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Abstract

Monte Carlo methods have become essential tools to solve complex Bayesian inference problems in different fields,
such as computational statistics, machine learning, and statistical signal processing. In this work, we introduce a novel
class of adaptive Monte Carlo methods, called adaptive independent sticky Markov Chain Monte Carlo (MCMC)
algorithms, to sample efficiently from any bounded target probability density function (pdf). The new class of
algorithms employs adaptive non-parametric proposal densities, which become closer and closer to the target as the
number of iterations increases. The proposal pdf is built using interpolation procedures based on a set of support
points which is constructed iteratively from previously drawn samples. The algorithm’s efficiency is ensured by a test
that supervises the evolution of the set of support points. This extra stage controls the computational cost and the
convergence of the proposal density to the target. Each part of the novel family of algorithms is discussed and several
examples of specific methods are provided. Although the novel algorithms are presented for univariate target
densities, we show how they can be easily extended to the multivariate context by embedding them within a
Gibbs-type sampler or the hit and run algorithm. The ergodicity is ensured and discussed. An overview of the related
works in the literature is also provided, emphasizing that several well-known existing methods (like the adaptive
rejection Metropolis sampling (ARMS) scheme) are encompassed by the new class of algorithms proposed here. Eight
numerical examples (including the inference of the hyper-parameters of Gaussian processes, widely used in machine
learning for signal processing applications) illustrate the efficiency of sticky schemes, both as stand-alone methods to
sample from complicated one-dimensional pdfs and within Gibbs samplers in order to draw from multi-dimensional
target distributions.

Keywords: Bayesian inference, Monte Carlo methods, Adaptive Markov chain Monte Carlo (MCMC), Adaptive
rejection Metropolis sampling (ARMS), Gibbs sampling, Metropolis-within-Gibbs, Hit and run algorithm

1 Introduction
Markov chain Monte Carlo (MCMC) methods [1, 2] are
very important tools for Bayesian inference and numer-
ical approximation, which are widely employed in signal
processing [3–7] and other related fields [1, 8]. A crucial
issue inMCMC is the choice of a proposal probability den-
sity function (pdf), as this can strongly affect the mixing
of the MCMC chain when the target pdf has a complex
structure, e.g., multimodality and/or heavy tails. Thus, in
the last decade, a remarkable stream of literature focuses
on adaptive proposal pdfs, which allow for self-tuning
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procedures of the MCMC algorithms, flexible move-
ments within the state space, and improved acceptance
rates [9, 10].
Adaptive MCMC algorithms are used in many statisti-

cal applications and several schemes have been proposed
in the literature [8–11]. There are two main families of
methods: parametric and non-parametric. The first strat-
egy consists in adapting the parameters of a parametric
proposal pdf according to the past values of the chain [10].
However, even if the parameters are perfectly adapted,
a discrepancy between the target and the proposal pdfs
remains. A second strategy attempts to adapt the entire
shape of the proposal density using non-parametric pro-
cedures [12, 13]. Most authors have payed more attention
to the first family, designing local adaptive random-walk
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algorithms [9, 10], due to the difficulty of approximat-
ing the full target distribution by non-parametric schemes
with any degree of generality.
In this work, we describe a general framework to

design suitable adaptive MCMC algorithms with non-
parametric proposal densities. After describing the dif-
ferent building blocks and the general features of the
novel class, we introduce two specific algorithms. Firstly,
we describe the adaptive independent sticky Metropolis
(AISM) algorithm to draw efficiently from any bounded
univariate target distribution.1 Then, we also propose
a more efficient scheme that is based on the multiple
try Metropolis (MTM) algorithm: the adaptive indepen-
dent sticky Multiple Try Metropolis (AISMTM) method.
The ergodicity of the adaptive sticky MCMC methods
is ensured and discussed. The underlying theoretical
support is based on the approach introduced in [14].
The new schemes are particularly suitable for sampling
from complicated full-conditional pdfs within a Gibbs
sampler [5–7].
Moreover, the new class of methods encompasses

different well-known algorithms available in literature:
the griddy Gibbs sampler [15], the adaptive rejection
Metropolis sampler (ARMS) [12, 16], and the independent
doubly adaptive Metropolis sampler (IA2RMS) [13, 17].
Other related or similar approaches are also discussed in
Section 6. The main contributions of this paper are the
following:

1. A very general framework, that allows practitioners
to design proper adaptive MCMC methods by
employing a non-parametric proposal.

