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Abstract

Modern binaural hearing aids utilize multimicrophone speech enhancement algorithms to enhance signals in terms
of signal-to-noise ratio, but they may distort the interaural cues that allow the user to localize sources, in particular,
suppressed interfering sources or background noise. In this paper, we present a novel algorithm that enhances the
target signal while aiming to maintain the correct spatial rendering of both the target signal as well as the
background noise. We use a bimodal approach, where a signal-to-noise ratio (SNR) estimator controls a binary
decision mask, switching between the output signals of a binaural minimum variance distortionless response (MVDR)
beamformer and scaled reference microphone signals. We show that the proposed selective binaural beamformer
(SBB) can enhance the target signal while maintaining the overall spatial rendering of the acoustic scene.
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1 Introduction
Situations where we are exposed to a number of sound
sources reaching our ears simultaneously are part of our
everyday life. In these situations, the human auditory sys-
tem is able to focus intentionally on a single sound source
while suppressing other interfering sound sources. This
process is referred to as auditory scene analysis (ASA)
[1]. One example of ASA is the so-called cocktail party
effect [2, 3], which describes the human ability to follow a
conversation with a single target speaker while other inter-
fering speakers are active. The cocktail party effect is a
major area of hearing research, and many important fac-
tors that are part of human ASA have been identified. One
of these factors is the spatial separation of sound sources
[3–5] which leads to a spatial release frommasking (SRM).
SRM is the increased ability to hear signals in noise if the
signal and noise have different perceived directions.
Compared to normal-hearing persons, hearing-

impaired persons find it more difficult to handle cocktail
party situations. This can be explained by the fact that
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hearing-impaired persons have a higher speech reception
threshold (SRT) for speech in noise and do not benefit
as much from SRM as normal-hearing persons [3–6].
Hence, in hearing aid algorithms, it is important to
increase the signal-to-noise ratio (SNR) of the desired
sound source in order to improve speech intelligibility.
However, any modification of the signals presented to

the ears has the potential to distort the cues the ear uses to
perceive the direction of sounds (e.g., interaural level dif-
ference (ILD) and interaural time difference (ITD)) [7, 8].
This information should be preserved not only to main-
tain the benefit of SRM but also to allow the person to be
aware of the spatial composition of his surroundings.
Miniaturization has allowedmodern hearing aids to uti-

lize multiple microphones in compact devices, allowing
the use of multimicrophone signal enhancement algo-
rithms [9–12]. Methods such as fixed and adaptive beam-
forming and multichannel Wiener filtering are generally
capable of better noise suppression and lower speech dis-
tortion than single-channel methods [9, 11]. In the case
of bilateral hearing loss, a hearing aid is required at both
ears. Both hearing aids may work independently, but it
is advantageous to link them together, treating all micro-
phone channels as a unified array. This increases the array
gain, but results in the signals presented to the ears being
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generated from the same set of input signals making it
necessary to take measures to control the interaural cues.
Presently, methods that perform array processing while

aiming to preserve interaural cues can be divided into two
general categories. The first category of methods uses a
(real-valued) spectro-temporal gain where the same gain
is applied to two microphone signals (one on each hear-
ing aid) [13–16]. By applying the same gain to both sides,
these methods preserve all differences (both level and
temporal) between the reference microphone signals but
may suffer in noise reduction performance since they are
effectively single-channel noise reduction methods, i.e.,
the signal at the left ear is generated by applying a spectro-
temporal gain to the left reference microphone signal
while the signal at the right ear is generated by applying
the same spectro-temporal gain to the right microphone
signal. The second category uses a more general approach,
combining spectral and spatial filtering [9, 17, 18] based
on a cost function which allows for controlling the amount
of interaural cue distortion. Although typically a larger
noise reduction can be achieved, there is always a trade-off
between noise reduction performance and interaural cue
preservation for interfering sources and the background
noise.
In this paper, we will assume an acoustic scenario with

