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Abstract

Optimal finite impulse response (FIR) error feedback filters for noise shaping in �� modulators are designed by using
weighting functions based on the system norms. We minimize the weighted norms of the quantization error in the
output of a �� modulator, which corresponds to the minimization of the system norm. Three norms, the H2 system
norm, the H∞ system norm, and the l1 norm of the impulse response of the system, are adopted. The optimization
problem for three types of FIR filters are evaluated by using linear matrix inequalities (LMIs) and then solved
numerically via semi-definite programming. Design examples are provided to demonstrate the effectiveness of our
proposed methods.
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1 Introduction
Analog-to-digital (A/D) and digital-to-analog (D/A) data
converters are some of the most important parts of the
electronic systems which act as the interface between
the digital signal world and the real analog world. In
A/D converters, the continuous-valued signals are dis-
cretized and quantized for transmission in wireline or
wireless systems [1]. The process of quantization maps
the continuous-valued signal to the discrete-valued sig-
nal. This usually introduces an undesirable effect, which
is known as quantization noise. The important aspect of
these converters is their ability to determine whether and
how much the conversion can correctly keep the impor-
tant information of signals, while suppressing undesirable
noises.
Currently, the delta-sigma (��) modulation is a pop-

ular technique for making high-resolution A/D and D/A
converters [2, 3]. Modern �� converters offer several
benefits including high resolution, low power consump-
tion, and low cost, making them a reasonable choice for
the A/D converter for many signal processing applications
such as audio devices [4, 5]. These�� A/D converters are
effective for converting analog signals over a wide range of
frequencies, from DC to several megahertz.

*Correspondence: rizwan-tariq@hiroshima-u.ac.jp
Department of System Cybernetics, Hiroshima University, Saijo,
Higashi-Hiroshima, Japan

The �� modulator mainly consists of a static uniform
quantizer and an error feedback filter to shape quanti-
zation noise [6], which is called noise shaping filter. The
input to the modulator is an oversampled signal which is
to be digitized. In oversampling, the signal is sampled at a
frequency much higher than the Nyquist frequency (two
times the input bandwidth) which reduces the effect of
the quantization noise in the frequency band carrying the
information signal, while the total noise remains the same.
The high-rate digital output of the modulator has two

components, one is the signal which is located in the low-
frequency region and the other is the noise which has to
be reduced.
In the design of a �� modulator, the objective is

to minimize the in-band quantization noise which as
a result improves the signal-to-quantization-noise ratio
(SQNR) of a �� modulator. It has been observed that the
technique of oversampling alone may not be enough to
improve the SQNR in the band of interest, and we need to
exploit the noise shaping properties of the �� modulator
to further reduce the in-band quantization noise. This can
be achieved by using a feedback filter which employs the
noise shaping to obtain a high SQNR while keeping the
oversampling ratio (OSR) not too high. Although the over-
all quantization noise may not be changed by the noise
shaping, the SQNR is increased in the information signal
frequency band of the frequency spectrum. Our objective
is to design the finite impulse response (FIR) noise shaping
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filter of the �� modulator so that we can minimize the
noise in the frequency region which constitutes our signal
bandwidth.
Several designs for feedback filters have been proposed

which also use the noise spectrum shaping technique
[7, 8]. The FIR error spectrum shaping filters have been
proposed for recursive digital filters composed of cas-
caded second order section in [9]. In [10], the noise trans-
fer function (NTF) is assumed to have an infinite impulse
response which is converted to aminimization problem by
virtue of generalized Kalman-Yakubovich-Popov (GKYP)
lemma. Then, an iterative algorithm is developed to solve
this minimization problem subject to quadratic matrix
inequalities. The method in [11] is a min-max design
to optimize the NTF via GKYP lemma. This approach
minimizes the worst case gain of the NTF over the sig-
nal frequency band and is shown to be able to improve
the overall SNR of �� modulators as well. However, the
method in [11] cannot incorporate the system connected
to the quantizer into its design, while we consider a non-
ideal output filter to minimize the quantization noise. In
[12, 13], the optimization problem based on H2 norm
is formulated as a convex quadratic optimization prob-
lem where the weighting function (output filter) impulse
response in truncated to finite number of samples.
In this paper, to keep �� modulators versatile, we uti-