2. Two algorithms (AISM and AISMTM), that can be
used off-the-shelf in signal processing applications.

3. An exhaustive overview of the related algorithms
proposed in the literature, showing that several
well-known methods (such as ARMS) are
encompassed by the proposed framework.

4. A theoretical analysis of the AISM algorithm,
proving its ergodicity and the convergence of the
adaptive proposal to the target.

The structure of the paper is the following. Section 2
introduces the generalities of the class of sticky MCMC
methods and the AISM scheme. Sections 3 and 4 present
the general properties, altogether with specific examples,
of the proposal constructions and the update control tests.
Section 5 introduces some theoretical results. Section 6
discusses several related works and highlights some spe-
cific techniques belonging to the class of sticky methods.
Section 7 introduces the AISMTM method. Section 8
describes the range of applicability of the proposed frame-
work, including its use within otherMonte Carlo methods
(like the Gibbs sampler or the hit and run algorithm)
to sample from multivariate distributions. Eight numeri-
cal examples (including the inference of hyper-parameters
of Gaussian processes) are then provided in Section 9.2
Finally, Section 10 contains some conclusions and possible
future lines.3

2 Adaptive independent sticky MCMC algorithms
Let π̃(x) ∝ π(x) > 0, with x ∈ X ⊆ R, be a bounded4
target density known up to a normalizing constant, cπ =
∫

X π(x)dx, from which direct sampling is unfeasible. In
order to draw from it, we employ an MCMC algorithm
with an independent adaptive proposal,

q̃t(x|St) ∝ qt(x|St) > 0, x ∈ X ,

where t is the iteration index of the correspondingMCMC
algorithm, and St = {s1, . . . , smt } with mt > 0 is the set
of support points used for building q̃t . At the t-th iter-
ation, an adaptive independent sticky MCMC method is
conceptually formed by three stages (see Fig. 1):

1. Construction of the non-parametric proposal : given
the nodes in St , the function qt is built using a
suitable non parametric procedure that provides a
function which is closer and closer to the target as the
number of pointsmt increases. Section 3 describes
the general properties that must be fulfilled by a
suitable proposal construction, as well as specific
procedures to build this proposal.

Fig. 1 Graphical representation of a generic adaptive independent sticky MCMC algorithm
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2. MCMC stage: some MCMCmethod is applied in
order to produce the next state of the chain, xt ,
employing q̃t(x|St) as (part of the) proposal pdf. This
stage produces the next state of the chain, xt+1, and
an auxiliary variable z (see Tables 1 and 4), used in
the following update stage.

3. Update stage: A statistical test on the auxiliary
variable z is performed in order to decide whether to
increase the number of points in St or not, defining a
new support set, St+1, which is used to construct the
proposal at the next iteration. The update stage
controls the computational cost and ensures the
ergodicity of the generated chain (see Appendix A).
Section 4 is devoted to the design of different suitable
update rules.

In the following section, we describe the simplest pos-
sible sticky method, obtained by using the MH algorithm,
whereas in Section 7 we consider a more sophisticated
technique that employs the MTM scheme.5

2.1 Adaptive independent sticky Metropolis
The simplest adaptive independent sticky method is the
adaptive independent stickyMetropolis (AISM) technique,
outlined in Table 1. In this case, the proposal pdf q̃t(x|St)
changes along the iterations (see step 1 of Table 1) follow-
ing an adaptation scheme that relies upon a suitable inter-
polation given the set of support points St (see Section 3).
Step 3 of Table 1 applies a statistical control to update the
set St . The point z, rejected at the current iteration of the
algorithm in the MH test, is added to St with probability

Pa(z) = ηt(z, dt(z)), (1)

Table 1 Adaptive independent sticky Metropolis (AISM)

For t = 0, . . . , T − 1:

1 Construction of the proposal: Build a proposal function qt(x|St)

via a suitable procedure using a set of support pointsSt (see
Section 3).

2 MH step:

2.1 Draw x′ ∼ q̃t(x|St) ∝ qt(x|St).
2.2 Set xt = x′ and z = xt−1 with probability

α = min

[

1,
π(x′)qt(xt−1|St)

π(xt−1)qt(x′|St)

]

.

Otherwise, set xt = xt−1 and z = x′ .