a single target source, which is assumed to be a local-
ized source, and background noise, which is assumed to
be isotropic. For binaural signal enhancement, we sug-
gest a bimodal processing paradigm: (a) where the tar-
get is dominant, use signal enhancement that preserves
the interaural cues of the target; (b) where the back-
ground noise is dominant, pass the acoustic signal to the
output unmodified save by attenuation. We realize this
bimodal processing by using a binary decision mask in
the spectro-temporal plane, i.e., within each frequency
band and time frame, the signals presented to the ears
are either the enhanced (binaural) target signal or the
attenuated background noise (taken from two reference
microphones, located near the respective ear). The chal-
lenge is to create an accurate SNR-dependent binary
decision mask, since selecting the enhanced target signal
for too many time-frequency bins will destroy the spatial
cues of the background noise, while selecting the atten-
uated background for too many time-frequency bins will
produce distortions for the target signal.
The proposed enhancement algorithm is implemented

using the well-known binaural minimum variance dis-
tortionless response (MVDR) beamformer [9, 11], cou-
pled with an SNR estimator based on the assumption
that the background noise is isotropic [19]. In subjective
evaluations using measurements of the speech recep-
tion threshold (SRT), we find that the overall enhance-
ment performance is equivalent to other cue-preserving
binaural algorithms such as MVDR with partial noise

estimation. However, when subjects compared the spa-
tial rendering of the overall acoustic scene, we find that,
in situations where the beamformer target is off the cen-
ter direction, our proposed algorithm preserves the spatial
image better than the algorithms to which it was com-
pared.

2 Background
In this paper, we consider a binaural hearing aid with
a small number of microphones close to each ear, such
as the device depicted in Fig. 1. The total number of
microphones is denoted by M, and we assume that the
hearing aids on both ears are linked. For each hearing
aid, we consider one of the microphones to be the ref-
erence microphone, i.e., disregarding equalization effects
the receiver signal would optimally be equal to the refer-
ence microphone signal in the absence of noise.
Working in the short-time Fourier transform (STFT)

domain with f and n denoting the frequency and
time indices, respectively, theM-dimensional microphone
signal is given by x(f , n) = [

x1(f , n) x2(f , n) . . . xM(f , n)
]T.

Assuming an acoustic scenario with a single localized tar-
get source s(f , n), the microphone signal can be written as

x(f , n) = dT (f )s(f , n) + v(f , n), (1)
where dT (f ) denotes the transfer function of the direct
path between the target source to the microphones
(including head shadow effects), which is assumed to be
known. The overall noise component v(f , n) contains a
mixture of ambient noise, interfering sources, and the
(early and late) reverberation of the target source. The
overall noise component is assumed to be uncorrelated
to the target signal and spatially isotropic.1 Since we
treat all frequency bands independently, we omit the fre-
quency index f in the following discussion without loss of
generality.

Fig. 1 Left side of a binaural multimicrophone hearing aid. In the
cutout, the arrows indicate the location of the microphones. The
opposite side has a symmetrical arrangement of microphones
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Using the assumptions, the covariance matrix of x(n)

can be written as

�x(n) = E{x(n)xH(n)} (2)
= E{s2(n)}dTdHT + �v(n) (3)
≈ φs(n)dTdHT + φv(n)�iso, (4)

where E{·} denotes the expected value operator, φs(n) is
the power spectral density (PSD) of the target signal, φv(n)

the PSD of the overall noise, �v the M × M-dimensional
noise covariance matrix, and �iso the normalized covari-
ance matrix of the spatially isotropic (diffuse) noise field
[20]. In particular, we assume cylindrically isotropic noise,
i.e., sound coming from all directions in the horizontal
plane with equal probability.

2.1 The binaural MVDR beamformer
The core of our proposed algorithm is the well-known
MVDR beamformer [21].2 For the MVDR beamformer,
the filter coefficient vector is equal to

wMVDR(n) = �−1
v (n)ds(n)

dHs (n)�−1
v (n)ds(n)

, (5)

with ds(n) the M-dimensional steering vector. For the
steering vector, either the transfer function of the com-
plete room impulse response (RIR) (including reverber-
ation), the direct path of the RIR (corresponding to the
free-field head-related transfer function (HRTF)) or the
so-called relative transfer function can be used [11, 22]. In
the proposed algorithm, we will use the free-field HRTF as
the steering vector, assuming that the direction of the tar-
get source is known and time-invariant, i.e., ds(n) = dT .
Assuming a spatially isotropic noise field, i.e., �v(n) =
φv(n)�iso, theMVDR beamformer in (5) reduces to a fixed
(superdirective) beamformer [20], i.e.,

wMVDR = �−1
isodT

dHT �−1
isodT

. (6)

In the context of binaural hearing aids, the MVDR
beamformer can be extended to provide a binaural output
signal by defining two steering vectors that are normalized
w.r.t. different reference microphones [9, 17], for which
we have chosen the microphones closest to the left and
right ear canals. Thus, given the steering vector dT and
denoting channels 1 and 2 as the left and right reference
microphones, respectively, we define

dL = 1
d1

dT and dR = 1
d2

dT , (7)

where d1 and d2 denote the first and second elements of
dT . The left and right filter coefficient vectors are equal to

wL = �−1
isodL

dHL �−1
isodL

= d∗
1wMVDR (8)

and similarly, wR = d∗
2wMVDR, such that the beamformer

outputs ybfL and ybfR are obtained as

ybfL = wH
L x(n) (9)

= d1
(
wH
MVDRdTs(n) + wH

MVDRv(n)
)

(10)
= d1

(
s(n) + wH

MVDRv(n)
)
, (11)

ybfR = wH
R x(n) = d2

(
s(n) + wH

MVDRv(n)
)
, (12)

where we use the bf subscript to indicate the beamformer
output. Since the resulting left and right output signals
only differ by a linear time-invariant filter (d1 and d2),
this signal will be perceived as a point source in the direc-
tion of the target source, preserving the interaural cues of
the target source but typically destroying the cues of the
background noise [9, 17].

3 Selective binaural beamformer
The main idea behind the proposed algorithm is to pre-
serve the spatial impression of the overall acoustic scene,
i.e., both for the target sources and for the overall back-
ground noise. As described above, the binaural MVDR
beamformer will cause the entire signal to be perceived as
a point source in the direction of the target source. This
is clearly undesired since not only would the hearing aid
user lose the acoustic impression of the space in which he
finds himself, but more importantly, there are many situ-
ations in which it is crucial for the hearing aid user to be
able to localize a sound that is in the background (e.g., a
new speaker trying to gain the attention of the user or a
warning signal from an approaching vehicle).
Designing a beamformer such that all interaural cues

of the various sources are preserved is difficult. However,
the binaural scene is available from the reference micro-
phones, and we can use these signals for rendering the
background noise. The signals presented to the user are
constructed by switching, for each time-frequency (T-F)
bin, between the enhanced signals and an attenuated ver-
sion of the unprocessed signals from the reference micro-
phones. We term this approach the selective binaural
beamformer (SBB).
To decide whether to present the enhanced beamformer

output signals or the signals from the reference micro-
phones, we compare the PSD of the target signal φs(n) to
the PSD of the overall noise (from all directions) φv(n),
equivalent to computing the input SNR φs(n)/φv(n) and
comparing it to a threshold value of 0 dB. In T-F bins
where φs(n) exceeds φv(n), the enhanced signals are used;
otherwise, the signals from the reference microphones are
passed through with some attenuation, as shown schemat-
ically in Fig. 2. For example, if the target signal is a speech
signal at low SNR, most bins in the T-F plane will be
classified as background noise rather than target signal.
Since the background noise is only modified by (possibly
frequency-dependent) attenuation, its spatial character is
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Fig. 2 Schematic of beamforming with binary decision mask. The
multichannel input signal is converted into the time-frequency (T-F)
domain and then passed to the binaural spatial filtering algorithm.
The binary decision mask, based on the SNR estimator, then either
passes the output signals of the binaural spatial filter or the scaled
reference microphone signals to the in-ear transducers

preserved. Those portions of the T-F plane dominated by
the target signal, on the other hand, will be perceived from
the target direction.
There are several factors that determine the quality of

the enhanced binaural signals, with two extreme cases
that can be viewed as quality limits. First, in the case
where no T-F bins are classified as being from the tar-
get source, the spatial scene is perfectly preserved; how-
ever, no enhancement takes place. On the other hand,
if the complete T-F plane is classified as being from
the target source, the entire auditory scene collapses to
the target direction. The desired compromise therefore
heavily depends on the accuracy of the binary decision
mask.
If perfect knowledge of the target signal and the back-

ground noise are available, we can construct a so-called

ideal binary decision mask (IBDM), differentiating all T-F
bins between target (φs(n) > φv(n)) and noise (φv(n) >

φs(n)). Deviations from this decision mask due to esti-
mation errors of the input SNR will occur for T-F bins
where the target signal is falsely classified as noise or
where the noise is classified as being part of the target
signal. In the former case, the target signal will be atten-
uated just as much as the background noise. In the latter
case, the background noise will loose its spatial character-
istics. It might be assumed from this observation that the
overall quality of the enhanced signals is degraded more
by underestimating the input SNR; however, overestimat-
ing the input SNR results in a decision mask containing
spurious misclassifications which introduces disturbing
artifacts.

3.1 SNR estimation
In the context of beamforming algorithms, estimating
the SNR is a common problem for the design of single-
channel postfilters [23–26]. Based on the signal model in
(1), we will use the maximum likelihood estimator (MLE)
proposed in [19, 26], which requires an estimate of the
covariancematrix of the input signal, knowledge about the
steering vector of the target source, and the scaled noise
covariance matrix. The estimates of the spectral variance
of the noise and the target signal are given by

φ̂v(n) = 1
M − 1

tr
[(
IM − dTwH

MVDR
)
�̂x(n)�−1

iso

]
(13)

φ̂s(n) = wH
MVDR

(
�̂x(n) − φ̂v(n)�−1

iso

)
wMVDR, (14)

where �̂x(n) is an estimate of the covariance matrix of
the input signal, IM is the M × M identity matrix, and
tr{·} denotes the matrix trace. While in [19] these two
estimates were used to compute the postfilter, in our algo-
rithm, we will use the estimated input SNR (φ̂s(n)/φ̂v(n))
in each T-F bin for the binary decision mask.

3.2 Binary decision mask
The binary decisionmask (BDM) generated using the SNR
estimate described above can be expressed as

t(n) =
{
1, φ̂s(n)

φ̂v(n)
> 1,

0, otherwise.
(15)

In other words, the decision mask is equal to 0 for all
T-F bins where the local input SNR estimate is smaller
than the threshold value of 0 dB, which is the minimum
SNR required for listeners to detect usable glimpses from
the target speech signal that will aid intelligibility [27]. A
higher threshold would potentially distort the speech sig-
nal [28], whereas a lower threshold impacts the perception
of the spatial characteristics of the background noise. Note
that in practice, we found that varying the threshold by±3
dB does not have a noticeable effect.
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The BDM is directly used for constructing the output
signals, with the output signal presented to the left ear
equal to

ySBB,L(n) =
{
ybfL(n), t(n) = 1,
γ xmL(n), t(n) = 0, (16)

where γ (f ) is a possibly frequency-dependent scaling fac-
tor and xmL(n) is the left reference microphone signal.
The output ySBB,R is computed in a similar manner using
ybfR(n) and xmR(n). The scaling factor γ (f ) controls the
amount of noise attenuation affecting the amount of arti-
facts produced in the output.
In order to avoid large gain variations for the residual

noise when switching between the beamformer outputs
and the reference microphone signals, we need to com-
pensate for the array gain of the binaural MVDR beam-
former, which for the left and the right side, respectively,
is equal to

GL = (wH
L �isowL)

−1 and (17)
GR = (wH

R �isowR)
−1. (18)

In order to preserve the ILDs of the background noise,
we have used an equal scaling factor on both sides, where
we have used the “better ear” side since the user’s attention
will be towards this side, i.e.,

γ =
{
GL, target is on left side,
GR, target is on right side. (19)

Since this scaling factor is frequency-dependent, it will
result in a spectral coloration of the background noise.
Alternatively, we will therefore also consider a constant
(frequency-independent) scaling factor γc by averaging γ

over all frequencies [29].

3.3 MVDR-N
Preserving the interaural cues of the background noise
is a problem that has been addressed by other binaural
beamforming algorithms, and it is interesting to compare
the SBB in particular to the binaural MVDR beamformer
with partial noise estimation (MVDR-N). The MVDR-
N is an extension of the binaural MVDR beamformer,
mixing the output signals of the binaural MVDR with
the reference microphone signals in order to provide a
trade-off between noise reduction and preservation of the
interaural cues of the noise component [17, 30, 31], i.e.,

yMVDR-N,L = (1 − η)ybfL + ηx1, (20)
yMVDR-N,R = (1 − η)ybfR + ηx2. (21)

Hence, more generally, both the SBB and the MVDR-N
can be described as mixing the binaural MVDR beam-
former output signals and the reference microphone sig-
nals using

ygen,L = αybfL + βx1, (22)
ygen,R = αybfR + βx2, (23)

with α and β shown in Table 1. The main differences
between the SBB and the MVDR-N lie in the fact that for
the SBB, the parameters α and β depend on the estimated
SNR and are hence signal- and frequency-dependent.

4 Evaluation
Using the binaural database presented in [32], we simulate
noisy and reverberant microphone signals by convolv-
ing clean speech samples from the Oldenburger Satztest
(OLSA) database [33–35], with room impulse responses
measured on an artificial head and by adding noise
recorded by the same setup in the same room. The used
sampling rate is 16 kHz. The room is a university cafeteria
(T60 ≈ 1250ms), and the noise is a typical ambient noise
for this environment, i.e., a combination of many speakers
in different positions plus incidental noises from cutlery,
chairs, etc. Both hearing aids consist of two microphones
(thus M = 4 microphones in total), where the distance
between the two microphones is 15.6mm.
In the evaluation, we use two different spatial setups. In

the first setup, the target speaker is in front of the hear-
ing aid user. In the second setup, the target speaker is on
the left side of the user (30° azimuth angle). For the steer-
ing vector dT , we have used the anechoic HRTFs, also
from [32]. This corresponds to the early reflections being
treated as interfering noise but yields a realistic imple-
mentation since the real acoustic path is generally not
known.
The algorithm is implemented using frame-based short-

time Fourier transform (STFT) processing with a frame
size of 320 samples (zero-padded to 512 samples for the
FFT) corresponding to 20ms, and a frame advance of 160
samples (corresponding to 10ms).
We estimate the noise coherence matrix �iso assum-

ing a cylindrically isotropic noise field by averaging the

Table 1 Comparison of mixing factors for binaural beamforming
algorithms

MVDR MVDR-N SBB

α 1 1 − η
1 φ̂s(n)/φ̂v(n) > 1

0 otherwise

β 0 η
0 φ̂s(n)/φ̂v(n) > 1

γ otherwise
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anechoic acoustic transfer functions (ATF) along the hor-
izontal plane, as

�
[m,n]
iso =

∑K
k=1 Dm(k)D∗

n(k)√∑K
k=1 |Dm(k)|2 ∑K

k=1 |Dn(k)|2
, (24)

where�
[m,n]
iso is the (m, n)th element of the noise coherence

matrix, K is the number of azimuth angles, and Dm(k) is
theM-dimensional anechoic ATF on microphonem from
direction index k. We use 5° spacing (K = 72) using the
HRTFs from [32].
For the SNR estimation (13, 14), the covariance matrix

of the input signal was estimated by exponential averaging
using

�̂x(n) = (1 − α)x(n)xH(n) + α�̂x(n − 1), (25)

where α = 0.7, giving a time constant of 28ms.
The proposed algorithm is tested in two variants:

(a) with the frequency-dependent scaling factor γ (f ) in
(16) (labeled SBB) and (b) with a frequency-independent
scaling factor γc, computed by averaging γ over fre-
quency (labeled SBB/CM, where the “CM” stands for
“constant mixfactor”). In addition, to evaluate the impact
of SNR estimation errors, we also used the ideal
binary decision mask (IBDM) from oracle information,
i.e., using the unmixed target and noise signals. For the
IBDM, we also considered a frequency-dependent and a
frequency-independent scaling factor, labeled as IBDM
and IBDM/CM.
As reference algorithms, we used three variants of the

MVDR beamformer: (a) a bilateral MVDR beamformer
where each hearing aid operates independently of the
other (i.e., two separate two-microphone beamformers
on each hearing aid), labeled “BIL”, (b) a non-spatial
cue preserving binaural MVDR beamformer (i.e., using
ybfL and ybfR), and (c) the binaural MVDR beamformer
with partial noise estimation as described in Section 3.3,
labeled “MVDR-N,” where we have used the frequency-
independent mixing factor η = 0.2 as proposed in [36].

4.1 Instrumental evaluation
The noise reduction performance of the proposed algo-
rithm is evaluated using the intelligibility weighted SNR
(iSNR) [37], taking the maximum value of the two ear
channels to simulate the better ear effect. Speech quality is
evaluated using the perceptual evaluation of speech qual-
ity (PESQ) measure [38], where the clean speech signal at
the reference microphones is used as reference.
Our test signals are male and female speech rendered

using binaural room impulse responses andmixed at iSNR
of −5.7 dB for the target source in front and 0 dB for the
target at the side.
Tables 2 and 3 present the instrumental performance

measures for the considered algorithms, showing the

Table 2 Objective measures for target at center position

�ISNR (dB) PESQ (MOS) �ILDtg (dB) �ITDtg (μs) �MSCbg

BIL 3.73 1.74 1.50 1.59 0.06

MVDR 6.27 1.78 1.99 11.10 0.93

MVDR-N 5.25 1.75 2.09 7.31 0.66

IBDM 10.01 2.30 0.61 8.50 0.13

IBDM/CM 8.58 2.15 0.59 8.38 0.13

SBB 7.83 2.09 2.27 7.81 0.11

SBB/CM 6.69 2.00 2.04 7.60 0.11

difference in iSNR to the reference microphone signal
(�iSNR), the PESQ score (in terms of mean opinion score
(MOS)), the ILD error of the target signal (�ILDtg, in
dB), the ITD error of the target signal (�ITDtg, in μs),
and the magnitude squared coherence (MSC) error of the
background noise (�MSCbg). The ILD and the ITD are
calculated based on the binaural model proposed in [39].
The MSC is defined as the square of the absolute value of
the interaural coherence [40]. For the ILD, ITD, andMSC,
the error is computed as the mean difference between the
reference microphone signal cues, and the algorithm out-
put signal cues, considering either only the target signal
component (for �ILDtg and �ITDtg) or the background
noise component (for �MSCbg).
The advantage provided by the binaural MVDR-based

algorithms using four microphones compared to the bilat-
eral MVDR beamformer is clear. In the case of the target
source in front, the SBB algorithms show higher iSNR and
PESQ scores than the binaural MVDR beamformer on
which they are based. This can be explained by the fact
that in the SBB output, the noise in the non-speech por-
tions of the T-F plane is attenuated more strongly than in
the MVDR output. This effect is not observed if the tar-
get source is to the side, since in the contralateral side, the
binaural MVDR beamformer attenuates the noise more
strongly than estimated by γ , which is based on the better
ear side where the SNR gain is lower.
The importance of the SNR estimate can be observed

from the iSNR scores for IBDM and IBDM/CM versus

Table 3 Objective measures for target at side position

�ISNR (dB) PESQ (MOS) �ILDtg (dB) �ITDtg (μs) �MSCbg

BIL 4.50 1.62 1.09 4.21 0.08

MVDR 10.87 1.90 1.74 13.56 0.91

MVDR-N 8.23 1.87 1.43 12.38 0.46

IBDM 7.46 1.87 0.79 17.86 0.03

IBDM/CM 5.73 1.76 0.94 18.57 0.02

SBB 5.79 1.86 1.54 17.26 0.05

SBB/CM 4.53 1.74 0.43 18.60 0.04
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SBB and SBB/CM. Furthermore, it can be observed that
using (the frequency-dependent) γ (IBDM and SBB)
yields a higher performance than using the (frequency-
independent) γc (IBDM-CM and SBB-CM). Also evident
is the mild loss of performance (in terms of iSNR) of
MVDR-N versus MVDR due to the mixing with the refer-
ence microphone signals [17, 40].
The �ILD for the target source is observed to be small

(always within 2.3 dB) for all algorithms. The �ITD for
the target source also indicates that we can expect all algo-
rithms perform approximately equally well with respect
to the binaural cues of the target. The bilateral MVDR
beamformer configuration (BIL) appears to yield the best
performance in terms of �ITD, but this can be explained
by the low iSNR gain this algorithm provides.
The �MSC shows the near complete removal of the

spatial characteristics of the background noise for the
binaural MVDR beamformer. The MVDR-N performs
slightly better due to the partial noise estimation, but we
clearly observe that the binary decision mask algorithms
(IBDM, IBDM/CM, SBB, and SBB/CM) result in much
lower MSC error, yielding a performance similar to the
bilateral MVDR beamformer. In Section 4.2, we compare
these instrumental measures with subjective evaluations.

4.1.1 Influence ofmisestimating the steering vector
Since the SBB requires an estimate of the direction of
arrival (DOA) of the target source for both the underly-
ing MVDR beamformer and to estimate the SNR, in this
section, we evaluate the influence of misestimating the
steering vector dT on the iSNR. Figure 3 shows the�iSNR
at the better ear for different assumed steering vectors dT
in the horizontal plane, for a target source in front (panel
a) and a target source at 30° to the left (panel b). For both
target source directions, the results for the SBB and the
binaural MVDR are shown.
For small DOA estimation errors, it can be observed

that the performance of the SBB is similar to the per-
formance of the binaural MVDR beamformer. However,
for large DOA estimation errors, the performance of the
SBB tends to remain around �iSNR = 0 dB, whereas the
MVDR beamformer shows a significant iSNR decrease.
This can be explained by the observation that for large
DOA estimation errors, the SNR estimate will typically be
below 0 dB, such that the binary decision mask is equal to
0, and the resulting SBB output signal is equal to the scaled
reference microphone signal.
Interestingly, in our test scenario where the background

noise contains an interfering speaker at 90°, the�iSNR for
the SBB does drop below 0 dB if the assumed DOA is near
to 90°. This can be explained by the observation that the
SNR estimator uses the interfering speaker as target, such
that the SBB attempts to enhance this interfering speaker,
reducing the iSNR.

SBB MVDR
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Fig. 3 �iSNR as a function of dT for the target to the front (a) and the
target at 30° to the left (b). The solid blue line shows the iSNR
improvement for the SBB algorithm, the dashed green line for the
binaural MVDR beamformer. The background noise includes an
interfering speaker at 90°

4.2 Subjective evaluation
The subjective evaluation consists of two different
tests, aiming to determine both the preservation of the
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interaural cues of each algorithm as well as to measure
speech intelligibility using the SRT. Eight self-reported
normal-hearing subjects participated in the experiments,
with ages ranging from 18 to 38 years. The processed
signals were presented to the subjects via headphones
(Sennheiser HD 650) connected to a USB Soundcard
(RME Fireface UC) in a listening cabin at a level of 65 dB
SPL. The measurements included a training phase during
which the participants could listen to the signals without
judging them.

4.2.1 Preservation of spatial rendering
To examine the preservation of the spatial rendering by
the considered algorithms, the subjects participated in
a test based on the multiple stimuli with hidden refer-
ence and anchor (MUSHRA) test [41]. The participants
were asked to rate the generated binaural signals from the
algorithms relative to the reference signal given by the
unprocessed microphone signals. They were asked specif-
ically to assess the spatial positioning of all sources in the
acoustic scene, not just the target speaker but also the
speech and non-speech elements of the background noise.
For each test signal, the participants could rate the spa-
tial rendering on a scale with the following labels: equal
(100–80), almost equal (80–60), slightly different (60–40),
different (40–20), and very different (20–0). Analogous
to MUSHRA, we used the reference signal as test signal
(hidden reference) and presented a low-quality anchor
consisting of an averaged reference microphone signal
presented to both ears. The same test signals as used for
the objective evaluation were used, and each participant
repeated the evaluation with a pause between sessions. No
statistical difference was found in the evaluation scores
of male or female target speakers, thus all four sets of
responses of individual subjects were averaged. However,
since one subject had difficulties with the evaluation,
which was apparent by observing that the anchor was
consistently not found (receiving a score greater than 50 in
two instances), the scores from this subject were removed
from the analysis.
Figure 4 shows the MUSHRA scores for the different

algorithms, both for the target front center as well as for
the target to the side. From the results, we observe that
the SBB/CM algorithm performs slightly better than both
the BIL andMVDR-N algorithms, especially when the tar-
get is to the side. As expected, MVDR performs badly,
with MVDR-N showing considerably better scores. The
bilateral arrangement (BIL) performs quite well, but when
comparing the entire set of responses for both target posi-
tions, the distributions of subjective scores of SBB/CM
versus BIL show a statistically significant difference with
p < 0.05 using Welch’s unequal variances t test. If we
consider the scores for the target to the side only, we find
p < 0.01. Comparing SBB/CM to MVDR-N, we also see
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Fig. 4 Subjective evaluation of spatial rendering relative to the
reference microphone signal, for the target in front (a) and for the
target to the side (b). The box shows the extent of the middle
quartiles (25 to 75%) of the results with the red center line indicating
the median.Whiskers show the data range up to 1.5 times the
interquartile distance, and crosses show outliers

