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Abstract

A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion
artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed
points for the seeded region-growing algorithm. A new and robust region-growing algorithm incorporating with
Fuzzy C-means (FCM) clustering and vesselness filter is proposed to segment any potential lesion regions.
Subsequently, the false positive detections are reduced by applying a discrimination step. This is based on 3D
morphological characteristics of the potential lesion regions and kinetic features which are fed to the support
vector machine (SVM) classifier. The performance of the proposed CAD system is evaluated using the free-response
operating characteristic (FROC) curve. We introduce our collected dataset that includes 76 DCE-MRI studies, 63
malignant and 107 benign lesions. The prepared dataset has been used to verify the accuracy of the proposed CAD
system. At 5.29 false positives per case, the CAD system accurately detects 94% of the breast lesions.
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1 Introduction
Breast cancer is the most frequent type of cancer and
the second leading cause of cancer deaths among
women worldwide [1]. Dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) is an established
medical imaging technique in screening, diagnosis, and
staging of breast cancer. MRI produces cross-sectional
images of a breast with higher sensitivity compared to
mammography and ultrasound. Additionally, this im-
aging modality does not use ionizing radiation as op-
posed to X-ray mammography [2, 3]. However,
interpretation of 4D DCE data is needed to analyze
breast MRI. Evaluation of the enormous amount of im-
ages for each patient is a time-consuming process, and it
depends on a radiologist’s expertise and experience [4].
Moreover, some important details which could affect the

final diagnosis may be missed. Computer-aided detection
(CAD) systems are introduced to help the radiologist for
analyzing biomedical data [5–7]. A breast MRI CAD sys-
tem that marks suspicious locations of a breast can avoid
overlooked or misinterpreted lesions and reduce the
analysis time.
A limited number of studies deal with the automatic

detection of lesions in breast DCE-MRI. The method de-
veloped by Ertas et al. [8] segments breast regions using
a cellular neural network and detects lesions by per-
forming 3D template matching on the normalized max-
imum intensity–time ratio maps. Renz et al. [9] suggest
applying a hierarchical 3D Gaussian pyramid method to
segment breast lesions. Vignati et al. [10] discover breast
lesions using a normalization technique based on the
contrast-uptake of mammary vessels. Chang et al. [11]
utilize kinetic and 3D morphological features to spot
focal tumor breast lesions.
All of the mentioned studies report the detection rate

only for mass-like lesions without considering non-
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mass-like enhancing lesions. According to the BI-RADS
breast MRI lexicon [12], a mass is a 3D space-occupying
lesion. Comparatively, the enhancement of an area that
is not a mass refers to a non-mass-like enhancing lesion.
The detection of non-mass-like enhancing lesions is a
vital issue, because a large number of breast lesions have
non-mass-like enhancement. It is shown that 20–30% of
all invasive lesions and majority of the DCIS lesions are
non-mass-like enhancement [13]. To date, only Gubern-
Mérida et al. [14] offer an automated approach for local-
izing both mass and non-mass-like enhancing lesions in
breast DCE-MRI. In their method, lesion candidates are
located based on the blob and relative enhancement
voxel features. Then, the region-based morphological
and kinetic features are utilized to identify the malig-
nancy score of lesion candidates. They only report ma-
lignant lesions as a result of their CAD system.
The target of this study is to implement an automated

CAD system for detecting both benign and malignant
breast lesions with mass-like or non-mass-like enhance-
ment in DCE-MRI. A new and robust seeded region-
growing algorithm based on the vesselness filter and
Fuzzy C-means (FCM) clustering method is proposed
for the segmentation of any potential lesion regions.
This is the first time that FCM clustering and vesselness
filter are incorporated in the seeded region-growing al-
gorithm. The proposed method begins by correcting
motion artifact and segmenting breast region. Subse-
quently, the voxels that might belong to breast lesions
are segmented out and taken as initial seed points of the
region-growing algorithm. Finally, the spurious candi-
date regions are removed by 3D morphological charac-
teristics and kinetic features. Free-response operating
characteristic (FROC) curve is utilized to evaluate the
performance of the presented CAD system with the
prepared database of manually annotated benign and
malignant lesions which include both mass-like and
non-mass-like enhancement. This paper is arranged into
the following sections. In Section 2, the clinical breast
MRI scans used in our research are introduced. After
explaining the proposed CAD system in Section 3, the
experimental results are discussed in Section 4. Finally,
the conclusions of the research outcomes are presented
in Section 5.