3 Test to updateSt : Let ηt(z, d) : X × R
+ →[ 0, 1] be an increasing

function w.r.t. the variable d, such that ηt(z, 0) = 0 and
lim

d→∞ ηt(z, d) = 1. Then, set

St+1 =
⎧

⎨

⎩

St ∪ {z}, with prob. Pa(z) = ηt(z, dt(z)),

St , with prob. 1 − Pa(z),

where dt(z) = |π(z) − qt(z|St)|.

where ηt(z, d) : X × R
+ →[ 0, 1]is an increasing test

function w.r.t. the variable d, such that ηt(z, 0) = 0, and
d = dt(z) = ∣

∣π(z) − qt(z|St)
∣

∣ . is the point distance
between π and qt at z. The rationale behind this test is to
use information from the target density in order to include
in the support set only those points where the proposal
pdf differs substantially from the target value at z. Note
that, since z is always different from the current state (i.e.,
z 
= xt for all t), then the proposal pdf is independent from
the current state according to Holden’s definition [14], and
thus the theoretical analysis is greatly simplified.

3 Construction of the sticky proposals
There are many alternatives available for the construction
of a suitable sticky proposal (SP). However, in order to be
able to provide some theoretical results in Section 5, let
us define precisely what we understand here by a sticky
proposal.

Definition 1 (Valid Adaptive Proposal) Let us consider
a target density, π̃(x) ∝ π(x) > 0 for any x ∈ X ⊆ R

(the target’s support), and a set of mt = |St| support points,
St = {s1, . . . , smt } with si ∈ X for all i = 1, . . . ,mt. An
adaptive proposal built using St via some non-parametric
interpolation approach is considered valid if the following
four properties are satisfied:

1. The proposal function is positive, i.e., qt(x|St) > 0
for all x ∈ X and for all possible sets St with t ∈ N.

2. Samples can be drawn directly and easily from the
resulting proposal, q̃t(x|St) ∝ qt(x|St), using some
exact sampling procedure.

3. For any bounded target, π(x), the resulting proposal
function, qt(x|St), is also bounded. Furthermore,
defining It = (s1, smt ], we have

max
x∈It

qt(x|St) ≤ max
x∈It

π(x).

4. The proposal function, qt(x|St), has heavier tails
than the target, i.e., defining
Ic
t = (−∞, s1]∪(smt ,∞), we have

qt(x|St) ≥ π(x) ∀x ∈ Ic
t .

Condition 1 guarantees that the function qt(x|St) leads
to a valid pdf, q̃t(x|St), that covers the entire support of
the target. Condition 2 is required from a practical point
of view to obtain efficient algorithms. Finally, conditions
3 and 4 are required by the proofs of Theorems 3 and 1,
respectively, and also make sense from a practical point of
view: if the target is bounded, we would expect the pro-
posal learnt from it to be also bounded and this proposal
should be heavier tailed than the target in order to avoid
under-sampling the tails. Now we can define precisely
what we understand by a “sticky” proposal.
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Definition 2 (Sticky Proposal (SP)) Let us consider a
valid proposal pdf according to Definition 1. Let us assume
also that the i-th support point is distributed according to
pi(x) (i.e., si ∼ pi(x)) such that pi(x) > 0 for any x ∈ X and
i = 1, . . . ,mt. Then, a sticky proposal is any valid proposal
pdf s.t. the L1 distance between qt(x) and π(x) vanishes to
zero when the number of support points increases, i.e., if
mt → ∞,

D1(π , qt) = ‖π − qt‖1 =
∫

X
|π(z) − qt(z|St)|dz

=
∫

X
dt(z)dz → 0, (2)

where dt(z) = |π(z) − qt(z|St)| is the L1 distance between
π(x) and qt(x) evaluated at z ∈ X , and (2) implies almost
everywhere (a.k.a., almost surely) convergence of qt(x)
to π(x).

In the following, we provide some examples of construc-
tions that fulfill all the conditions in Definitions 1 and 2.
All of them approximate the target pdf by interpolating
points that belong to the graph of the target function π .

3.1 Examples of constructions
Given St = {s1, . . . , smt } at the t-th iteration, let us define
a sequence of mt + 1 intervals: I0 = (−∞, s1], Ij =
(sj, sj+1] for j = 1, . . . ,mt − 1, and Imt = (smt ,+∞).
The simplest possible procedure uses piecewise constant
(uniform) pieces in Ii, 1 ≤ i ≤ mt − 1, with two expo-
nential tails in the first and last intervals [13, 15, 18].
Mathematically,

qt(x|St) =
⎧

⎨

⎩

E0(x), x ∈ I0,
max {π(si),π(si+1)} , x ∈ Ii,
Emt (x), x ∈ Imt ,

(3)

where 1 ≤ i ≤ mt − 1 and E0(x), Emt (x) represent
two exponential pieces. These two exponential tails can
be obtained simply constructing two straight lines in
the log-domain as shown in [12, 13, 19]. For instance,
defining V (x) = log[π(x)], we can build the straight
line w0(x) passing through the points (s1,V (s1)) and
(s2,V (s2)), and the straight line wmt (x) passing through
the points (smt−1,V (smt−1)) and (smt ,V (smt )). Hence, the
proposal function is defined as E0(x) = exp (w0(x)) for
x ∈ I0 and Emt (x) = exp

(

wmt (x)
)

for x ∈ Imt . Other
kinds of tails can be built, e.g., using Pareto pieces as
shown in Appendix E.2. Alternatively, we can use piece-
wise linear pieces [20]. The basic idea is to build straight
lines, Li,i+1(x), passing through the points (si,π(si)) and
(si+1,π(si+1)) for i = 1, . . . ,mt − 1, and two exponential
pieces, E0(x) and Emt (x), for the tails:

qt(x|St) =
⎧

⎨

⎩

E0(x), x ∈ I0,
Li,i+1(x), x ∈ Ii,
Emt (x), x ∈ Imt ,

(4)

with i = 1, . . . ,mt − 1. Note that drawing samples from
these trapezoidal pdfs inside Ii = (si, si+1] is straightfor-
ward [20, 21]. Figure 2 shows examples of the construction
of qt(x|St) using Eq. (3) or (4) with different number
of points, mt = 6, 8, 9, 11. See Appendix A for further
considerations.
A more sophisticated and costly construction has been

proposed for the ARMS method in [12]. However, note
that this construction does not fulfill Condition 3 in
Definition 1. A similar construction based on B-spline
interpolation methods has been proposed in [22, 23] to
build a non-adaptive randomwalk proposal pdf for anMH
algorithm. Other alternative procedures can also be found
in the literature [13, 16, 18–20].

a b c d

e f g h

Fig. 2 Examples of the proposal construction qt considering a bimodal target π , using the procedures described in Eq. (3) for a–d and in Eq. (4) for
e–h withmt = 6, 8, 9, 11 support points, respectively
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4 Update of the set of support points
In AISM, a suitable choice of the function ηt(z, d) is
required. Although more general functions could be
employed, we concentrate on test functions that fulfill the
conditions provided in the following definition.

Definition 3 (Test Function) Let us denote the L1 dis-
tance between the target and the proposal at the t-th
iteration, for any z ∈ X , as d = dt(z) = |π(z) − qt(z)|. A
valid test function, ηt(z, d), is any function that fulfills all
of the following properties:

1. ηt(z, d) : X × R
+ →[ 0, 1].

2. ηt(z, 0) = 0 for all z ∈ X and t ∈ N.
3. lim

d→∞
ηt(z, d) = 1 for all z ∈ X and t ∈ N.

4. ηt(z, d) is a strictly increasing function w.r.t. d, i.e.,
ηt(z, d2) > ηt(z, d1) for any d2 > d1.

The first condition ensures that we obtain a valid prob-
ability for the addition of new support points, Pa(z) =
ηt(z, d), whereas the remaining three conditions imply
that support points are more likely to be added in those
areas where the proposal is further away from the tar-
get, with a non-null probability of adding new points
in places where d > 0. In particular, Condition 4
is required by several theoretical results provided in
the Appendix. However, update rules that do not ful-
fill this condition can also be useful, as discussed in the
following. Figure 3 depicts an example of function ηt
when ηt(z, d) = ηt(d). Note that, for a given value of
z, ηt satisfies all the properties of a continuous distri-
bution function (cdf) associated to a positive random
variable. Therefore, any pdf for positive random variables
can be used to define a valid test function ηt through its
corresponding cdf.

4.1 Examples of update rules
Below, we provide three different possible update rules.
First of all, we consider the simplest case: ηt(z, d) = η(d).
As a first example, we propose

ηt(d) = 1 − e−βd, (5)

where β > 0 is a constant parameter. Note that this is the
cdf associated to an exponential random variable.
A second possibility is

ηt(d) =
{

1, if d > εt ,
0, if d ≤ εt ;

(6)

where 0 < εt < Mπ , with Mπ = max
z∈X {π(z)},6 is some

appropriate time-varying threshold that can either follow
some user pre-defined rule or be updated automatically.7
Alternatively, we can also set this threshold to a fixed
value, εt = ε, as done in the simulations. In this case, set-
ting ε ≥ Mπ implies that the update of St never happens
(i.e., new support points are never added to the support
set), whereas candidate nodes would be incorporated to
St almost surely by setting ε → 0. For any other value of
ε (i.e., 0 < ε < Mπ ), the adaptation would eventually stop
and no support points would be added after some random
number of iterations. Note that this update rule does not
fulfill Condition 4 in Definition 3, implying that some of
the theoretical results of Section 5 (e.g., Conjecture 1) are
not applicable. However, we have included it here because
it is a very simple rule that has shown a good performance
in practice and can be useful to limit the number of sup-
port points by using a fixed value of ε. Finally, note also
that Eq. (6) corresponds to the cdf associated to a Dirac’s
delta located at εt .
A third alternative is

ηt(z, d) = d
max{π(z), qt(z|St)} . (7)

Fig. 3 Graphical representation of the underlying idea behind the update control test. For simplicity, in this figure, we have assumed ηt(z, d) = ηt(d).
As the proposal function qt becomes closer and closer to π , the probability of adding a new node toSt decreases
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for z ∈ X and 0 ≤ d ≤ max{π(z), qt(z|St)}, since

d = |π(z) − qt(z|St)|,
= max{π(z), qt(z|St)} − min{π(z), qt(z|St)},
≤ max{π(z), qt(z|St)}, (8)

This rule appears in other related algorithms, as dis-
cussed in Section 6.1. Furthermore, it corresponds to the
cdf of a uniform random variable defined in the inter-
val [0,max{π(z), qt(z|St)}]. Hence, for a given value of z,
the update test can be implemented as follows: (a)
draw a samples v′ uniformly distributed in the interval
[

0,max{π(z), qt(z|St)}
]

; (b) if v′ ≤ dt(z), add z to the
set of support points. A graphical representation of this
rule is given in Fig. 4, whereas Table 2 summarizes all the
previously described update rules.

5 Theoretical results
In this section, we provide some theoretical results regard-
ing the ergodicity of the proposed approach, the conver-
gence of a sticky proposal to the target, and the expected
growth of the number of support points of the proposal.
First of all, regarding the ergodicity of the AISM, we have
the following theorem.

Theorem 1 (Ergodicity of AISM) Let x1, x2, . . . ,
xT−1 be the set of states generated by the AISM
algorithm in Table 1, using a valid adaptive proposal
function, q̃t(x|St) = 1

ct qt(x|St), constructed according to
Definition 1, and a test rule fulfilling the conditions in
Definition 3. The pdf of xt, pt(x), converges geometrically in
total variation (TV) norm to the target, π̃(x) = 1

cπ π(x), i.e.,

‖pt(x) − π̃(x)‖TV ≤ 2
t
∏

�=1
(1 − a�), (9)

where

a� = min
{

1,
cπ
c�

min
x∈X

{

q�(x|S�)

π(x)

}}

. (10)

with cπ and c� denoting the normalizing constants of π(x)
and q�(x|S�), respectively.

Proof See Appendix A.

Theorem 1 ensures that the pdf of the states of the
Markov chain becomes closer and closer to the target pdf
as t increases, since 0 ≤ 1−at ≤ 1 and thus the product in
the right hand side of (9) is a decreasing function of t. This
theorem is a direct consequence of Theorem 2 in [14], and
ensures the ergodicity of the proposed adaptive MCMC
approach. Regarding the convergence of a sticky proposal
to the target, we consider the following conjecture.

Conjecture 1 (Convergence of SP to the target) Let
π̃(x) = 1

cπ π(x) be a continuous and bounded target
pdf that has bounded first and second derivatives for all
x ∈ X . Let q̃t(x|St) = 1

ct qt(x|St) be a sticky proposal
pdf, constructed according to Definition 1 by using either
a piecewise constant (PWC) or piecewise linear (PWL)
approximation (given by Eqs. (3) and (4), respectively). Let
us also assume that the support points have been obtained
by applying a test rule according to Definition 3 within the
AISM algorithm described in Table 1. Then, it is reason-
able to assume that qt(x|St) converges in L1 distance to
π(x) as t increases (i.e., as the number of support points
grows), i.e., as t → ∞

D1(π , qt) = ‖π − qt‖1 =
∫

X
|π(z) − qt(z|St)|dz → 0.

An intuitive argumentation is provided in Appendix A.

a b c

Fig. 4 Graphical interpretation of the third rule in Eq. (7) for the update control test. Given a point z, this test can be implemented as following:
(1) draw a sample v′ ