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Abstract

The ensemble Kalman filter (EnKF) is a Monte Carlo-based implementation of the Kalman filter (KF) for extremely
high-dimensional, possibly nonlinear, and non-Gaussian state estimation problems. Its ability to handle state
dimensions in the order of millions has made the EnKF a popular algorithm in different geoscientific disciplines.
Despite a similarly vital need for scalable algorithms in signal processing, e.g., to make sense of the ever increasing
amount of sensor data, the EnKF is hardly discussed in our field.
This self-contained review is aimed at signal processing researchers and provides all the knowledge to get started
with the EnKF. The algorithm is derived in a KF framework, without the often encountered geoscientific terminology.
Algorithmic challenges and required extensions of the EnKF are provided, as well as relations to sigma point KF and
particle filters. The relevant EnKF literature is summarized in an extensive survey and unique simulation examples,
including popular benchmark problems, complement the theory with practical insights. The signal processing
perspective highlights new directions of research and facilitates the exchange of potentially beneficial ideas, both for
the EnKF and high-dimensional nonlinear and non-Gaussian filtering in general.

1 Introduction
Numerical weather prediction [1] is an extremely
high-dimensional geoscientific state estimation prob-
lem. The state x comprises physical quantities (tem-
perature, wind speed, air pressure, etc.) at many spa-
tially distributed grid points, which often yields a state
dimension n in the order of millions. Consequently,
the Kalman filter (KF) [2, 3] or its nonlinear exten-
sions [4, 5] that require the storage and processing of
n × n covariance matrices cannot be applied directly.
It is well-known that the application of particle filters
[6, 7] is not feasible either. In contrast, the ensemble
Kalman filter [8, 9] (EnKF) was specifically developed as
algorithm for high-dimensional n.
The EnKF

• is a random-sampling implementation of the KF;
• reduces the computational complexity of the KF by

propagating an ensemble of N < n state realizations;
• can be applied to nonlinear state-space models

without the need to compute Jacobian matrices;
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• can be applied to continuous-time as well as
discrete-time state transition functions;

• can be applied to non-Gaussian noise densities;
• is simple to implement;
• does not converge to the Bayesian filtering solution

for N → ∞ in general;
• often requires extra measures to work in practice.

Also in the field of stochastic signal processing (SP)
and Bayesian state estimation, high-dimensional prob-
lems become more and more relevant. Examples include
SLAM [10] where x contains an increasing number of
landmark positions, or extended target tracking [11, 12]
where x can contain many parameters to describe the
shape of the target. Furthermore, scalable SP algorithms
are required to make sense of the ever increasing amount
of data from sensors in everyday devices.
EnKF approaches hardly appear in the relevant SP jour-

nals, though. In contrast, vivid theoretical development is
documented in geoscientific journals under the umbrella
term data assimilation (DA) [1]. Hence, a relevant SP
problem is being addressed with only little participation
from the SP community. Conversely, much of the DA lit-
erature makes little reference to relevant SP contributions.
It is our intention to bridge this interesting gap.
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There is further overlap that motivates for a closer
investigation of the EnKF. First, the basic EnKF [9] can be
applied to nonlinear and non-Gaussian state-space mod-
els because it is entirely sampling based. In fact, the state
evolution in geoscientific applications is typically gov-
erned by large nonlinear black box prediction models
derived from partial differential equations. Furthermore,
satellite measurements in weather applications are non-
linearly related to the states [1]. Hence, the EnKF has long
been investigated as nonlinear filter. Second, the EnKF lit-
erature contains so called localization methods [13, 14]
to systematically approach high-dimensional problems by
only acting on a part of the state vector in each measure-
ment update. These ideas can be directly transferred to
sigma point filters [5]. Third, the EnKF offers several inter-
esting opportunities to apply SP techniques, e.g., via the
application of bootstrap or regularization methods in the
EnKF gain computation.
The contributions of this paper aim at making the

EnKF more accessible to SP researchers. We provide a
concise derivation of the EnKF based on the KF. A litera-
ture review highlights important EnKF papers with their
respective contributions and facilitates easier access to
the extensive and rapidly developing DA literature on the
EnKF. Moreover, we put the EnKF in context with popular
SP algorithms such as sigma point filters [4, 5] and the par-
ticle filter [6, 7]. Our presentation forms a solid basis for
further developments and the transfer of beneficial ideas
and techniques between the fields of SP and DA.
The structure of the paper is as follows. After an exten-

sive literature review in Section 2, the EnKF is developed
from the KF in Section 3. Algorithmic properties and
challenges of the EnKF and the available approaches to
face them are discussed in Sections 4 and 5, respectively.
Relations to other filtering algorithms are discussed in
Section 6. The theoretical considerations are followed by
numerical simulations in Section 7 and some concluding
remarks in Section 8.

2 Review
The following literature review provides important land-
marks for the EnKF novice.
State-space models and the filtering problem have been

investigated since the 1960s. Early results include the
Kalman filter (KF) [2] as algorithm for linear systems
and the Bayesian filtering equations [15] as theoreti-
cal solution for nonlinear and non-Gaussian systems.
Because the latter approach cannot be implemented in
general, approximate filtering algorithms are required.
With a leap in computing capacity, the 1990s saw major
developments. The sampling-based sigma point Kalman
filters [4, 5] started to appear. Furthermore, particle fil-
ters [6, 7] were developed to approximately implement

the Bayesian filtering equations through sequential impor-
tance sampling.
The first EnKF [8] was proposed in a geoscientific

journal in 1994 and introduced the idea of propagat-
ing ensembles to mimic the KF. A systematic error that
resulted in an underestimated uncertainty was later cor-
rected by processing “perturbed measurements.” This
randomization is well motivated in [9] but also used
in [13].
Interestingly, [8] remains the most cited EnKF paper1,

followed by the overview article [16] and the mono-
graph [17] by the same author. Other insightful overviews
from a geoscientific perspective are [18, 19]. Many prac-
tical aspects of operational EnKF for weather prediction
and re-analysis are described in [19–21]. Whereas the
aforementioned papers were mostly published in geosci-
entific outlets, a special issue of the IEEE Control Systems
Magazine appeared with review articles [22–24] and an
EnKF case study [25]. Still, the above material was writ-
ten by EnKF researchers with a geoscientific focus and in
the application-specific terminology. Furthermore, refer-
ences to the recent SP literature and other nonlinear KF
variants [5] are scarce.
Some attention has been devoted to the EnKF also

beyond the geosciences. Convergence properties forN →
∞ have been established using different theoretical anal-
yses of the EnKF [26–28]. Statistical perspectives are
provided in the thesis [29] and the review [30]. A recom-
mended SP view that connects the EnKF with Bayesian
filtering and particle methods, including convergence
results for nonlinear systems, is [31]. Examples of the
EnKF as tool for tomographic imaging and target tracking
are described in [32] and [33], respectively. Brief introduc-
tory papers that connect the EnKF with more established
SP algorithms include [34] and [35]. The latter also served
as basis for this article.
The majority of EnKF advances are still documented in

geoscientific publications. Notable contributions include
deterministic EnKF that avoid the randomization of [9]
and propagate an ensemble of deviations from the ensem-
ble mean [16, 36–38]. Their common basis as square
root EnKF and the relation to square root KF [3] is
discussed in [39]. The computational advantages in high-
dimensional EnKF with small ensembles (N � n)
come at the price of adverse effects, including the risk
of filter divergence. The often encountered underesti-
mation of uncertainty can be counteracted with covari-
ance inflation [40]. A scheme with two EnKF in parallel
that provide each other with gain matrices to reduce
unwanted “inbreeding” has been suggested in [13]. The
benefit of such a double EnKF is, however, debated [38,
41]. The low-rank approximation of covariance matri-
ces can yield spurious correlations between supposedly
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uncorrelated state components andmeasurements. Local-
ization techniques such as local measurement updates
[13, 16, 42] or covariance tapering [14, 43] let the mea-
surement only affect a part of the state vector. In other
words, localization effectively reduces the dimension of
each measurement update. Inflation and localization are
essential components of operational EnKF [19]. Smooth-
ing algorithms based on the EnKF are discussed in [17]
and, more recently, [44]. Approaches that combine varia-
tional DA techniques [1] with the EnKF include [45, 46].
A list of further advances in the geoscientific literature is
provided in the appendix of [17].
An interesting development for SP researchers is

the reconsideration of particle filters (PF) for high-
dimensional geoscientific problems, with seemingly lit-
tle reference to SP literature. An early example is [47].
The well-known challenges, mostly related to the prob-
lem of importance sampling in high dimensions, are
reviewed in [48, 49]. Several recent approaches [50–52]
were successfully tested on a popular EnKF benchmark
problem [53] that is also investigated in Section 7.4. Com-
binations of the EnKF with the deterministic sampling of
sigma point filters [5] are given in [54] and [55]. How-
ever, the benefit of the unscented transformation [5, 56]
in [55] is debated in [57]. Ideas to combine the EnKF with
Gaussian mixture approaches are given in [58–60].

3 A signal processing introduction to the
ensemble Kalman filter

The underlying framework of our filter presentation are
discrete-time state-space models [3, 15]. The Kalman fil-
ter and many EnKF variants are built upon the linear
model

xk+1 = Fxk + Gvk , (1a)
yk = Hxk + ek , (1b)

with the n-dimensional state x and the m-dimensional
measurement y. The initial state x0, the process noise vk ,
and the measurement noise ek are assumed to be indepen-
dent and described by E(x0) = x̂0, E(vk) = 0, E(ek) = 0,
cov(x0) = P0, cov(vk) = Q, and cov(ek) = R. In the
Gaussian case, these moments completely characterize
the distributions of x0, vk , and ek .
Nonlinear relations in the state evolution and measure-

ment equations can be described by a more general model

xk+1 = f (xk , vk), (2a)
yk = h(xk , ek). (2b)

More general noise and initial state distributions can, for
example, be characterized by probability density functions
p(x0), p(vk), and p(ek).
Both (1) and (2) can be time-varying but the time indices

for functions and matrices are omitted for convenience.

3.1 A brief Kalman filter review
The KF is an optimal linear filter [3] for (1) that propagates
state estimates x̂k|k and covariance matrices Pk|k .
The KF time update or prediction is given by

x̂k+1|k = Fx̂k|k , (3a)
Pk+1|k = FPk|kFT + GQGT . (3b)

The above parameters can be used to predict the output
of (1) and its uncertainty via

ŷk|k−1 = Hx̂k|k−1, (4a)
Sk = HPk|k−1HT + R. (4b)

The measurement update adjusts the prediction results
according to

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (5a)
= (I − KkH)x̂k|k−1 + Kkyk , (5b)

Pk|k = (I − KkH)Pk|k−1(I − KkH)T + KkRKT
k , (5c)

with a gainmatrixKk . Here, (5b) resembles a deterministic
observer and only requires all eigenvalues of (I − KkH)

inside the unit circle to obtain a stable filter.
The optimal Kk in the minimum variance sense is

given by

Kk = Pk|k−1HTS−1
k = MkS−1

k , (6)

where Mk is the cross-covariance between the state
and output predictions. Alternatives to the covariance
update (5c) exist, but the shown Joseph form [3] will sim-
plify the derivation of the EnKF. Furthermore, it is valid
for all gain matrices Kk beyond (6) and numerically well-
behaved. It should be noted that it is numerically advisable
to obtain Kk by solving KkSk = Mk rather than explicitly
computing S−1

k [61].

3.2 The ensemble idea
The central idea of the EnKF is to propagate an ensemble
ofN < n (oftenN � n) state realizations

{
x(i)
k

}N
i=1

instead
of the n-dimensional estimate x̂k|k and the n×n covariance
Pk|k of the KF. The ensemble is processed such that

x̄k|k = 1
N

∑N

i=1
x(i)
k ≈ x̂k|k , (7a)

P̄k|k = 1
N−1

∑N

i=1

(
x(i)
k − x̄k|k

) (
x(i)
k − x̄k|k

)T ≈ Pk|k .
(7b)

Reduced computational complexity is achieved because
the explicit computation of P̄k|k is avoided in the EnKF
recursion. Of course, this reduction comes at the price of a
low-rank approximation in (7b) that entails some negative
effects and requires extra measures.
For our development, it is convenient to treat the

ensemble as an n × N matrix Xk|k with columns x(i)
k . This
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allows for the compact notation of the ensemblemean and
covariance

x̄k|k = 1
N
Xk|k1, (8a)

P̄k|k = 1
N − 1

X̃k|kX̃T
k|k , (8b)

where 1 = [1, . . . , 1]T is an N-dimensional vector and

X̃k|k = Xk|k − x̄k|k1T = Xk|k
(
IN − 1

N 11T
)

(9)

is an ensemble of deviations from x̄k|k , sometimes called
ensemble anomalies [17]. The matrix multiplication in (9)
provides a compact way to write the anomalies but is not
the most efficient way to compute them.

3.3 The EnKF time update
The EnKF time update is referred to as forecast in the
geoscientific literature. In analogy to (3), a prediction
ensemble Xk+1|k is computed that carries the informa-
tion in x̂k+1|k and Pk+1|k . An ensemble of N independent

process noise realizations
{
v(i)
k

}N
i=1

with zero mean and
covariance Q, stored as matrix Vk , is used in

Xk+1|k = FXk|k + GVk . (10)

An extension to nonlinear state transitions (2a) is
given by

Xk+1|k = f (Xk|k ,Vk), (11)

where we generalized f to act on the columns of its input
matrices. Apparently, the EnKF time update amounts
to a one-step-ahead simulation of Xk|k . Consequently,
also continuous-time dynamics can be considered by, for
example, numerically solving partial differential equations
to obtain Xk+1|k . Also non-Gaussian initial state and pro-
cess noise distributions with arbitrary densities p(x0) and
p(vk) can be employed as long as they allow sampling. Per-
haps because of this flexibility, the time update is often
omitted in the EnKF literature [9, 13].

3.4 The EnKFmeasurement update
The EnKF measurement update is referred to as analy-
sis in the geoscientific literature. A prediction or fore-
cast ensemble Xk|k−1 is processed to obtain the filtering
ensemble Xk|k that encodes the KF mean and covariance.
We assume that a gain K̄k = Kk is given and postpone its
computation to the next section.
With K̄k available, the KF update (5b) can be applied to

each ensemble member as follows [8]

Xk|k = (I − K̄kH)Xk|k−1 + K̄kyk1T . (12)

The resulting ensemble average (8a) is the KF mean x̂k|k
of (5b). However, with yk1T known, the sample covari-
ance (8b) of Xk|k gives only the first term of (5c). Hence,
Xk|k fails to carry the information in Pk|k .

A solution [9] is to account for the missing term K̄kRK̄T
k

by adding artificial zero-mean measurement noise real-
izations

{
e(i)k

}N
i=1

with covariance R, stored as matrix Ek ,
according to

Xk|k = (I − K̄kH)Xk|k−1 + K̄kyk1T − K̄kEk . (13)

Then,Xk|k has the correct ensemble mean and covariance,
x̂k|k and Pk|k of (5), respectively. The model (1) is implicit
in (13) because the matrix H appears. If we, in analogy to
(4), define a predicted output ensemble

Yk|k−1 = HXk|k−1 + Ek (14)

that encodes ŷk|k−1 and Sk , we can reformulate (13) to an
update that resembles (5a):

Xk|k = Xk|k−1 + K̄k
(
yk1T − Yk|k−1

)
. (15)

In contrast to (13), the update (15) is entirely sam-
pling based. As a consequence, we can extend the algo-
rithm to nonlinear measurement models (2b) by replacing
(14) with

Yk|k−1 = h(Xk|k−1,Ek), (16)

where we generalized h to accept matrix inputs similar
to (11).
In the EnKF literature, the prevailing view of inserting

artificial noise is that perturbed measurements yk1T − Ek
are processed. This might appear unusual from an SP
perspective since it suggests that information is distorted
before processing. The introduction of output ensembles
Yk|k−1, in contrast, yields a direct connection to (4) and
highlights the similarities between (15) and (5a).
An interesting point [60] is that the measurement yk

enters linearly in (13) and (15) and merely shifts the
ensemble locations. This highlights the EnKF roots in the
linear KF in which Pk|k also remains unchanged by yk .

3.5 The EnKF gain
The optimal gain (6) in the KF is computed from the
covariance matrices of the predicted state and output. In
the EnKF, the required Mk and Sk are not available but
must be approximated from the prediction ensembles (10)
or (11), and (14) or (16).
A straightforward way to compute the EnKF gain K̄k is

to first compute the deviations or anomalies

X̃k|k−1 = Xk|k−1
(
IN − 1

N 11T
)
, (17a)

Ỹk|k−1 = Yk|k−1
(
IN − 1

N 11T
)
, (17b)

and second the sample covariance matrices

M̄k = 1
N−1 X̃k|k−1Ỹ T

k|k−1, (17c)

S̄k = 1
N−1 Ỹk|k−1Ỹ T

k|k−1. (17d)
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The computations (17) are entirely sampling based,
which is useful for the nonlinear case but introduces
extra sampling errors. An obvious improvement for addi-
tive measurement noise ek with covariance R is given in
Section 5.2, together with the square root EnKF that avoid
the insertion of Ek altogether.
Similar to the KF, the gain K̄k should be obtained from

the solution of a linear system of equations

K̄kỸk|k−1Ỹ T
k|k−1 = X̃k|k−1Ỹ T

k|k−1. (18)

4 Some properties and challenges of the EnKF
After a brief review of convergence results and the compu-
tational complexity of the EnKF, we discuss adverse effects
that can occur in EnKF with finite ensemble size N .

4.1 Asymptotic convergence results
In linear Gaussian systems, the EnKF mean and covari-
ance (7) converge to the KF results (5) as N → ∞.
This result has been established from different theoretical
perspectives [26–28, 31].
For nonlinear systems, the convergence is not as tan-

gible. An investigation of the EnKF as particle system is
given in [31], with the outcome that the EnKF does not
give the Bayesian filtering solution except for the linear
Gaussian case. An illustration of this property is given in
the example of Section 7.2.

4.2 Computational complexity
For the complexity analysis, we assume that we are only
interested in the filtering results and that n > N > m, that
is, the number of measurements is less than the ensemble
size and state dimension.
The KF propagates the n-dimensional mean vector x̂k|k

and the n×n covariancematrix Pk|k with n(n+1)/2 unique
entries. These storage requirements ofO(n2/2) dominate
for large n > m. The EnKF requires the storage of only nN
values. The space required to store the Kalman gain and
other intermediate results is similar for the KF and EnKF.
A reduction via sequential processing of measurements,
as explained in Section 5.1, is possible for both.
For large n, the computational bottleneck of the KF is

the covariance time update (3b). Without considering any
potential structure in F , slightly less than O(n3) float-
ing point operations (flops) are required. Contemporary
matrix multiplication routines [61] achieve a reduction to
roughlyO(n2.4). The EnKF time update requires the prop-
agation of N realizations. If each propagation costsO(n2)
flops, then time update is achieved inO(n2N) flops.
The computation of the KF gain requires O(n2m)

flops for the computation of Mk and Sk . The solution
of (6) for Kk amounts to O(m3). The actual measurement
update (5) adds furtherO(n2m) flops. For large n, the total
cost isO(n2m). In contrast, the EnKF parameters M̄k and

S̄k can be computed in O(nmN) flops which, again, dom-
inates the total cost of the measurement update for large
n. So, the EnKF flop count scales a factor N

n better.

4.3 Sampling and coupling effects for finite ensemble size
A serious issue in the EnKF is a commonly noted tendency
to underestimate the state uncertainty when using N < n
ensemble members [13, 18, 19]. In other words, the EnKF
becomes over-confident and is likely to diverge [3] for too
small N . A number of causes and related effects can be
noted.
First, an ensemble Xk|k−1 with too few members might

not cover the relevant regions of the state-space well
enough after the time update (10). The underestimated
spread persists in the measurement update (13) or (15)
and also Xk|k shows too little spread.
Second, the ensemble can only transport limited infor-

mation and provide a sampling covariance P̄k|k , (7b)
or (8b), of at most rank N − 1. Consequently, identi-
cally zero entries of Pk|k are difficult to reproduce and
unwanted spurious correlations show up in P̄k|k . An exam-
ple would be an unreasonably large correlation between
the temperature at two distant locations on the globe.
Of course, these correlations also affect M̄k and S̄k , and
thus the EnKF gain K̄k in (18). As a result, state compo-
nents that are actually uncorrelated to yk are erroneously
updated in (13) or (15). Again, this leads to a reduction in
ensemble spread.
Third, the ensemble members are nonlinearly coupled

because the gain (18) is computed from the ensemble.
This “inbreeding” [13] increases with each measurement
update. An interesting side effect is that the ensemble is
not independent and Gaussian, even for linear Gaussian
problems. To illustrate this, we combine (18) and (15) to
obtain

Xk|k=Xk|k−1+
(
X̃k|k−1Ỹ T

k|k−1

) (
Ỹk|k−1Ỹ T

k|k−1

)−1 (
yk1T− Yk|k−1

)

(19)

and consider a linear model (1) with n = 1, H = 1, and a
zero-mean Xk|k−1. Then, one member of Xk|k is given by

x(i)
k|k=x(i)

k|k−1+
∑N

j=1

(
x(j)
k|k−1

)2

∑N
j=1

(
x(j)
k|k−1 + e(j)k

)2
(
yk−x(i)

k|k−1−e(i)k|k−1

)
,

(20)

which clearly shows the nonlinear dependencies that
impede Gaussianity of x(i)

k|k . Although similar conclusions
hold for the general case, concise effects on the ensemble
spread are difficult to analyze. Some special cases (n = 1
and n = m, H = I, R ∝ I) are investigated in [26] and
shown to produce an underestimated P̄k|k .
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Finally, the random sampling in the measurement
update by inserting measurement noise in (14) or (16)
adds to the EnKF error budget. The inherent sampling
errors can be reduced by using the square root EnKF of
Section 5.2.
Experiments suggest that there is a threshold for N

above which the EnKF works. A good example is given
in [42]. Section 5 discusses methods such as inflation and
localization that can reduce this minimum N .

5 Important extensions to the EnKF
The previous section highlighted some of the challenges of
the EnKF. Here, we summarize the important extensions
that are often essential to achieve a working EnKF with
only few ensemble members.

5.1 Sequential updates
For the KF, it is algebraically equivalent to carry out m
measurement updates (5) with the scalar components of
yk instead of a batch update with the m-dimensional yk ,
if the measurement noise covariance R is diagonal [3].
Although often treated as a side note only, this tech-
nique is very useful. It yields a more flexible algorithm
with regard to the availability of measurements at each
time step k and reduces the computational complexity.
After all, the Kalman gain (6) merely requires a scalar
division for each component of yk . An extension to block-
diagonal R is imminent.
Motivated by the large number of measurements in

geoscientific problems, sequential updates have also been
suggested for the EnKF [14]. Because of the randomness
inherent to the EnKF, there is no algebraic equivalence
between sequential and batch updates. Hence, the order
in which measurements are processed has an effect on the
filtering results.
Furthermore, an unusual alternative interpretation of

sequential updates can be found in the EnKF literature.
Namely, measurement updates are carried out “grid point
by grid point” [13, 16, 42], that is, an iteration is carried
out over state rather than measurement components. We
will return to this aspect in Section 5.4.

5.2 Model knowledge in the EnKF and square-root filters
The sampling based derivation of the EnKF in Eqs. (10)
through (18) facilitates a compact presentation. How-
ever, the randomization through Ek in (14) or (16) adds
Monte Carlo sampling errors to the EnKF budget. This
section discusses how these errors can be reduced for lin-
ear systems (1). Similar results for nonlinear systems with
additive noise follow easily. The interpretation of ensem-
bles as (rectangular) matrix square roots is a common
theme in the following approaches. In (8b), for instance,

1√
N−1 X̃k|k can be seen as an n × N square root of P̄k|k .

A first thing to note is that the cross covariance Mk
in the KF and its ensemble equivalent M̄k should not be
influenced by additive measurement noise ek . Therefore,
it is reasonable to replace Ỹk|k−1 with

Z̃k|k−1 = HX̃k|k−1 (21a)

so as to reduce the Monte Carlo variance of (17) using

M̄k = 1
N−1 X̃k|k−1Z̃T

k|k−1, (21b)

S̄k = 1
N−1 Z̃k|k−1Z̃T

k|k−1 + R. (21c)

The Kalman gain K̄k is then computed as in the KF (6).
Alternatively, a matrix square-root R

1
2 with R

1
2R

T
2 = R can

be used to factorize

S̄k =
[

1√
N−1 Z̃k|k−1 R

1
2
] [ 1√

N−1 Z̃
T
k|k−1

R
T
2

]
. (22)

A QR decomposition [61] of the right matrix then yields a
triangularm×m square root of S̄k , and the computation of
K̄k simplifies to forward and backward substitution. Such
ideas have their origin in sigma point KF variants [62].
The KF permits offline computation of the covariance

matrices Pk|k for all k because they do not depend on the
measurements. In an EnKF for a linear system (1), we can
mimic this behavior by propagating zero-mean ensem-
bles X̃k|k that only carry the information of Pk|k . This is
the central idea of different square root EnKF [39] which
were suggested in [36] (ensemble adjustment filter, EAKF)
or [37, 38] (ensemble transform filter, ETKF). The name
square root EnKF stems from a relation to square root
KF [3] which propagate n × n matrix square roots P

1
2
k|k

with P
1
2
k|kP

T
2
k|k = Pk|k . Most importantly, the artificial mea-

surement noise and the inherent sampling error can be
avoided.
The following derivation [39] rewrites an alternative

expression for (5c) using a square root P
1
2
k|k−1 and its

ensemble approximation 1
N−1 X̃k|k−1:

Pk|k = (I − KkH)Pk|k−1

= P
1
2
k|k−1

(
I − P

T
2
k|k−1H

TS−1
k HP

1
2
k|k−1

)
P

T
2
k|k−1

≈ 1
N−1 X̃k|k−1

(
I − 1

N−1 Z̃
T
k|k−1S̄

−1
k Z̃k|k−1

)
X̃T
k|k−1,
(23a)

where (21a) was used. The next step is to factorize
(
I − 1

N−1 Z̃
T
k|k−1S̄

−1
k Z̃k|k−1

)
= �

1
2
k �

T
2
k , (23b)

which requires the left hand side to be positive definite.
This property is easily established for the positive definite
S̄k of (21c) after realizing that the left hand side of (23b) is
a Schur complement [61] of a positive definite matrix.
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Finally, the N × N matrix �
1
2
k can be used to create a

deviation ensemble

X̃k|k = X̃k|k−1�
1
2
k (24)

that correctly encodes Pk|k without using any random per-
turbations. Numerically efficient schemes to reduce the
computational complexity of ETKF that work on N × N
transform matrices can be found in the literature [39].
Other variants update the deviation ensemble via a multi-
plication from the left [36], which is more costly for large
n. Some more conditions on �

1
2
k must be met for X̃k|k to

remain zero-mean [63, 64].
The actual filtering is achieved by updating a single

estimate according to

x̄k|k = (I − K̄kH)Fx̄k−1|k−1 + K̄kyk , (25)

where K̄k is computed from the deviation ensembles.
There are indications that in nonlinear and non-

Gaussian systems the sampling based EnKF variants
should be preferable over their square root counterparts:
A low-dimensional example is studied in [65]; the impres-
sion is confirmed for a high-dimensional problem in [66].