2 Breast MRI database
The breast MRI scans from 76 women, with ages be-
tween 25 and 69 years and average of 48, are used in this
study to verify the accuracy of the proposed CAD sys-
tem. The cases are collected from Noor medical imaging
center in Tehran between January 2012 and January
2016. Because of questionable abnormalities in previous
mammogram and/or ultrasound, these women undergo
breast MRI. Ethics approval is obtained from the

Institutional Review Board, and informed consent is
waived. Breast MRI scanning process is performed in the
prone position with a dedicated four-channel breast coil
(CP breast Array, Siemens) on a 1.5 Tesla Siemens scan-
ner (Magnetom, Simphony). The axial T1-weighted
breast volumes are acquired by a 3D fast low angle shot
(FLASH) pulse sequence. The clinical imaging parame-
ters are as follows: matrix size = 320 × 320 or 448 × 448
or 512 × 512, field of view = 370–430 mm, flip angle =
14°, repetition time (TR) = 4.7 ms, echo time (TE) =
1.5 ms, and slice thickness = 2–2.8 mm. Fifty-six axial
slices are utilized to cover the entire breast. The DCE-
MRI data sets are acquired before and after a bolus in-
jection of 0.1 mmol/kg of contrast agent (Gd-DTPA)
with an interval of 75 s. The first sequence is taken be-
fore an intravenous agent injection followed by five
post-contrast series.
The prepared dataset includes 107 benign and 63 ma-

lignant lesions which are confirmed by histopathological
examinations or supported by clinical follow-up. From a
total number of lesions included in this study, 125 le-
sions have mass-like enhancement and 45 lesions have
non-mass-like enhancement. For our dataset, the lesion
radius ranges from 2.50 to 37.18 mm with an average of
12.25 mm and standard deviation of 9.75 mm. The be-
nign lesions are 51 fibrocystic changes, 35 papillomas,
and 21 fibroadenomas. The malignant lesions contain 35
invasive ductal carcinomas (IDC), 19 ductal carcinoma
in situ (DCIS), and 9 invasive lobular carcinomas (ILC).
An expert radiologist, with more than 5 years of experi-
ence in breast DCE-MRI examination and diagnosis,
retrospectively annotates the lesions in a dedicated
breast DCE-MRI annotation environment [15]. The re-
ports are the basis for identifying size, location, and
mass-like or non-mass-like enhancement of the lesions.
The lesion segmentation process is manually performed
on the subtraction volume which is generated by sub-
tracting the image intensities of the first post-contrast
sequence from the pre-contrast sequence. The prepared
dataset (IUST-BREASTMRI-DATASET1) is available in
our website: http://een.iust.ac.ir/profs/Shokouhi/IUST-
BREASTMRI-DATABASE.

3 Methodology
The block diagram of the proposed CAD system for the
automatic detection of breast lesions in DCE-MRI is
presented in Fig. 1. As the first processing steps, motion
artifacts are corrected and the breast region is seg-
mented. Then, the potential lesion voxels are detected
and utilized as the initial seed points for region-growing
algorithm. Subsequently, the region-growing method
based on FCM clustering algorithm and vesselness filter
segments the potential lesion regions. Eventually, a dis-
crimination step is used by relying on the morphological
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and kinetic features as inputs to the support vector ma-
chine (SVM) classifier to reduce false positives detec-
tions. The processing steps are sequentially explained in
the following subsections.

3.1 Motion correction
Respiration, cardiac motion, muscle relaxation, and invol-
untary movements of a patient cause motion artifacts
which are inevitable due to relatively long acquisition
period of breast DCE-MRI. Motion artifacts can influence
the lesion kinetic characteristics and also increase false
positive findings by generating spurious enhancing voxels.
In this research, motion correction is performed by regis-
tering all five post-contrast sequences to the pre-contrast
sequence. The registration step contains a rigid transform-
ation followed by a non-rigid B-Spline transformation [16]
based on mutual information similarity measure [17]. The
rigid transformation which contains translation and rota-
tion provides global alignment of two images. Likewise,
the local differences between the images are minimized by
non-rigid transformation. For rigid registration, 1000 iter-
ations of the stochastic gradient descent optimizer have
been performed. For non-rigid B-spline registration, three
resolutions and 64 histogram bins have been utilized and
the gradient descent optimization algorithm is applied in
each resolution performing 200 iterations. The registration
process has been implemented using medical image regis-
tration toolbox (MIRT) [18]. The influence of motion
correction for a sample subtracted image at the fifth post-
contrast time point is presented in Fig. 2.

3.2 Breast region segmentation
Breast region segmentation is automatically performed
to decrease the computational burden and avoid false
positive findings due to enhancing tissues of the heart
and vessels outside of the breast. The segmentation

procedure in [19] is applied to extract the breast region.
The breast segmentation pipeline consists of four con-
secutive stages: local adaptive thresholding, connected
component labeling operation to exclude the extra re-
gions in the binary image, horizontal projection to delin-
eate the breast region, and both hole-filling and
morphological closing operators to eliminate the discon-
tinuities in the breast region. The breast segmentation
approach has been applied on nonfat-suppressed images
due to high signal intensity of fat tissue that makes a
high contrast between adjacent regions. Hence, the
breast boundary is detected by applying a prior registra-
tion and then translating the obtained breast masks in
nonfat-suppressed images to the subtracted images.
Figure 3 shows breast region segmentation method using
sample images. The breast region is firstly detected on
the nonfat-suppressed image, and then, the obtained
breast mask is translated to the subtracted image by ap-
plying the registration method.

3.3 Detection of potential lesion voxels
The next step is to segment out the voxels that might
belong to the breast lesions. Following injection of con-
trast agent, enhancement of signal intensity occurs in all
breast lesions except in cysts. Therefore, the enhancing
voxels in post-contrast sequences are dubious to be a
part of breast lesions. For detecting potential lesion vox-
els, the maximum enhancement ratio is utilized using
the following equation [8]:

ME x; y; zð Þ ¼ max
It x; y; zð Þ−I0 x; y; zð Þ

I0 x; y; zð Þ ; t ¼ 1; 2;⋯; 5

� �
;

ð1Þ

where I0 and It are the intensity values on pre-contrast
and t th post-contrast sequences, respectively, and (x, y, z)
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Fig. 1 Block diagram of the proposed CAD system for detection of breast lesions in DCE-MRI

Fig. 2 The influence of motion correction. Subtracted images for a patient with an oval benign lesion in the left breast at the fifth post-contrast
time point a before and b after applying motion correction step
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is related to a voxel location. Afterwards, the max-
imum enhancement ratio is convolved with a
Gaussian smoothing filter at 10 exponentially distrib-
uted scales between 0 and 10 mm. Because of the
various sizes of the breast lesions, different scales are
computed and the highest response is chosen for each
voxel. Eventually, local maxima of voxel values are
found based on a spherical kernel with a radius of
10 mm. The achieved points are potential lesion vox-
els which are utilized to detect breast lesions. How-
ever, the signal intensity of voxels in the blood
vessels, noise, skin, and fibroglandular tissues can be
similar to those of the lesion voxels. Hence, some of
the detected potential lesion voxels do not belong to
the lesions. In order to remove these false detections,
a combination of FCM clustering and vesselness filter
has been used.
FCM clustering technique is utilized to partition the

voxels based on the signal intensity variation over time
(one pre-contrast and five post-contrast time points)
into two categories: lesion and non-lesion. Signal inten-
sity variation over time is one of the tissue characteris-
tics which is widely used for the segmentation and
classification of breast lesions [20, 21]. Figure 4 presents
signal intensity variation over time for some randomly
chosen voxels which belong to different lesion and non-
lesion tissues. As shown in this figure, the signal inten-
sity variations of voxels in the lesion and non-lesion
tissues have different characteristics. Each voxel is repre-
sented using signal intensity variation over time as writ-
ten here,

X ¼ xi; i ¼ 1; 2;⋯;N jxi ¼ Ii0; Ii1;⋯; Ii;T−1
� �� �

;

ð2Þ

where xi represents the data vector for the ith voxel, N is
the number of voxels, Iit t ¼ 0; 1;⋯;T � 1ð Þis the inten-
sity value of the i th voxel at time point t , and T is the
number of time points (T ¼ 6). FCM clustering process
is performed based on minimization of the objective
function by iteratively updating the membership func-
tions and the cluster centers. The objective function,

cluster centers, and membership functions are defined
here [22]:

F ¼
XN

i¼1

Xw

k¼1
μmki ∥xi−vk∥2 ð3Þ

vk ¼
XN

i¼1
μmkixiXN

i¼1
μmki

; k ¼ 1; 2;⋯;w;

ð4Þ

μki ¼
1

Xw

j¼1
xi−vkk k
xi−vjk k

� 	 2
m−1

; k ¼ 1; 2;⋯;w; i ¼ 1; 2;⋯;N :

ð5Þ
where m∈ 1;∞½ Þ and controls the fuzziness of the cluster-
ing results, w is the number of clusters, vk is the center
of the kth cluster, and μki is the membership values of ith

voxel to kth cluster which continuously ranges from 0 to
1. Utilizing the class membership values of voxels, two
membership matrices are created (μlesion and μnonlesion ).
In Fig. 5, the lesion membership matrices are shown for
two sample images. Each entry in this matrix represents

Fig. 3 Demonstration of the breast region segmentation method using sample images. a Nonfat-suppressed image. b Breast segmentation from
a. c The subtracted image at the first post-contrast time point and d breast segmentation from c

Fig. 4 Comparison of signal intensity variation over time in lesion and
non-lesion tissues. Blue and red curves present signal intensity variation
over time (one pre-contrast and five post-contrast time points) for
twenty voxels which belong to different lesion and non-lesion
tissues, respectively
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the degree of similarity between corresponding voxel
and lesion tissue. By thresholding the lesion membership
matrix, spurious candidate voxels which may belong to
noise or normal breast tissues are eliminated. As it can
be observed from this figure, the vessels show contrast
enhancement similar to the breast lesions. It means that
the FCM clustering places the voxels which belong to
the mammary vessels and breast lesions in one cluster.
Thus, the potential lesion voxels which belong to the
vessels should be detected and eliminated to reduce false
positive detections.
To identify mammary vessels, we apply Hessian-based

filter introduced by Frangi et al. [23] which is one of the
most well-known vesselness filters. In the scale space, the
second-order derivative of an image I0 pð Þ ¼ I0 x; y; zð Þ is
called Hessian matrix and can be obtained by Eq. 6:

Hσ pð Þ ¼

∂2Iσ x; y; zð Þ
∂x2

∂2Iσ x; y; zð Þ
∂x∂y

∂2Iσ x; y; zð Þ
∂x∂z

∂2Iσ x; y; zð Þ
∂y∂x

∂2Iσ x; y; zð Þ
∂y2

∂2Iσ x; y; zð Þ
∂y∂z

∂2Iσ x; y; zð Þ
∂z∂x

∂2Iσ x; y; zð Þ
∂z∂y

∂2Iσ x; y; zð Þ
∂z2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð6Þ

where p ¼ x; y; zð Þ is a voxel location and Iσ is a blurred
image at a certain scale defined as:

Iσ pð Þ ¼ Iσ x; y; zð Þ ¼ I0 x; y; zð Þ⊗Gσ x; y; zð Þ ð7Þ
where ⨂ is the convolution operator and Gσ x; y; zð Þ is
the 3D Gaussian kernel defined as follows:

Gσ pð Þ ¼ Gσ x; y; zð Þ
¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp−

x2 þ y2 þ z2ð Þ
2σ2

ð8Þ

where σ is the standard deviation and has to be set ac-
cording to the approximate width of the vessels. Eigen-
values of the Hessian matrix present a good geometric
interpretation of the image; hence, they are used to de-
tect different structures. In our approach, the eigen-
values of the Hessian matrix are sorted as:
λ1j j < λ2j j < λ3j j and according to Eqs. 6–8, they depend
on the voxel location and standard deviation. Frangi et
al. [23] notify that a voxel belonging to a white vessel on
a black background is given by small λ1 and high nega-
tive values of λ2 andλ3 . The vesselness function is de-
fined here [23] as follows:

vo p; σð Þ ¼

0

1− exp −
R2
A

2α2

� �� �
exp −

R2
B

2β2

� �

� 1− exp −
s2

2c2

� �� �
if λ2 > 0 or λ3 > 0

otherwise;

8>>>><
>>>>:

ð9Þ

Fig. 5 The clustering results from the FCM method. The first column includes the subtracted image and its threshold at the first post-contrast
time point, and the second column provides the lesion membership matrix obtained by FCM clustering. Mammary vessels (arrows) and breast
lesions have similar intensity
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where α and β are fixed to 0.5 and c is the half of the
maximum Hessian norm. Moreover, RA , RB , and s are
given as follows:

RA ¼ λ2j j
λ3j j

; RB ¼ λ1j jffiffiffiffiffiffiffiffiffiffiffiffi
λ2λ3j jp ; s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ λ22 þ λ23

q
: ð10Þ

The term RA distinguishes between plate-like and
tubular-like structures, RB describes the deviation from a
blob-like structure, and s represents the difference be-
tween vessel and background. Due to different diameters
of mammary vessels, the vesselness filter is applied at six
exponentially distributed scales between the maximum
and minimum scales which are σmin ¼ 0:5 and σmax ¼ 1
and the highest value is chosen for each voxel.

vo pð Þ ¼ maxσmin≤σ≤σmaxvo p; σð Þ: ð11Þ

Vessel detection is performed on the subtracted im-
ages at the first post-contrast time point due to the max-
imum contrast enhancement of vessels in the early
frames. The obtained result from the vesselness filter for
a sample image is presented in Fig. 6. The value of each
entry in the response matrix ranges from 0 to 1 and
demonstrates the degree of similarity of each voxel to
the vessel.
Lesion membership matrix obtained by the FCM al-

gorithm and the response of the vesselness filter are
then thresholded to eliminate the false positive detec-
tions in the potential lesion voxel set. The threshold
level is chosen equal to 0.5 for both the lesion mem-
bership matrix and response of the vesselness filter.
Lesion membership matrix is now converted to a bin-
ary image which shows normal voxels in black and le-
sion voxels in white. Also, a binary image is

generated for response of the vesselness filter which
shows non-vessel voxels in black and mammary vessel
voxels in white. Consequently, the voxels with label
one from the thresholded lesion membership matrix
and label zero from the thresholded response of the
vesselness filter are selected as the final potential le-
sion voxels.

3.4 Detection of potential lesion regions
In the previous processing step, the potential lesion vox-
els are segmented out using a combination of the max-
imum enhancement ratio, vesselness filter, and FCM
clustering. The obtained potential lesion voxels are used
as the seed points for the seeded region-growing algo-
rithm to segment the potential lesion regions. The
seeded region-growing algorithm is used because it is
simple and robust [24]. The seeded region-growing algo-
rithm starts with an initial seed voxel and tries to com-
pare its neighborhood voxels with this seed according to
a specific homogeneity criterion and then enlarges the
size of the region iteratively. If the neighboring voxel sat-
isfies the homogeneity criterion, it will be joined to the
segmented region. Twenty-six neighbors of the new
voxel are tested according to the homogeneity criterion,
and then, this process will be continued in the same
way. The initial seed voxel and homogeneity criterion
are usually selected manually [25]. In this study, an auto-
mated version of the seeded region-growing algorithm is
performed for choosing the parameters. The detected
potential lesion voxels are considered as the initial seed
voxels, and the attributes which are used to select the
potential lesion voxels are considered as the growth cri-
teria of the seeded region-growing algorithm. The neigh-
borhood voxels with label one from the thresholded
lesion membership matrix and label zero from the

Table 1 The result of detection rate, false positives, and number of undetected lesions according to the different threshold values

Threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Detection rate 0.98 0.95 0.94 0.92 0.89 0.86 0.81 0.74 0.59 0.52 0

False positives per case 13 5.91 5.29 4.41 3.53 2.80 2.20 1.40 0.72 0.37 0

Number of undetected lesions 3 8 10 13 18 23 32 44 69 81 170

Fig. 6 Result from the vesselness filter. a The subtracted image at the first post-contrast time point. b Lesion membership matrix obtained by
FCM clustering. c Response of the vesselness filter
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thresholded response of the vesselness filter are consid-
ered to be in the potential lesion region.

3.5 False positive reduction
Despite the elimination of spurious candidate voxels in
Section 3.3, the potential lesion regions are not only
breast lesions and there are still some false positive find-
ings. The existence of these false detections can effect
on the performance of the CAD system. In order to re-
duce false positive detections, a discrimination step is
used to determine whether a potential lesion region is a
true lesion or a false positive detection. This is achieved
by classifying the potential lesion regions into two clas-
ses, lesion and normal breast tissue, based on the mor-
phological and kinetic features as inputs to the SVM

classifier. The main reason for choosing SVM classifier
is its high generalization ability, robustness to outliers,
and absence of local minima [26].
For classifying the potential lesion regions, morpho-

logical and kinetic features are calculated after applying
the 3D-connected component algorithm [27, 28] on the
potential lesion regions. Morphological features consist
of volume, compactness, radius, and spiculation. Lesion
volume is utilized to decrease false positive detections,
since the majority of the false positive findings have the
smaller volumes with respect to the lesions. Compact-
ness describes the correlation between the surface and
volume of the segmented regions. Radius and spiculation
measure variations of the margins in the segmented re-
gions. More details about the morphological features are
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Fig. 8 Comparison of the FROC curves obtained from the proposed CAD with and without breast segmentation process

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives per case

D
et

ec
ti

on
 r

at
e

Proposed CAD

Proposed CAD without motion correction

Fig. 7 Comparison of FROC curves for breast lesion detection with and without motion correction
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described in [21, 29]. To characterize the kinetic fea-
tures, maximum enhancement (ME), time to peak (TP),
uptake rate (UR), washout rate (WR), and area under
the curve are extracted from the time-intensity curve of
each voxel. These kinetic features are computed accord-
ing to the relative signal enhancement [14]:

Rt ¼ It−I0
I0

ð12Þ

For each voxel in the potential lesion region, ME, TP,
UR, and WR are defined here [14, 21] as follows:

ME ¼ maxt¼1;⋯;5 Rtð Þ; ð13Þ

TP ¼ arg maxt Rtð Þ ð14Þ

UR ¼ ME
TP

; ð15Þ

WR ¼
RTP−R5

5−TP if TP≠5;
0 if TP ¼ 5:

�
ð16Þ

For each potential lesion region, 19 features are totally
extracted which contain kinetic parameters for seed
point of the segmented region, the average and standard
deviation of the kinetic parameters for the entire voxels
in the segmented region, and four morphological fea-
tures. Each potential lesion region is classified by feeding
its feature vector as the input to the SVM classifier.
More details about the SVM is available in [26].
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Fig. 10 The performance of the proposed CAD system for benign and malignant lesions
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4 Results and discussion
In this study, 76 cases are utilized to evaluate the per-
formance of the proposed CAD system. A fivefold cross-
validation is performed to achieve unbiased detection re-
sults. The number of lesions is approximately considered
similar for all folds. The SVM classifier distinguishes
true lesion region from the false one in the false positive
reduction stage. In order to find an optimal configur-
ation for the classifier, we investigate linear SVM and
nonlinear SVM with polynomial and RBF kernels with
different parameters [26]. The parameters that should be
set for the classifier are cost C , polynomial degree d ,
and kernel scale γ . Cost C ranges between 2�i and 2i ,i
¼ 0; 5; 10½ �. Kernel scale γ ranges between 2�i and 2i , i
¼ 0; 5; 10½ �. In addition, polynomial degree d varies be-
tween 1 and 5. We have experimentally found that the
highest averaged accuracy can be achieved using the
RBF kernel with c ¼ 210 and γ ¼ 2�5.
Two quality metrics, the detection rate and false posi-

tive per case, have been used to evaluate the results of
the lesion detection process. Detection rate is the num-
ber of true positive detections divided by the total num-
ber of lesions, and false positive rate per case is the

number of false positive detections divided by the total
number of cases. A plot of detection rate vs. false posi-
tive rate per case, by changing the decision threshold,
provides the FROC curve [30]. In the false positive re-
duction step, SVM assigns a probability value to each
potential lesion region. If the assigned probability value
is larger than or equal to the threshold value, the poten-
tial lesion region is classified as a true lesion region. By
changing the threshold level between 0 and 1 with a step
of 0.1, FROC curves can be generated. Table 1 shows the
obtained values of detection rate, false positives per case,
and number of undetected lesions according to the dif-
ferent threshold values.
The influence of the motion correction process on the

performance of the proposed CAD system is investigated
primarily. Figure 7 shows the FROC curves obtained for
breast lesion detection with and without applying mo-
tion correction. As it can be observed from Fig. 7, the
motion correction process offers a better performance
for detecting breast lesions.
In the proposed CAD system, the breast region is

automatically segmented to avoid false detections caused
by enhancing tissues of the heart and vessels outside of

Fig. 12 False positive detections on the subtracted images for four different normal cases. a-c Three normal cases without breast lesions, there
are contrast enhancement in fibroglandular tissues because of injection of contrast agent, and d a normal case without breast lesion, there is
contrast enhancement in the nipple because of injection of contrast agent. The squared markers refer to the potential lesion voxels obtained by
the presented method. Due to small diameter of false positive detections, the connected component boundaries are shown very unnoticeable.
For such cases, only the region that the potential legion voxels are located, are demonstratd on the figures

Fig. 11 Detected benign and malignant lesions by the proposed CAD system. a, b Benign lesions. c–d Malignant lesions on the subtracted
images at the first post-contrast time point. The squared markers refer to the potential lesion voxels obtained by the presented method. These
potential lesion voxels are the seed points for the region growing algorithm. The connected component boundaries of the legions are
properly delineated
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the tested breast. Figure 8 shows FROC curves obtained
from the proposed CAD with and without the breast
segmentation step. The breast segmentation process im-
proves the performance of the CAD system by reducing
false positive detections.
An accurate segmentation of the potential lesion re-

gions plays an important role in a CAD system because
it influences the values of the extracted features and ac-
curacy of the classifier to reduce false positive findings.
In this work, we introduce the seeded region-growing al-
gorithm where the initial seed point and homogeneity
criterion are selected based on the FCM and vesselness
filter. The performance of the proposed CAD system is
evaluated using different criteria for the seeded region-
growing algorithm. The proposed seeded region-growing
algorithm is compared with different region-growing al-
gorithms with and without vesselness filter and applying
only FCM. FROC curves obtained from different region-
growing algorithms are shown in Fig. 9. It is clear that
the proposed region-growing algorithm based on vessel-
ness filter and FCM provides higher detection rates at
the lower false positives per case in comparison with
other region-growing algorithms.
Figure 10 illustrates FROC curves obtained for ma-

lignant, benign, and all lesions. The presented CAD
system has better performance for detecting malig-
nant lesions. Due to similar features of benign lesions
and some normal tissues such as vessels, fibroglandu-
lar, and skin, distinguishing benign lesions is a chal-
lenging process. Some examples of benign and
malignant lesions detected by the proposed CAD sys-
tem are shown in Fig. 11. Also, some selected sam-
ples of the false positive detections in normal cases
are shown in Fig. 12.
To date, only a few studies have investigated auto-

matic detection of breast lesions in DCE-MRI. Table 2
summarizes the accuracy for the proposed CAD sys-
tem in comparison with other related works. It is
worth mentioning that their own datasets have been
employed for the evaluation procedures. Ertas et al.
[8] obtain higher performance metric values than
others reported in the literature. However, their ap-
proach is validated on a smaller number of cases
compared to other studies. Gubern-Mérida et al. [14]

validate their method on 209 MRI cases, which is lar-
ger than the other datasets. However, the mentioned
dataset does not include benign lesions while the dis-
crimination of benign lesions from the normal breast
tissues is one of the challenging issues in a CAD sys-
tem. Among the mentioned studies, only Gubern-
Mérida et al. [14] and Chang et al. [11] present their
results based on FROC analysis. Vignati et al. [10]
and Renz et al. [9] do not evaluate the performance
of their methods on non-mass-like enhancement le-
sions. Chang et al. [11] and Ertas et al. [8] do not
clearly express whether their evaluations are per-
formed on non-mass-like lesions.

5 Conclusions
In this paper, a CAD system is proposed for detecting
breast lesions in DCE-MRI. The contribution of the
CAD system is to detect potential lesion regions using a
region-growing algorithm with new criteria based on
FCM clustering and vesselness filter. Moreover, 3D mor-
phological characteristics and kinetic features are uti-
lized to eliminate the spurious candidate regions. The
proposed algorithm is applied to the prepared dataset
(IUST-BREASTMRI-1) with and without motion correc-
tion. Additionally, the effect of using the breast segmen-
tation algorithm is investigated. The qualitative and
quantitative results indicate that the performance of our
CAD system has been improved significantly by applying
the motion correction and breast segmentation steps.
Future research will aim at improving the performance
of the proposed CAD system by reducing false positives
findings and increasing the ability of approach to separ-
ate benign lesions and normal breast tissues.
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Table 2 Performance comparison between the proposed CAD system and available methods

Methods Detection rate False positive detections Database

Ertas et al. [8] 1 0.64/case 19 case (19 benign and 20 malignant lesions)

Vignati et al. [10] 0.89 4/breast 48 cases (12 benign and 53 malignant lesions)

Renz et al. [9] 0.96 0.16/case 108 cases (53 benign and 88 malignant lesions)

Chang et al. [11] 0.93 6.15/case 54 cases (28 benign and 67 malignant lesions)

Gubern-Mérida et al. [14] 0.89 4/normal case 95 cases (105 malignant lesions and 114 normal cases)

The Proposed method 0.94 5.29/case 76 cases (107 benign and 63 malignant lesions)

B. Shokouhi et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:39 Page 10 of 11



Author details
1School of Electrical Engineering, Iran University of Science and Technology
(IUST), Tehran, Iran. 2Advanced Diagnostic & Interventional Radiology
Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.

Received: 24 October 2016 Accepted: 12 May 2017

References
1. American Cancer Society, Breast Cancer Facts & Figures 2013–2014. (Atlanta,

2013)
2. D Saslow, C Boetes, W Burke, S Harms, MO Leach, CD Lehman, EA Morris, E

Pisano, M Schnall, S Sener, RA Smith, E Warner, M Yaffe, KS Andrews, CA
Russell, American Cancer Society Guidelines for breast screening with MRI
as an adjunct to mammography. CA-Cancer J. Clin. 57, 75–89 (2007)

3. EA Morris, L Liberman, Breast MRI: Diagnosis and Intervention (Springer-
Verlag, New York, 2005)

4. A Fausto, A Magaldi, B Babaei Paskeh, L Menicagli, EN Lupo, F Sardanelli, MR
imaging and proton spectroscopy of the breast: how to select the images
useful to convey the diagnostic message. Radiol Med 112, 1060–1068 (2007)

5. S Behrens, H Laue, M Althaus, T Bohler, B Kuemmerlen, HK Hahn, HO
Peitgen, Computer assistance for MR based diagnosis of breast cancer:
present and future challenges. Comput. Med. Imag. Graph. 31, 236–247 (2007)

6. S Kligerman, L Cai, CS White, The effect of computer-aided detection on
radiologist performance in the detection of lung cancers previously missed
on a chest radiograph. J. Thorac. Imag. 28, 244–252 (2013)

7. LJW Burhenne, SA Wood, CJ D’Orsi, SA Feig, DB Kopans, KF O’Shaughnessy,
EA Sickles, L Tabar, CJ Vyborny, RA Castellino, Potential contribution of
computer-aided detection to the sensitivity of screening mammography.
Radiology 215, 554–562 (2000)

8. G Ertas, HO Gulcur, O Osman, ON Ucan, M Tunaci, M Dursun, Breast MR
segmentation and lesion detection with cellular neural networks and 3D
template matching. Comput. Biol. Med. 38, 116–126 (2008)

9. DM Renz, J Böttcher, F Diekmann, A Poellinger, MH Maurer, A Pfeil, F
Streitparth, F Collettini, U Bick, B Hamm, EM Fallenberg, Detection and
classification of contrast-enhancing masses by a fully automatic computer-
assisted diagnosis system for breast MRI. J. Magn. Reson. Imaging 35, 1077–
1088 (2012)

10. A Vignati, V Giannini, M De Luca, L Morra, D Persano, LA Carbonaro, I
Bertotto, L Martincich, D Regge, A Bert, F Sardanelli, Performance of a fully
automatic lesion detection system for breast DCE-MRI. J. Magn. Reson.
Imaging. 34, 1341–1351 (2011)

