subtraction of the noise estimate from the observed
signal, an estimate of the desired signal can be obtained.
Two cases have been considered, namely one where no

Table 2 PESQ scores for different values of P′ and SNR for a filter length of 110

SNR [dB] hw
hP′

P′ = 1 P′ = 11 P′ = 21 P′ = 31 P′ = 41 P′ = 51 P′ = 61

0 2.799 1.051 2.173 2.421 2.467 2.372 2.256 2.159

5 3.086 1.072 2.236 2.580 2.737 2.708 2.610 2.520

10 3.328 1.067 2.274 2.683 2.920 2.999 2.961 2.876
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a b

c d

Figure 10 Spectra of desired signal, noisy signal and two reconstructions with different choices of P′. (a) Spectrum of a part of a speech
signal from the Keele database. (b) Speech signal from (a) contaminated with babble noise to give an average input SNR of 10 dB. (c) Reconstructed
speech signal using P′ = 10. (d) Reconstructed speech signal using P′ = 70.

distortion is allowed on the desired signal and one where
distortion is allowed. The former case applies to signals
that have a rank that can be assumed to be less than the
rank of the observed signal covariance matrix, which is,
for example, the case for voiced speech. The latter case
applies to desired signals that have a full-rank covari-
ance matrix. In this case, the only way to achieve noise
reduction is by also allowing for distortion on the desired
signal. The amount of distortion introduced depends on
a parameter corresponding to the rank of an implicit
approximation of the desired signal covariance matrix. As
such, it is relatively easy to control the trade-off between
noise reduction and speech distortion. Experiments on
real and synthetic signals have confirmed these principles
and demonstrated how it is, in fact, possible to achieve
higher output signal-to-noise ratio or a lower signal dis-
tortion index with the proposed method than with the
classical Wiener filter. Moreover, the results show that
only a small loss in output signal-to-noise ratio is incurred
when no distortion can be accepted, as long as the filter is
not too short. The results also show that when distortion
is allowed on the desired signal, the amount of distor-
tion is independent of the input signal-to-noise ratio. The
presented perspective is promising in that it unifies the
ideas behind subspace methods and optimal filtering, two
methodologies that have traditionally been seen as quite
different.
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