that the responses are statistically significantly different
with p < 0.01 when evaluating the entire set of responses
for both target responses. In the results, we also note
that using a frequency-independent scale factor results in
slightly better performance. Finally, we note that using an
IBDM does not seem to translate into better performance
compared to SBB, suggesting that the SNR estimator does
not have a major influence in this regard. Comparing
Fig. 4a to Table 2 and Fig. 4b to Table 3, we note that the
subjective results appear to generally match the �MSC
values, under the assumption that all algorithms render
the target source at the correct spatial direction.
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4.2.2 Speech reception threshold
The SRT is defined here as the SNR where 50% of the
words in a sentence are recognized by the listener [42].
It was measured for the considered beamforming algo-
rithms and the unprocessed reference microphone signals
using the OLSA [33–35] database and test procedure, for
both target source positions, resulting in a total number
of 16 runs. The OLSA test is a matrix test that con-
sists of sentences with five words where each word can
be one of ten alternatives. Each run consisted of a set of
randomly chosen sentences from a list of 20 sentences.
All participants performed the evaluation twice, with the
SRTs averaged over the two sessions. The results for
both target positions are shown in Fig. 5, where the SRT
improvement is shown as the difference between the SRT
of the unprocessed reference microphone signals and SRT
of the processed signals, reducing the variability between
subjects.
The results show that the SRT improvement of the

SBB/CM is similar to the SRT improvement of the
bilateral MVDR beamformer (using the complete set of
responses, Welch’s t test yields p > 0.2), but that the
SBB/CM shows a significantly better preservation of the
spatial cues. However, the SRT of the SBB/CM is worse by
about 1 dB compared to the binaural MVDR and MVDR-
N beamformer, although the difference is less when the
target is to the side.
When the IBDM is used, the SRT is significantly lower

than even the binaural MVDR. This can be explained both
by the higher iSNR (cf. Tables 2 and 3) and the fact that
the spectro-temporal activation of speech itself conveys
information [43]. It also shows that the speech intelligibil-
ity improvement of SBB can be improved significantly if
the accuracy of the SNR estimate can be improved.

5 Conclusions
For an acoustic scene with a single target speaker and
isotropic background noise, we have proposed a selec-
tive binaural beamformer, aiming to enhance the speech
quality and intelligibility while preserving the spatial
impression of the acoustic scene. The proposed selective
binaural beamformer is based on a bimodal processing
approach, where each time-frequency unit is considered
to be either part of the target sound or the background
noise. Based on an SNR estimator, a binary decision
mask is constructed which decides if the output signals
of a binaural MVDR beamformer (preserving the inter-
aural cues of the target source) or the scaled reference
microphone signals (preserving the spatial characteris-
tics of the background noise) are used as the output
signals.
Evaluating the results, we find that the SBB/CM algo-

rithm provides a better preservation of the perceived spa-
tial locations of sounds compared to other cue-preserving

0

-1

-2

-3

-4

-5

Algorithm

IB
DMBIL

M
VDR

M
VDR-N

SBB

SBB/C
M

IB
DM

/C
M

SR
T

 im
pr

ov
em

en
t (

dB
)

Algorithm

IB
DMBIL

M
VDR

M
VDR-N

SBB

SBB/C
M

IB
DM

/C
M

SR
T

 im
pr

ov
em

en
t (

dB
) 0

-1

-2

-3

-4

-5

a Target Front Center

b Target 30° to Side

Fig. 5 SRT improvement relative to the reference microphone signal
measured for the different algorithms, for the target in front (a) and
for the target to the side (b). As in the previous plot, the boxes show
the middle quartiles and the red center line the median. The SRT was
measured as the SNR for 50% word recognition

algorithms (such as the related MVDR-N and the bilateral
MVDR beamformer). While there is some degradation of
speech intelligibility compared to the binaural MVDR and
MVDR-N, we achieve performance roughly on par with
a bilateral MVDR beamformer. However, based on the
results using the ideal binary decision mask, we expect
that some of this degradation can be attributed to SNR
estimation error.

Endnotes
1Although this assumption will not hold perfectly for

the early reverberation of the target source and for the
interfering sources, it is a commonly made assumption
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for the derivation of superdirective beamformers [11, 20]
and for dereverberation algorithms [19, 23].

2Other binaural noise reduction algorithms, such as
the binaural multichannel Wiener filter [9], could also be
used as the core algorithm.
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