5.3 Covariance inflation
Covariance inflation is a measure to counteract the ten-
dency of the EnKF to underestimate the state uncertainty
for small N and an important ingredient in operational
EnKF [18]. The spread of the prediction ensemble Xk|k−1
is increased according to

Xk|k−1 = x̄k|k−11
T + cX̃k|k−1 (26)

with a factor c > 1. In the EnKF context, this heuristic
has been proposed in [40]. Related concepts are dithering
in the PF [7] and the “fudge factor” to increase Pk|k−1 in
the KF [67]. Extensions to adaptive inflation, where c is
adjusted online, are discussed in [23].

5.4 Localization
Localization is a technique to address the issue of spurious
correlations in the EnKF, and a crucial feature of opera-
tional EnKF [18, 19]. The underlying idea applies equally
well to the EnKF and the KF, and can be used to system-
atically update only a part of the state vector with each
measurement.
In order to explain the concept, we regard the KF

measurement update for a linear system (1) with a low-
dimensional2 measurement yk . Let x = xk|k−1 and P =
Pk|k−1 for notational convenience. It is possible to per-
mute the state components such that

x =
[ x1
x2
x3

]
, H = [

H1 0 0
]
, P =

⎡
⎢⎣

P1 P12 0
PT12 P2 PT23
0 PT23 P3

⎤
⎥⎦ .

(27)

Only the part x1 appears in the measurement Eq. (1b)
yk = H1x1 + ek . While x2 is correlated to x1, there is zero
correlation between x1 and x3. As a consequence, many
submatrices of P vanish in the computation of

PHT = [
H1P1 H1P12 0

]T , HPHT = H1P1HT
1 ,
(28a)

and do not contribute to the Kalman gain (6)

Kk =

⎡
⎢⎢⎣

P1HT
1

PT12H
T
1

0

⎤
⎥⎥⎦

(
H1P1HT

1 + R
)−1

. (28b)

A KF measurement update (5) with the above Kk does
not affect the x3 estimate or covariance. Hence, there is
a lower dimensional measurement update that only alters
the statistics of x1 and x2.
Localization in the EnKF enforces the above structure

using two prevailing techniques, local updates [13, 16, 42]
and covariance tapering [14, 43]. Both rely on prior knowl-
edge of the covariance structure. For example, the state
components are often connected to geographic locations
in geoscientific applications. From the underlying physics,
it is reasonable to assume zero correlation between distant
states. Unfortunately, this viewpoint is not transferable to
high-dimensional problems in general.
Local updates were introduced for the sampling-based

EnKF in [13] and for different square root EnKF in [16, 42].
Nonlinear measurement functions (2b) are linearized in
the latter two. All of the above references update the state
vector “grid point by grid point,” which appears unusual
from a KF perspective [3]. In an iteration, local state vec-
tors of small dimension (< N) are chosen and updated
with a subset of supposedly relevant measurements.
These “full rank” updates avoid some of the problems
associated with smallN and large n. However, discontinu-
ities between state components are introduced [68]. Some
heuristics to combine the local ensembles and further
implementation details can be found in [42, 69].
Under the assumption of the structure in (27), a local

analysis would amount to an EnKF update of the x1- and
x2-components only, to avoid errors in x3.
Covariance tapering was introduced in [13]. It con-

tradicts the EnKF idea in the sense that the ensemble
covariance P̄k|k−1 of Xk|k−1 is processed. However, it will
become clear that not all entries of P̄k|k−1 must be com-
puted. Prior knowledge of a covariance structure as in (27)
is used to create an n × n matrix ρ with entries in [0, 1],
and a tapered covariance (ρ ◦ P̄k|k−1) is computed. Here,
◦ denotes the element-wise Hadamard or Schur prod-
uct [61]. A typical ρ has ones on the diagonal and decays
smoothly to zero for unwanted off-diagonal elements. The



Roth et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:56 Page 8 of 16

standard choice uses a compactly supported correlation
function from [70] and is discussed in [14, 43, 68]. Sub-
sequently, the Kalman gain is computed as in the KF
(6) using

M̄k = (ρ ◦ P̄k|k−1)HT , (29a)
S̄k = H(ρ ◦ P̄k|k−1)HT + R, (29b)

where we assumed a linear measurement relation (1b).
There are some technicalities associated with the taper-

ing operation. Only positive semi-definite ρ guarantee
that (ρ ◦ P̄k|k−1) is a valid covariance [26]. Full rank ρ

yield an increased rank in (ρ ◦ P̄k|k−1) [14]. However,
low rank ρ do not necessarily decrease the rank of (ρ ◦
P̄k|k−1). A closely related problem to finding valid (positive
semi-definite or definite) ρ is the creation of covariance
functions and kernels in Gaussian processes [71]. Here,
a methodology to create more complicated kernels from
simpler ones could be used to create ρ.
Unfortunately, the Hadamard product cannot be for-

mulated as an operation on the ensembles in general.
Still, the computational requirements can be limited by
only working with the non-zero elements of (ρ ◦ P̄k|k−1).
Furthermore, it is common to avoid the computation of
P̄k|k−1 using

M̄k = ρM ◦ M̄k , (30)

instead of (29a) and to skip the tapering in Sk alto-
gether [43]. After all, for low-dimensional yk (small m)
M̄k has the strongest influence on the gain K̄k . Also, the
matrix ρM is constructed from prior knowledge about the
correlation. In the geoscientific context, where the state
components and measurements are associated with geo-
graphic locations, this is easy. In general, however, it might
not be possible to devise an appropriate ρM. Other vari-
ants [14, 26, 68] with tapering for S̄k exist and have in
common that they are only identical to (29) for H = I.
Some relations between local updates and covariance

tapering are discussed in [68]. For the structure in (27), we
can suggest a rank-1 taper ρ that establishes a correspon-
dence between the two concepts. Let r1 and r2 be vectors
of the same dimensions as x1 and x2, respectively, that
contain all ones. Let r3 be a zero vector of the same dimen-
sion as x3 and rT = [

rT1 , r
T
2 , r

T
3
]
. Then, ρ = rrT removes

all entries from P̄k|k−1 that would disappear in (28) any-
how. Furthermore, the Hadamard product for the rank-
1 ρ can be written as an operation on the ensemble
X̃k|k−1 using

(rrT ) ◦ P̄k|k−1 = diag(r)P̄k|k−1diag(r)

= 1
N−1

(
diag(r)X̃k|k−1

) (
diag(r)X̃k|k−1

)T .
(31)

The multiplication with diag(r) merely removes the rows
corresponding to x3, which establishes an equivalence

between local updates and covariance tapering. By pick-
ing a smoothly decaying r, we can furthermore avoid the
discontinuities associated with local updates.

5.5 The EnKF gain and least squares
A parallel to least squares problems can be disclosed by
closer inspection of the Eq. (18) that is used to compute
the EnKF gain K̄k . Perhaps more apparent in the transpose
of (18), in

Ỹk|k−1Ỹ T
k|k−1K̄

T
k = Ỹk|k−1X̃T

k|k−1, (32a)

appear the normal equations of the least squares problems

Ỹ T
k|k−1K̄

T
k = X̃T

k|k−1, (32b)

that are to be solved for each row of K̄k and X̃k|k−1.
Hence, the EnKF iteration can be carried out with-

out explicitly computing any sample covariance matrices
if instead efficient solutions to the problem (32b) are
employed. Furthermore, the problem (32b) could be mod-
ified using regularization [72] to enforce sparsity in K̄k .
This would be an alternative approach to the localization
methods discussed earlier. Related ideas to improve the
Kalman gain using bootstrap methods [72] for computing
M̄k and S̄k in (17) are discussed in [73, 74].

6 Relations to other algorithms
The EnKF for nonlinear systems (2) differs from other
sampling-based nonlinear filters such as sigma point
KF [5] or particle filters (PF) [7]. One reason for this is that
the EnKF approximates the KF algorithm (with the side
effect that it can be applied to (2)) rather than trying to
solve the nonlinear filtering problem directly.
The biggest difference between the EnKF and sigma

point filters [5] such as the unscented KF [4, 56] or divided
difference KF [62] is the measurement update. Whereas
the EnKF updates its ensembles, the latter carry out the
KF measurement update (5) using approximately com-
puted mean values and covariance matrices. That is, the
samples or sigma points are condensed into a filtering
estimate x̂k|k and its covariance Pk|k , which entails a loss
of information and can be seen as an inherent Gaussian
assumption on the filtering density p(xk|y1:k). In contrast,
the EnKF can preserve more information and deviations
from Gaussianity in the ensemble. Similarities appear in
the gain computations of the EnKF and sigma point KF. In
both, the Kalman gain appears as a function of the sam-
pling covariancematrices, althoughwith the deterministic
sigma points and weights in the latter. With their origin
in the KF, both sigma point filters and the EnKF can be
expected to share difficulties with multimodal posterior
distributions.
Similar to the EnKF, the PF propagates N state realiza-

tions that are called particles. For the bootstrap particle
filter [6], the prediction step corresponds to the EnKF time
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update (11). Apart from that, however, the differences
dominate. First, the PF is designed as an approximate
solution of the Bayesian filtering equations [15] using
sequential importance sampling [7]. For N → ∞, the
PF solution recovers the true filtering density. Second,
the samples in basic PF variants are generated from a
proposal distribution only once every time instance and
then left untouched. Themeasurement update amounts to
updating the particle weights, which leads to a degeneracy
problem for large n. In the EnKF, in contrast, the ensemble
members are influenced by the time and themeasurement
update. Third, the PF relies on a crucial resampling step
that is not present in the EnKF. An attempt to use the
EnKF as proposal density in PF is described in [75]. A
unifying interpretation of the EnKF and PF as ensemble
transform filters can be found [76].
Still, the EnKF appears as a distinct algorithm besides

sigma point KF and PF. Its properties and potential
for nonlinear problems remain to be fully investigated.
Existing results that the EnKF does not converge to the
Bayesian filtering recursion [31] remain to be interpreted
in a constructive manner.

7 Instructive simulation examples
Four examples are discussed in greater detail, among
them one popular benchmark problem of the SP and DA
literature each.

7.1 A scalar linear Gaussian model
The first example illustrates the tendency of the EnKF to
underestimate the state uncertainty. A related example is
studied in [38]. We compare the EnKF variance P̄k|k to the
Pk|k of the KF via Monte Carlo simulations on the simple
scalar state-space model

xk+1 = xk + vk , (33a)
yk = xk + ek . (33b)

The initial state x0, the process noise vk , and the mea-
surement noise ek are specified by the probability density
functions

p(x0) = N (x0; 0, 0.1), (33c)
p(vk) = N (vk ; 0, 0.1), (33d)
p(ek) = N (ek ; 0, 0.01). (33e)

A trajectory of (33) is simulated and a KF is used to
compute the optimal variances Pk|k . Because the model
is time-invariant, the Pk|k quickly converge to a constant
value. For k > 3, Pk|k = 0.0092 is obtained.
Next, 10,000Monte Carlo experiments with a sampling-

based EnKF with N = 5 are performed. The distribution
of obtained P̄k|k for k = 10 is illustrated in Fig. 1. The
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Fig. 1 Distribution of EnKF variances P̄k|k with k = 10 and N = 5
ensemble members for 10,000 runs on the same trajectory. Also
shown is the mean and median of all outcomes and the desired KF
variance Pk|k

vertical lines indicate the Pk|k of the KF and the median
and mean of the P̄k|k outcomes.
The average P̄k|k over the Monte Carlo realizations is

close to the desired Pk|k . However, there is a large spread
among the P̄k|k and the distribution is skewed toward zero
with its median below Pk|k . Although N > n, there is a
tendency to underestimate Pk|k .
In order to clarify the reason for this behavior and

whether it has to do with the coupling between the EnKF
K̄k and the ensemble members, we repeat the experiment
with an EnKF that uses the gain of the stationary KF for
all k. The resulting outcomes are illustrated in Fig. 2. Now,
the average P̄k|k is correct. However, the median shows
that there is still more probability mass below Pk|k . The
tendency to underestimate Pk|k and the remaining spread
must be due to random sampling errors. For larger N , the
effect vanishes, and the median and mean of P̄k|k appear
similar for N ≥ 10.

7.2 The particle filter benchmark
In the second example, we show that the EnKF does
not converge to the Bayesian filtering solution in nonlin-
ear systems as N → ∞ [31]. A well-known benchmark
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Fig. 2 Distribution of EnKF variances P̄k|k but computed with the
correct Kalman gain. Otherwise, similar to Fig. 1
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problem from the PF literature [6] is used. The model is
specified by

xk+1 = xk
2

+ 25
xk

1 + x2k
+ 8 cos(1.2(k + 1)) + vk ,

(34a)

yk = 1
20

x2k + ek , (34b)

with independent vk ∼ N (0, 10), ek ∼ N (0, 1), and
x0 ∼ N (0, 1). Because the model is scalar, the Bayesian fil-
tering densities p(xk | y1:k) can be computed numerically
using point mass filters (PMF) [77]. A sampling based
EnKF with N = 500 is tested and kernel density estimates
are used to obtain approximations of p(xk | y1:k) from the
ensembles. For comparison, we include a closely related
sigma point KF variant that uses Monte Carlo integration
with N = 500 samples [5]. The only difference to the
EnKF is that this Monte Carlo KF (MCKF) carries out the
KF measurement update (5) to propagate a mean and a
variance. We illustrate the results as Gaussian densities.
Figure 3 shows the prediction results for k = 150. The

PMF reference solution is bimodal with one mode close
to the true state. The reason for this lies in the squared
xk in (34b). The EnKF prediction resembles the PMF well
except for the random variations in the kernel density esti-
mate. The MCKF cannot represent the multimodality but
the Gaussian bell covers the relevant regions.
The filtering results for k = 150 are shown in Fig. 4. The

PMF reference solution has much narrower peaks after
including yk . The EnKF provides a skewed density that
does not resemble p(xk | y1:k) even though the EnKF pre-
diction approximated p(xk | y1:k−1) well. This is the main
take-away result and confirms [31]. Again, the MCKF
exhibits a large variance.
Further filtering results for the PMF and EnKF are

shown in Fig. 5. It can be seen that the EnKF solutions
sometimes resemble the PMF very well but not always.
Similar statements can be made for the prediction results.
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Fig. 3 Prediction densities p(xk | y1:k−1) by the PMF, EnKF, and MCKF
for k = 150. The true state is illustrated with a green dot. The PMF
serves as reference solution
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Fig. 4 Filtering densities p(xk | y1:k) by PMF, EnKF, and MCKF for
k = 150. Otherwise similar to Fig. 3

Dots in Fig. 5 illustrate the mean values as state esti-
mates. Especially for the PMF, it can be seen that the
mean (though optimal in a minimum variance sense [3])
is debatable for multimodal densities. Often, all estimates
are quite close. Figure 6 provides the estimation error den-
sities obtained from 100 Monte Carlo experiments with
151 time steps each. The PMF mean estimates exhibit a
larger peak around 0. The estimation errors for the EnKF
and MCKF appear similar. This is surprising because the
latter employs a Gaussian approximation at each time
step. Both error densities have heavier tails than the PMF
density. All estimation errors appear unbiased.

7.3 Batch smoothing using the EnKF
We here show how to use the EnKF as smoothing algo-
rithm by estimating batches of states. This allows us to
compare its performance for N < n in problems of
arbitrary dimension.
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Fig. 5 Consecutive filtering densities p(xk | y1:k) by PMF, EnKF, and
MCKF for k = 120, . . . , 125. Also illustrated are the mean values of the
respective densities and the true state
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Fig. 6 Density of the estimation errors obtained from 100 Monte
Carlo runs with 151 time steps each

First, we formulate an “augmented state” that comprises
an entire trajectory of L + 1 steps,

ξ = [
xT0 xT1 . . . xTL

]T , (35)

with dimension n = (L + 1)nx. Second, we note that the
measurements yk , k = 1, . . . , L, have uncorrelated mea-
surement noise and known relations to the components
of ξ . For linear systems (1), the predictedmean and covari-
ance of ξ can be easily derived, and smoothed estimates
of all xk , k = 0, . . . , L, can be obtained by sequentially
processing all yk in KF measurement updates for ξ .
Also, other smoothing variants and the Rauch-Tung-

Striebel (RTS) algorithm can be derived from state aug-
mentation approaches [3]. Due to its sequential nature,
however, the RTS smoother does not provide joint covari-
ance matrices of xk and xk+i for i �= 0. Except for this and
the higher computational complexity of working with ξ ,
the batch and RTS smoothers are equivalent for (1).
An EnKF approach to batch smoothing mimics the

above. A prediction ensemble for ξ is obtained by simu-
lating N trajectories for random process noise and initial
state realizations. This can also be carried out for non-
linear models (2). Then, sequential EnKF measurement
updates are performed for all yk .
For our experiments, we use a tracking problem with a

constant velocity model [67] and position measurements.
The low-dimensional state is given by

x = [
x y ẋ ẏ

]T (36a)

and comprises the Cartesian position [m] and velocity
[m/s] of an object. The parameters of (1) are given by

F =
[
I2 TI2
0 I2

]
, G =

[
T2
2 I2
TI2

]
, H = [

I2 0
]
, (36b)

with T = 1 s. The initial state x0 is Gaussian distributed
with

x̂0 = [
0 0 15 −10

]T , P0 = diag(502, 502, 202, 202),
(36c)
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Fig. 7 Illustration of a representative trajectory (black), the RTS
smoothing solution (cyan), and an initial ensemble (N = 50, orange).
Red circles depict the measurements. Most ensemble trajectories go
beyond the plot area

and the process and measurement noise covariances are

Q = diag(10, 50), R =
[
2000 1000
1000 1980

]
. (36d)

With nx = 4 and L = 49 we obtain n = 200 as dimension
of ξ . The RTS solution is compared to EnKF of ensem-
ble size N = {10, 20, 50}. Monte Carlo errors are reduced
using (21) in the gain computations.
A realization of a true trajectory and its measurements

is provided in Fig. 7 together with the RTS estimate and
an ensemble of N = 50 trajectories. The latter are the ini-
tial ensemble of an EnKF. The ensemble is well gathered
around the initial position but fans out wildly.
Figure 8 shows the ensemble after an update with yL

only. The measurement at the end of the trajectory pro-
vides an anchor point and quickly reduces the spread of
the ensemble. Figure 9 shows the result after processing all
measurements in sequential order from first to last. The
true trajectory and the RTS estimate are mostly covered
well by the ensemble. The EnKFwithN = 50 appears con-
sistent in this respect. Position errors for the RTS and the
EnKF are provided in Fig. 10. The EnKF performs slightly
worse than the RTS but still gives good results forN = 50,
without extra inflation or localization.
The next experiment explores the EnKF for N =

10. Figure 11 shows the ensemble after processing all
measurements. The ensemble is compactly gathered but
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Fig. 8 The ensemble of Fig. 7 after a measurement update with yL
only. Some ensemble trajectories leave and re-enter the plot area
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Fig. 9 The ensemble of Fig. 7 after updating with all measurements in
the order y1, . . . yL . The RTS solution is covered well

does not cover the true trajectory well. The EnKF is
overconfident.
A last experiment explores how well an EnKF with

N = 20 captures the uncertainty of the state estimate.
Furthermore, we discuss effects of the order in which
themeasurements are processed. Specifically, we compare
the ensemble covariance of the positions xk to the exact
cov(xk , xi), i, k = 0, . . . , L, obtained by KF updates for the
augmented state ξ .
The exact covariance after processing all measurements

is shown in Fig. 12. Row k in the matrix defines the covari-
ance function between xk and the remaining x positions.
The banded structure indicates that subsequent positions
are more related than, say, x0 and xL. Figure 13 shows the
corresponding EnKF covariance after processing the mea-
surements from y1 to yL. The off-diagonal elements do
not decay uniformly as in Fig. 12, and spurious positive
and negative correlations appear. Furthermore, the cor-
rect temporal order of measurements entails an unwanted
structure. Later xk are rated more uncertain according to
the lighter areas in the lower right corner of Fig. 13. A
covariance after processing the measurements in random
order is shown in Fig. 14. The spurious correlations persist
but the diagonal elements appear more homogeneous.
From the above experiments, we conclude that the EnKF

can provide good estimates for ensembles with N <

n. However, there is a minimum N required to obtain
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Fig. 11 An ensemble with N = 10 after updating with all
measurements in the order y1, . . . yL . The smaller ensemble is more
condensed and does not cover the RTS solution well

consistent results without further measures such as local-
ization or inflation.We have shown adverse effects such as
ensembles with too little spread and spurious correlations.
As a final note, the alert reader will recognize paral-
lels between the above example and ensemble smoothing
methods as presented in [17].

7.4 The 40-dimensional Lorenz model
Our final example is a benchmark problem
from the EnKF literature. We investigate the 40-
dimensional Lorenz-96 model3 from [53] that is used in,
e.g., [36, 38, 42, 50, 52, 63, 69].
The state x mimics an atmospheric quantity at equally

spaced locations along a circle. Its evolution is specified by
the nonlinear differential equation

ẋ(j) = (
x(j + 1) − x(j − 2)

)
x(j − 1) − x(j) + F(j),

(37)

where j = 1, . . . , 40 indexes the components of x, with
the convention that x(0) = x(40) etc. Instead of the
commonly used forcing term F(j) = 8, we assume time-
dependent Fk(j) ∼ N (8, 1) that are constant for time
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Fig. 13 EnKF (20 members) position covariance matrix cov(xi , xj) after
including all measurements in the order y1, . . . yL

intervals T = 0.05 only and act as process noise. A Runge-
Kutta method (RK4) is used to discretize (37) to obtain
the nonlinear state difference Eq. (2a) with xk = xk and
vk = Fk. The step size T corresponds to about 6 h if x
were an atmospheric quantity on a latitude circle of the
earth [53]. Although the model (37) is said to be chaotic,
the effects are only mild for short integration times T. In
our experiments, all n = 40 states are measured with
additive Gaussian noise ek ∼ N (0, I). The initial state is
Gaussian with x0 ∼ N (0,P0), where P0 is drawn from a
Wishart distribution with seed matrix In and n degrees of
freedom.
Figure 15 illustrates how the state evolves over sev-

eral time steps. There is a tendency for peaks to move
“westwards” as k increases.
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We note that there are also alternative approaches for
estimating x, for example, by first linearizing and then dis-
cretizing (37). However, we adopt the RK4 discretization
of the EnKF literature that yields a state transition that
is easy to evaluate but difficult to linearize. Because of
this, the EKF [3] cannot be applied easily and we obtain a
challenging benchmark problem.
We use sampling-based EnKF to estimate long state

sequences of L = 104 time steps. Following [38, 42], the
performance is assessed by the error

εk =
√
1
n

(x̂k|k − xk)T (x̂k|k − xk), (38)

where x̂k|k is the ensemblemean.We use the average εk for
k = 100, . . . , L, denoted by ε̄, as quantitative performance
measure for different EnKF. Useful EnKFmust yield ε̄ < 1,
which is the error when simply taking x̂k|k = yk .
First, we compute a reference solution using an EnKF

with N = 1000. Without any localization or inflation ε̄ =
0.29 is achieved. Figure 16 shows the sample covariance
P̄k|k−1 of a prediction ensemble Xk|k−1, our best guess of
the true covariance. The banded structure reveals that the
problem is suitable for localization. Hence, we construct
a matrix ρ for covariance tapering from a compactly sup-
ported correlation function [70] that is also used in [14, 26,
38, 43] and appears to be the standard choice. The chosen
ρ is a Toeplitz matrix because the components of xk are at
equidistant locations and shown in Fig. 17.
Next, EnKF with different ensemble sizes N , covariance

inflation factors c, with or without tapering, are compared.
The obtained errors ε̄ are summarized in Table 1. For
N = n = 40, we obtain a worse ε̄ than for N = 1000.
While inflation without tapering does reduce the error
slightly, the covariance tapering even yields a better result
that the EnKF with N = 1000. Further improvements are
obtained by combining inflation and tapering. Figure 18
shows the estimation error xk − x̂k|k for k = 104, N = 40,
c = 1.02, and tapering with ρ. In the background, the
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Fig. 16 Prediction covariance P̄k|k−1 for k = 30 obtained from an EnKF
with N = 1000. The banded structure justifies the use of localization

ensemble deviations X̃k|k are illustrated. The estimation
error is mostly contained in the intervals spanned by the
ensemble; hence, the EnKF is consistent. Tests on EnKF
with N = 20 reveal convergence problems, even with
inflation the initial estimation error persists.With the help
of tapering, however, a competitive error can be achieved.
Even further reduction to N = 10 is possible with taper-
ing and inflation. The required inflation factor c must be
increased to counteract the lack of ensemble spread. Sim-
ilar to Figs. 18 and 19 illustrates the estimation error and
deviation ensemble for k = 104, N = 10, c = 1.05,
and tapering with ρ. Although the obtained error is larger
than for N = 40, the ensemble deviations represent the
estimation uncertainty well.
A number of lessons have been learned from related

experiments. As alternative to the ρ in Fig. 17, a simpler
taper that contains only ones and zeros to enforce the
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Fig. 17 The employed tapering matrix ρ

Table 1 Averaged errors ε̄ for different EnKF

N c ρ ε̄

1000 1 No 0.29

40 1 No 0.44

40 1.05 No 0.33

40 1 Yes 0.29

40 1.02 Yes 0.28

20 > 1 No > 1

20 1.01 Yes 0.3

10 1.05 Yes 0.34

banded structure was used. Although this ρ was indefi-
nite, a reduction in ε̄ was achieved without any numerical
issues. Hence, the specific structure of ρ appears sec-
ondary. The smooth ρ of Fig. 17 remains preferable in
terms of ε̄, though. Sequential processing of the mea-
surements did not degrade the performance. Experiments
without process noise give the lower errors ε̄ from, e.g.,
[38, 42].

8 Conclusions
With this paper, we have given a comprehensive and easy
to understand introduction to the EnKF for signal pro-
cessing researchers. The origin of the EnKF in the KF and
its simple implementation have been demonstrated. The
unique literature review provides quick access to the most
relevant papers in the plethora of geoscientific EnKF pub-
lications. Furthermore, we have discussed the challenges
related to small ensembles for high-dimensional states,
N < n, and the available solutions such as localization
or inflation. Finally, we have tested the EnKF on signal
processing and EnKF benchmark problems.
With its scalability and simple implementation, even for

nonlinear and non-Gaussian problems, the EnKF stands
out as viable candidate for many state estimation prob-
lems. Furthermore, localization ideas and advanced con-
cepts for estimating covariance matrices and the EnKF
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Fig. 18 The estimation error xk − x̄k|k for k = 104 with the deviation
ensemble X̃k|k in the background for an EnKF with N = 40, covariance
localization, and inflation factor c = 1.02
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Fig. 19 The estimation error xk − x̄k|k for k = 104 with the deviation
ensemble X̃k|k in the background for an EnKF with N = 10, covariance
localization, and inflation factor c = 1.05

gain from the limited information in the ensembles pro-
vide new research directions for the EnKF and high-
dimensional filters in general, hopefully with an increased
participation from the signal processing community.

Endnotes
1With over 3000 citations between 1994 and 2016.
2We assume that the components can be processed

sequentially.
3Also known as the Lorenz-96, L95, L96, or L40 model.
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