lize the weighting function to design �� modulators. We
minimize the weighted quantization noise in the output
of the �� modulator. Three norms are adopted to mea-
sure the quantity of the weighted quantization noise. One
is the variance of the weighted quantization noise when
the quantization errors at different time are assumed to
be independent of each other. The others are the l2 and
the l∞ norms of the weighted quantization noise. They
correspond to the minimization of the H2 system norm,
the H∞ system norm, and the l1 norm of the impulse
response of a system, respectively, and can be formu-
lated as convex optimization problems with linear matrix
inequalities (LMIs), which can be solved efficiently. The
three norms considered in this paper are the most com-
monly used norms for quantifying signals. Our proposed
method based on LMIs is termed unified for these three
most commonly used norms only. If one imposes a con-
straint on the filter, then there are nine combinations for
the design, three types of objectives, and three types of
constraints, which can be handled by LMIs. One of these
nine combinations, H2 norm subjected to the Lee crite-
rion, is similar to the design criteria of the method in
[12, 13]. However, for our proposed H2 norm design, we
provide an alternate approach based on expressing the H2
norm by using LMIs. The similarity lies in the fact that
our proposed design and the method in [12, 13] use the
idea of incorporating the non-ideal output filter for the
minimization of the quantization noise.

The stability condition of �� modulators is also
described by an LMI, which is incorporated into our
design. Simulations with our designed noise shaping fil-
ters are performed, and comparisons with existing meth-
ods are made to demonstrate the effectiveness of our
proposed design.
This paper is organized as follows: Section 2 gives the

input/output relation of a linearized�� modulator with a
weighting function. Then, we formulate our design prob-
lem which minimizes the weighted quantization noise
under the stability condition. Section 3 is the main section
of this paper, and we propose the design of the FIR feed-
back filter using LMIs for H2, H∞, and l1 system norms.
Section 4 gives design examples to show advantages of
our method using simulation results. Section 5 provides
us with the conclusion of our study.
Notation: Throughout this paper, R and Z denote a set

of real numbers and a set of integer respectively. S denotes
the set of all stable, proper, and rational transfer func-
tions with real coefficients. The subscript (·)+ is used to
indicate a subset restricted to non-negative numbers.

2 �� modulator and output weighting filter
Let us consider a general linearized model of a �� mod-
ulator for analyzing the noise shaping characteristics and
designing the optimal noise shaping filter. We only con-
sider the discretized single-input/single-output system
with discrete-time signals. Let us denote the z transform
of a sequence f = {

fk
}∞
k=0 as F[z]= ∑∞

k=0 fkz−k and
express the output (sequence) b of the linear time invari-
ant (LTI) system F[z] to the input a = {ak}∞k=0 as b =
F[z] a.
Figure 1 shows the error feedback configuration of a��

modulator. The input to the modulator is y, while the out-
put is u. The filter P[z] acts as a pre-filter to shape the fre-
quency response of the input signal, and Q(·) is our static
quantizer. The quantization error w is filtered by R[z]−1
and is fed back to y. We assume that limz→∞ R[z]= 1, i.e.,
the zeroth coefficient of the impulse response of R[z] is 1,
which implies R[z]−1 is strictly proper. We also assume
that

P[z] ,R[z]∈ S. (1)

The static uniform quantizer can be described by two
parameters, the quantization interval d ∈ R+ and the sat-
uration level L ∈ Z+. For the continuous-valued input ξ ,
let the output of the static uniform quantizer be

Q(ξ) =
⎧
⎨

⎩

id, ξ ∈ ((
i − 1

2
)
d,

(
i + 1

2
)
d
)

and |ξ | ≤ L
L, ξ > L

−L, ξ < −L
,

(2)
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Fig. 1 Error feedback structure of linearized �� modulator

where d is the quantization interval and i is an integer.
We assume that the saturation level is sufficiently large to
avoid the saturation.
The difference between the input and the output of the

static quantizer Q is known as a quantization error, which
is denoted at time k as

wk = uk − ξk . (3)

The quantization error is filtered by the noise shaping
filter and added to the input to the static quantizer. Then,
the input to the static quantizer is expressed as

ξ = P[z] y + (R[z]−1)w. (4)

Then, we have

u = w + ξ = P[z] y + R[z]w. (5)

The gain from the input y to the output of the
modulator u is known as as signal transfer function
(STF), while the gain between the quantization error
w and the modulator output u is commonly known as
noise transfer function (NTF). In our setting, the STF
and NTF for the �� modulator are P[z] and R[z],
respectively.
The feedback loop acts in such a way that the quantiza-

tion noise is shifted away from a certain frequency band.
If the input to the modulator lies within this certain fre-
quency band, then most of the noise due to quantization
lies outside the frequency band of interest.

To design the noise shaping filter, we utilize a weight-
ing function HW [z]. More specifically, we consider the
weighted quantization noise ε defined as

ε = HW [z]R[z]w, (6)

where HW [z]∈ S. Without loss of generality, we normal-
ize the maximum magnitude of HW [z] to be in unity.
The weighting function is selected to reduce the effect
of the quantization noise in the passband of the y. For
example, when the passband of y is

[−ωp,ωp
]
, we will

use the weighting filter that meets HW
[
ejω

] ≈ 1 for
ω ∈ [−ωp,ωp

]
and |HW

[
ejω

] | is small enough outside the
passband to let most of the noise be outside the passband.
Suppose that the output of our �� modulator u is con-

nected to a system HS[z] whose output is denoted by v.
Then, we have

v = HS[z]u. (7)

Substituting (5) into (7), we get

v = HS[z]P[z] y + HS[z]R[z]w. (8)

In [12], the noiseHS[z]R[z]w is minimized based on the
H2 system norm to reduce the in-band quantization noise.
When HW [z]= HS[z], our minimization based on the H2
system norm is equivalent to the minimization of [12].
Then, the difference between the proposed method and
[12] lies in the usage of different optimization procedures
for solving theH2 norm objective function. As pointed out
in [12], if one knows the system HS[z] connected to the
�� modulator, one should set HW [z]= HS[z]. If not, we
could design more general �� modulators using weight-
ing functions. Thus, our objective is to obtain the optimal
filter R[z] in (8) for a given HW [z] that minimizes ε =
HW [z]R[z]w in a sense.
The signal w which is the difference between the input

and the output of the static uniform quantizer satisfies

|wk| ≤ d
2
. (9)

Since the transfer function from w to ε is linear, we can
put d = 2 without the loss of generality so that |wk| ≤ 1
and hence |wk|2 ≤ 1.
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Let us define the H2 norm of a system H[z]=∑∞
k=0 hkz−k as

||H[z] ||2 =
[ ∞∑

k=0
|hk|2

] 1
2

. (10)

The quantization error may be modeled as a uniform
random variable with zero mean and variance σ 2

w [2]. If
the errors at different times are independent of each other,
then the variance of the weighted quantization noise εk is
given by

σ 2
ε = ||HW [z]R[z] ||22σ 2

w. (11)

As a deterministic sequence, the weighted quantization
noise signal ε may bemeasured with its lp norm defined as

||ε||p =
[ ∞∑

k=0
|εk|p

] 1
p

. (12)

Among lp, the l2 and the l∞ norm are often utilized. The
l∞ norm of a discrete signal {εk}∞k=0 is defined as

||ε||∞ = sup
k

|εk|. (13)

The value of ||ε||∞ is the largest absolute value of the
error signal and hence can be used to consider the worst
case errors. On the other hand, the l2 norm is defined as

||ε||2 =
[ ∞∑

k=0
|εk|2

] 1
2

. (14)

The stability of �� modulators should also be consid-
ered. Here we consider the lp bounded stability. Suppose
that y is bounded such that ||y||p < γy for a finite γy. Then,
it is easy to see that if ||R[z]w||p is bounded, then the input
ξ to the static quantizer, which is the internal variable of
the �� modulator, is bounded. Thus, to guarantee the lp
stability of the �� modulator, it is sufficient to assure

||R[z]w||p < γ , (15)

for a finite γ .
If one takes the p = 2 norm, then

sup
w

||R[z]w||2 ≤ ||R[z] ||∞||w||2, (16)

where ||R[z] ||∞ is the H∞ system norm defined as

||R[z] ||∞ = max
ω

|R [
ejω

] |. (17)

The constraint on the H∞ norm of the NTF is known
as Lee criterion [6, 14]. The peak value of the NTF mag-
nitude response must be bounded to some constant value
γ , where the value of γ depends on the number of satura-
tion levels. For the case of binary quantizers, the value of
γ is usually set as 1.5.
In summary, we would like to minimize σ 2

ε , ||ε||2, or
||ε||∞ under the stability condition (15), assuming that the

variance of wk , ||w||2 or ||w||∞ is finite. It should be noted
that without the weighting function, we only have the triv-
ial solution such that R[z]= 1, that is, the error feedback
is not necessary.

3 Design of FIR noise shaping filters using linear
matrix inequalities

Since FIR filters are often preferred, we confine our atten-
tion to design of FIR filters of order n, denoting

R[z]=
n∑

k=0
rkz−k , r0 = 1. (18)

The coefficient r0 of the impulse response of the FIR fil-
ter R[z] is unitary to ensure R[z]∈ S, which makes the
noise shaping filter strictly proper.
Let us denote the matrices of a state-space realization of

R[z] by (AR,BR,CR, 1), where

AR =

⎡

⎢⎢⎢⎢
⎣

0 1 0
...
. . . . . .

...
. . . 1

0 · · · · · · 0

⎤

⎥⎥⎥⎥
⎦

, BR =

⎡

⎢⎢⎢
⎣

0
...
0
1

⎤

⎥⎥⎥
⎦

(19)

CR(r) = [
rn, rn−1, · · · r1

]
. (20)

It is noted that AR and BR are constant. Our design
parameter is

r = [r1, . . . , rn] (21)

which defines CR(r) above.
The weighted quantization noise ε in (6) to be min-

imized is characterized by the the composite system
HW [z]R[z], which has to be internally stable.
Let HW [z] be a proper function, whose (A,B,C,D)

matrices of a state-space realization is (AH ,BH ,CH ,DH).
Let the order of R[z] be n and let (AR,BR,CR, 1) be
(A,B,C,D) matrices of a state-space realization of R[z].
Then, one can express the state-space realization of
HW [z]R[z] as

xk+1 = Axk + Bwk (22)
εk = Cxk + Dwk (23)

where

A =
[
AR BRCH
0 AH

]
, B =

[
BRDH
BH

]
,

C = [
CR CH

]
, D = DH . (24)

First of all, let us consider the minimization of the vari-
ance σ 2

ε of the weighted quantization error under the
white noise assumption. It is sufficient to minimize theH2
norm of HW [z]R[z] to minimize σ 2

ε given by (11).
For FIR R[z], ||HW [z]R[z] ||22 can be expressed as a

quadratic function of r = [r1, . . . , rn] by using inverse
Fourier transform of |HW

[
ejω

] |2 [8], which requires



Tariq and Ohno EURASIP Journal on Advances in Signal Processing  (2016) 2016:29 Page 5 of 14

numerical integrations. On the other hand, a truncated
impulse response of HW [z]R[z] is utilized in [12], where
the order of some parameters is scaled by the length of
the truncated impulse response. Here, we adopt LMIs
to numerically evaluate the H2 norm based on the next
lemma.
Lemma 1. ([15]) Let G[z] be a proper stable rational func-
tion, whose state-space realization is (A,B,C,D). Then, A
is Schur and

||G[z] ||22 < μ2 (25)

if and only if there exist positive definite matrices P and Z
which satisfy

APAT − P + BBT ≺ 0 (26)
Z − DDT − CPCT � 0 (27)

trace(Z) < μ2. (28)

Using the Schur complement, one can show that (26)
holds true if and only if

⎡

⎣
P PA PB

ATP P 0
BTP 0 1

⎤

⎦ � 0. (29)

Similarly, since our system has a single input and a single
output, Eq. (27) for (A,B,C,D) can be expressed as

⎡

⎣
μ2 C D
CT P 0
DT 0 1

⎤

⎦ � 0. (30)

On the other hand, the l2 norm of the weighted quanti-
zation noise is bounded as

||ε||2 = ||HW [z]R[z]w||2 ≤ ||HW [z]R[z] ||∞||w||2.
(31)

We can utilize the bounded real lemma that provides us
an LMI to evaluate the gain.
Lemma 2. ([16]) Let G[z] be a proper stable rational func-
tion, whose state-space realization is (A,B,C,D). Then, A
is Schur and

||G[z] ||2∞ < μ∞ (32)

if and only if there exists a positive definite matrix P which
satisfies

[
ATPA − P + CTC ATPB + CTD
BTPA + DTC BTPB + DTD − μ∞I

]
≺ 0.

(33)

By using the Schur complement, (33) can be converted
into an LMI given by

⎡

⎢⎢
⎣

−P PA PB 0
ATP −P 0 CT

BTP 0 −μ∞ DT

0 C D −1

⎤

⎥⎥
⎦ ≺ 0. (34)

Let us define the l∞ norm of the impulse response of a
system H[z]= ∑∞

k=0 hkz−k as

||H[z] ||imp =
∞∑

k=0
|hk|. (35)

We call ||H[z] ||imp as Himp norm for convenience. Then,
the l∞ norm ||εk||∞ is bounded as

||ε||∞ = ||HW [z]R[z]w||∞ ≤ ||HW [z]R[z] ||imp||w||∞

= ||HW [z]R[z] ||imp. (36)
We can reduce ||ε||∞ by minimizing ||HW [z]R[z] ||imp.
Unlike the H2 norm and the H∞ norm, only upper

bounds of the Himp norm are available. In [17, 18], an
upper bound based on the invariant set of a discrete-
time system has been utilized to design infinite impulse
response (IIR) error feedback filters for dynamic quantiz-
ers. The invariant set of a discrete-time system is defined
as follows [19]:

Definition 1. Let xk ∈ R
n be the state vector of the LTI

system given by

xk+1 = Axk + Bwk (37)

where A ∈ R
n×n, B ∈ R

n×m and wk ∈ R
m. A set X that

satisfies xk+1 ∈ X if xk ∈ X and wT
k wk ≤ 1 is called an

invariant set of the system given by (37).

The following lemma describes how to obtain an ellip-
soid which is an invariant set of the system (37).
Lemma 3. ([19]) Let E(P) be the ellipsoid defined by an
n × n real symmetric matrix P � 0 as E(P) = {x ∈ R

n :
xTPx ≤ 1}.
The ellipsoid E(P) is an invariant set of the system (37) if

and only if there exists a scalar α ∈ [
0, 1 − ρ2(A)

]
which

satisfies
[
ATPA − (1 − α)P ATPB

BTPA BTPB − αI

]
	 0 (38)

where ρ(A) is the spectrum radius of A.
It should be noted that unlikeH2 andH∞,Himp depends

on parameter α.
If xk ∈ E(P), then

sup
xk∈E(P)

|Cxk|2 = CP−1CT . (39)

It follows from |εk| = |Cxk + Dwk| ≤ |Cxk| + |Dwk| that
||HW [z]R[z] ||imp ≤ |CP−1CT | 12 + |D|. (40)

Thus, we can conclude that |CP−1CT | 12 + |D| is an upper
bound of the norm.
Since D is constant, we minimize CP−1CT with respect

to α and CR(r). It should be also remarked that we can
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norm

assume that α 
= 0 since ourBmatrix is not zero. Similarly,
we can express (38) with (A,B,C,D) as

⎡

⎣
(1 − α)P 0 ATP

0 α BTP
PA PB P

⎤

⎦ � 0. (41)

Moreover, using the Schur complement, we can express
CP−1CT ≤ μ as an LMI given by

[
P CT

C μ

]
� 0. (42)

For a fixed α, the minimization of μ is a semidefinite
program, which can be numerically solved by existing
optimization packages, e.g., CVX [20]. Then, all we have
to do is to find α which gives the minimum. Since A is our
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Fig. 3 Frequency responses of filters designed by the proposed method and the referenced methods. The weighting function is of order unity
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design parameter, a line search for α ∈ (0, 1) is required to
obtain the minimum. The optimal (A,B,C,D) is given by
the arguments corresponding to the optimal α.
Not only the objective function but also the condition

(15) on the stability can be described by LMIs. For exam-
ple, as shown in [11], it follows from Lemma 2 that the Lee
criterion

||R[z] ||∞ < γ (43)

is satisfied if and only if there exists a positive definite
matrix PR which meets

⎡

⎢⎢
⎣

−PR PRAR PRBR 0
AT
RPR −PR 0 CT

R
BT
RPR 0 −γ 2 1
0 CR 1 −1

⎤

⎥⎥
⎦ ≺ 0. (44)

Thus, if one would like to design the FIR noise shaping
filter that minimizes σ 2

ε under the Lee criterion, it suffices
to solve the following convex optimization problem

min
r1,...,rn

μ2 (45)

subject to (29), (30), and (44).
The LMIs for other stability conditions ||R[z] ||2 < γ

and ||R[z] ||imp < γ can be obtained similarly, which are
omitted to avoid the duplication.
In summary, our unified approach enables the design of

the FIR noise shaping filter to minimize the H2, the H∞,
or the l1 system norm under the H2, the H∞, or the l1
norm constraint. Moreover, since norms are described by
LMIs, different types of problems can be solved numer-
ically. For example, some signal processing applications

may require us to design an error feedback filter for a ��

modulator by adding a constraint that limits the magni-
tude of the weighted quantization noise to a certain value.
Then, our design objective is to design the noise shaping
filter that attains the optimal value of the stability thresh-
old γ under the maximum weighted quantization noise
constraint. If we adopt the Lee criterion, we can obtain the
most stable error feedback filter by minimizing (43) sub-
ject to ||ε||∞ ≤ c, where c is the maximum bound on the
weighted quantization noise ε, by using LMIs in (41), (42),
and (44).

4 Design examples
In this section, simulations for lowpass and bandpass ��

modulators have been shown using the proposed design
method based on H2, H∞, and l1 system norms. For the
design of a conventional�� modulator by NTF zero opti-
mization method [6], the DELSIG toolbox [21] is utilized
to obtain the frequency response of an IIR noise shaping
filter with synthesizeNTF MATLAB function. The fre-
quency response and the noise shaping characteristics of
the FIR feedback filter proposed in [11] are also com-
pared with our designed filters. As our proposedH2 norm
minimization is mathematically equivalent to the method
proposed in [12], the numerical results which we have
performed also show that there is no significant differ-
ence between our proposed H2 norm method and [12].
To avoid redundancy in our simulations, we omit the
comparison with [12].
All simulation results are obtained by using MATLAB

programming, while semi-definite programming (SDP)
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Fig. 4 Enlarged frequency response of our proposed filters in Fig. 3
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problems are solved by using CVX tool [20], which is an
effective solver for convex optimization problems.

4.1 Lowpass�� modulator with the first-order
weighting function

Now, let us design a lowpass �� modulator by using
a first-order lowpass Butterworth filter as our weight-
ing function HW [z]. The first-order Butterworth filter
provides us the maximum flat response in the passband at
the expense of a wide transition band as the filter changes
from the passband to the stopband. The input signal y to
the lowpass �� modulator is assumed to be oversampled
with an oversampling ratio (OSR) of 512. Then, the cut-
off frequency of the first-order Butterworth filter is set at
π/OSR ≈ 0.0061 in the normalized angular frequency
interval [0,π ].
For the stability of the �� modulator, we assume the

value of the Lee coefficient γ to be 1.5 which is equiva-
lent to 3.52 in decibels ; however, the value of γ can be
increased further as long as the �� modulator remains
stable.
The order of the FIR feedback filter R[z] is chosen based

on the convergence behavior of the objective function.
Figure 2 shows that the H2 norm of HW [z]R[z] reaches
a value as we keep on increasing the order of FIR filter.

Table 1 ||HW [z] R[z] ||2, ||HW [z] R[z] ||∞ , and l1 norms of the
impulse response of HW [z] R[z] for the first-order lowpass
weighting function

H2 norm H∞ norm l1 norm

H2 norm design 1.54 × 10−2 2.19 × 10−2 2.62 × 10−2

H∞ norm design 1.54 × 10−2 2.16 × 10−2 2.59 × 10−2

l1 norm design 1.63 × 10−2 2.59 × 10−2 2.59 × 10−2

Nagahara design [11] 1.92 × 10−2 3.82 × 10−2 4.89 × 10−2

Conventional design [6] 2.61 × 10−2 6.92 × 10−2 11 × 10−2

Above the FIR order 8, the norm of the weighted quanti-
zation noise remains almost constant in terms of the H2
norm, resulting in a high convergence rate. In this exam-
ple, the FIR feedback filter R[z] for noise shaping is set to
be 8.
Figure 3 depicts the frequency responses of H2, H∞,

and l1 norm-based filters compared with the referenced
methods in [6] and [11]. The order of FIR feedback
filter in [11] is also chosen to be 8, while the order of
IIR feedback filter for the conventional design [6] is
set to be 4. Our designed FIR filters have almost the
same frequency response. It can be observed that the
frequency responses of our designed FIR filters have
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uniform attenuation in the low-frequency region of
the frequency spectrum, while the conventional design
shows a peak in the magnitude response near the cut-off
frequency.
To precisely see the difference between the magnitude

responses of our designed filters in low-frequency region,
the enlarged view of Fig. 3 is shown in Fig. 4.
The method in [11] designs the FIR noise shaping fil-

ter based on the weighted H∞ norm of R[z]. Near the
cut-off frequency, the magnitude response of the FIR filter
in [11] increases rapidly showing the high steepness in the
transition band, while all of our proposed filters exhibit
good performance, matching the steepness of the weight-
ing function. Note that the maximum magnitude value
of all filters are bounded to 3.52 dB approximately due
to stability constraint which utilizes the Lee coefficient
γ = 1.5.
Table 1 lists the H2 norm ||HW [z]R[z] ||2, the H∞ norm

||HW [z]R[z] ||∞, and the l1 norm of the impulse response
of HW [z]R[z] for our designed FIR filters compared with
the referenced designs in [6] and [11]. All three designed
filters have less H2, H∞, and l1 norms as compared with
optimal feedback filters in [6] and [11]. Although the
referenced designs have lower gains in the passband
as observed in Fig. 3, our designed filters have better
performance in the weighted norms. This is because the
referenced designs only take into account the passband,
while our design does the whole band by incorporating
a lowpass output filter which is assumed to be non-ideal
in practice. Indeed, if an ideal lowpass filter can be used

as our weighting function, our H∞ norm-based filter is
equivalent to the weighted H∞ norm-based filter in [11].
Since any ideal lowpass filter is not available in practice,
it is important to consider the noise in the stopband.
Our method can trade off the properties of the noise
shaping filter in the passband and the stopband using an
appropriate weighting function.
The H∞ and l1 norm designs exhibit an equivalent

l1 norm, while the H2 and H∞ norm designs have an
equivalent H2 norm. This may be partially due to the
implementation and the numerical errors in our numeri-
cal optimization. It should be noted that we minimize the
upper bounds, which implies that we cannot guarantee
that the quantizer designed based on a norm is optimal in
the sense of the norm.
Figure 5 shows the pole-zero placement for the low-

pass �� modulator with proposed error feedback filters
compared with the FIR filter in [11].

4.2 Lowpass�� modulator with the fourth-order
weighting function

Now let us introduce a higher order lowpass Butterworth
filter of order 4 as our weighting function, where the OSR
is 32. The maximum magnitude of NTF is limited to 3.52
dB by using the Lee coefficient γ = 1.5. The fourth-order
Butterworth filter with a cut-off frequency of π/OSR ≈
0.0098 has a better stopband attenuation than the first-
order Butterworth filter by increasing the steepness of the
passband to the stopband transition at the cost of reduced
passband flatness.
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H2 norm
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Fig. 7 Frequency responses of the filters designed by the proposed method and the referenced methods. The weighting function is of order 4

For this lowpass �� modulator, Fig. 6 shows the
convergence behavior of the H2 norm of HW [z]R[z]
for the H2 norm-based design. From this, the FIR
feedback filter of order 20 is chosen for th epro-
posed designs and referenced design in [11], while the
IIR feedback filter for conventional design [6] is of
order 4.
In Fig. 7, we give the frequency responses of

proposed H2, H∞, and l1 norm-based filters com-
pared with the referenced methods. Our proposed
designs show better performance by providing uniform
attenuation in the low-frequency region and exhibit-
ing better magnitude responses near the cut-off fre-
quency as compared to the referenced methods in
[11] and [6], for the three designed noise shaping
filters.
Table 2 shows the H2 norm, the H∞ norm, and the

l1 norm of the impulse response of HW [z]R[z] for our

Table 2 ||HW [z] R[z] ||2, ||HW [z] R[z] ||∞ , and l1 norms of the
impulse response of HW [z] R[z] for the fourth-order lowpass
weighting function

H2 norm H∞ norm l1 norm

H2 norm design 3.95 × 10−2 9.71 × 10−2 1.40 × 10−1

H∞ norm design 4.07 × 10−2 9.09 × 10−2 1.24 × 10−1

l1 norm design 4.43 × 10−2 1.22 × 10−1 1.23 × 10−1

Nagahara design [11] 9.18 × 10−2 3.53 × 10−1 4.74 × 10−1

Conventional design [6] 1.49 × 10−1 6.69 × 10−1 9.01 × 10−1

designed FIR filters compared with the referenced designs
in [6] and [11]. It can be observed that all three designed
filters have less H2, H∞ and, l1 norms than the opti-
mal feedback filters in [6] and [11]. The H2, H∞, and
l1 norm designs have the least H2, H∞, and l1 norms,
respectively.
To assess the performance of the lowpass �� modula-

tor with an error feedback filter obtained by our proposed
H2 norm-based design, the MATLAB function simulat-
eDSM in DELSIG toolbox [21] is used to simulate the ��

modulator for obtaining the digital output. The input to
the �� modulator is a sinusoidal wave with a frequency
of 100 Hz and and amplitude of 0.5. We assume a uniform
quantizer with saturation levels L = 2 and quantization
interval d = 2.
The output of this uniform quantizer is a digital sig-

nal which is represented by using +1 and −1 volts for
binary 0 and 1, respectively, which is shown in the upper
part of Fig. 8. The lower part of Fig. 8 is the frequency
spectrum of the digital output, which gives the perfor-
mance of our lowpass �� modulator. Our lowpass ��

modulator attenuates the quantization noise in the fre-
quency region which contains the information signal. The
frequency notch for the input signal appears at 100 Hz,
which is the same with the sinusoidal wave, and the
magnitude of quantization noise is low in the passband.
Our proposed H2 filter efficiently shifts the quantization
noise towards the high-frequency region which does
not carry much information. Similar results can be
found for H∞ and l1 norm-based designs, which are
omitted.
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Fig. 10 Frequency responses of filters designed by the proposed method and the conventional method. The weighting function is of order 6

4.3 Bandpass �� modulator with the sixth order
weighting function

Finally, we adopt a sixth-order bandpass Butterworth filter
as our weighting function, whose frequency response is
found in Fig. 10.
The input to the modulator is assumed to have the cen-

ter frequency ω◦ = π/2 and bandwidth parameter � =
π/16. For the passband ω ∈[π/2−π/16,π/2+π/16], we
use the bandpass Butterworth filter that meetsHW [ ejω]≈
1 for ω ∈[ω◦ −�,ω◦ +�], and |HW [ ejω] | is small enough

outside the passband to let most of the noise be outside
the passband. For the conventional design [6], OSR is set
to be 16.
As illustrated in Fig. 9 the H2 norm of HW [z]R[z] for

H2 norm-based design converges slowly compared to the
previous examples. A longer order is required to adjust
to the sixth-order bandpass Butterworth filter. Thus, the
order of proposed FIR feedback filters R[z] is chosen to be
40. The order of FIR feedback filter in [11] is also set to
be 40. For the conventional bandpass �� modulator [6],
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Table 3 ||HW [z] R[z] ||2, ||HW [z] R[z] ||∞ , and l1 norms of the
impulse response of HW [z] R[z] for the sixth-order bandpass
weighting function

H2 norm H∞ norm l1 norm

H2 norm design 5.08 × 10−2 1.385 × 10−1 2.094 × 10−1

H∞ norm design 5.38 × 10−2 1.277 × 10−1 1.916 × 10−1

l1 norm design 6.08 × 10−2 1.833 × 10−1 1.858 × 10−1

Nagahara design [11] 5.45 × 10−2 1.408 × 10−1 2.222 × 10−1

Conventional design [6] 10.19 × 10−2 4.253 × 10−1 5.461 × 10−1

the order of the IIR feedback filter is 4, whereas the center
frequency is f◦ = 1/4.
We compare the frequency responses of our proposed

FIR feedback filters for the bandpass �� modulator with
the referenced designs in [6] and [11]. Figure 10 shows that
the magnitude responses of proposed H2 and H∞ design
FIR filters have higher attenuation levels as compared
to the method proposed in [11]. Again, the magnitude
responses of our proposed design filters are uniformly
attenuated over the passband, while the conventional
design shows a peak near the edges of the band which can
be observed in Fig. 11.
Table 3 gives the H2 norm, the H∞ norm, and the

l1 norm of the impulse response of HW [z]R[z] for our
designed FIR filters compared with the referenced designs
in [6] and [11]. Again, our proposed H2, H∞, and l1
norm designs have the least H2, H∞, and l1 norms,
respectively.

4.4 Stability under the l∞ norm constraint on the
weighted quantization noise

Here, to obtain the most stable error feedback filter for a
lowpass �� modulator, we minimize (43) under the l∞
norm constraint on the weighted quantization noise such
that ||ε||∞ = 1.96 × 10−2. We use the same first-order
Butterworth filter in Section 4.1.
The minimum magnitude value of the in-band quanti-

zation noise is−34.2 dB. The obtained upper bound of the
Lee criterion is γ = 1.92, which is equivalent to 5.7dB. It
is larger than 1.5 used in the l1 norm design in Table 1,
since we impose a slight tighter constraint on the ||ε||∞ =
1.96 × 10−2 than 2.59 × 10−2 in Table 1. The frequency
response of the designed feedback filter is illustrated in
Fig. 12.

5 Conclusions
We have proposed a design method of the FIR noise
shaping filters of �� modulators based on H2, H∞,
and l1 norms. The minimization of the norm of the
weighted quantization error is cast into a convex opti-
mization problem by using LMIs, which can be efficiently
and numerically solved. To ensure the stability of a ��

modulator, we have also included LMI constraints which
subsumes the Lee criterion. Our results show that the fre-
quency response of our filters exhibits good performance
throughout the low-frequency region providing uniform
attenuation and matching the weighting function. Also,
our proposed H2, H∞, and l1 norm designed error feed-
back filters are shown to provide us with minimum H2,
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H∞, and l1 norms of the weighted quantization error,
respectively, which shows the effectiveness of our pro-
posed design method.
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