11. YC Chang, YH Huang, CS Huang, JH Chen, RF Chang, Computerized breast
lesions detection using kinetic and morphologic analysis for dynamic
contrast-enhanced MRI. Magn. Reson. Imaging. 32, 514–522 (2014)

12. EA Morris, CE Comstock, CH Lee, ACR BI-RADS magnetic resonance imaging,
in ACR BI-RADS Atlas: Breast Imaging Reporting and Data System (American
College of Radiology, Reston, 2013)

13. RM Mann, J Veltman, H Huisman, C Boetes, Comparison of enhancement
characteristics between invasive lobular carcinoma and invasive ductal
carcinoma. J. Magn. Reson. Imaging 34, 293–300 (2011)

14. A Gubern-Mérida, R Martí, J Melendez, JL Hauth, RM Mann, N Karssemeijer,
B Platel, Automated localization of breast cancer in DCE-MRI. Med. Image
Anal. 20, 265–274 (2015)

15. PA Yushkevich, J Piven, HC Hazlett, RG Smith, S Ho, JC Gee, G Gerig, User-
guided 3D active contour segmentation of anatomical structures: significantly
improved efficiency and reliability. Neuroimage. 31, 1116–1128 (2006)

16. D Rueckert, LI Sonoda, C Hayes, DLG Hill, MO Leach, DJ Hawkes, Nonrigid
registration using free-form deformations: application to breast MR images.
IEEE Trans. Image Process. 18, 712–721 (1999)

17. P Viola, WM Wells, Alignment by maximization of mutual information. Int. J.
Comput. Vision. 24, 137–154 (1997)

18. A Myronenko, X Song, Intensity-based image registration by minimizing
residual complexity. IEEE Trans. Med. Imaging. 29, 1882–1891 (2010)

19. A Fooladivanda, SB Shokouhi, N Ahmadinejad, MR Mosavi, Automatic
Segmentation of Breast and Fibroglandular Tissue in Breast MRI using Local
Adaptive Thresholding. Paper presented at the 21th Iranian Conference on
Biomedical Engineering (ICBME 2014), Amirkabir University of Technology
(Tehran Polytechnic), Tehran, Iran, 26-28 Nov 2014.

20. W Chen, ML Giger, U Bick, A fuzzy C-means (FCM) based approach for
computerized segmentation of breast lesions in dynamic contrast-enhanced
MR images. Acad. Radiol. 13, 63–72 (2006)

21. WJ Chen, ML Giger, U Bick, GM Newstead, Automatic identification and
classification of characteristic kinetic curves of breast lesions on DCE-MRI.
Med. Phys 33, 2878–2887 (2006)

22. JC Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithm
(Plenum Press, New York, 1981)

23. AF Frangi, WJ Niessen, KL Vincken, MA Viergever, Multiscale vessel
enhancement filtering, in Medical Image Computing and Computer-
Assisted Intervention (MICCAI'98), ed. by WM Wells, A Colchester, SL Delp.
Lecture Notes in Computer Science, vol. 1496 (Springer Verlag, Berlin, 1998),
pp. 130-137.

24. R Adams, L Bischof, Seeded region growing. IEEE Trans. Pattern Anal.
Machine Intell. 16, 641–647 (1994)

25. LA Meinel, AH Stolpen, KS Berbaum, LL Fajardo, JM Reinhardt, Breast MRI
lesion classification: improved performance of human readers with a
backpropagation neural network computer-aided diagnosis (CAD) system. J.
Magn. Reson. Imaging. 25, 89–95 (2007)

26. S Abe, Support Vector Machines for Pattern Classification (Springer Verlag,
London, 2005)

27. A Rosenfel, Connectivity in digital pictures. J. ACM. 17, 146–147 (1970)
28. A Rosenfel, JL Pfaltz, Sequential operations in digital picture processing. J.

ACM. 13, 471–477 (1966)
29. YH Huang, YC Chang, CS Huang, TJ Wu, JH Chen, RF Chang, Computer-

aided diagnosis of mass-like lesion in breast MRI: differential analysis of the
3-D morphology between benign and malignant tumors. Comput. Meth.
Prog. Bio. 112, 508–517 (2013)

30. SY Yu, L Guan, A CAD system for the automatic detection of clustered
microcalcifications in digitized mammogram films. IEEE Trans. Med. Imaging.
19, 115–126 (2000)

B. Shokouhi et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:39 Page 11 of 11


	Abstract
	Introduction
	Breast MRI database
	Methodology
	Motion correction
	Breast region segmentation
	Detection of potential lesion voxels
	Detection of potential lesion regions
	False positive reduction

	Results and discussion
	Conclusions
	Acknowledgements
	Competing interests
	Author details
	References

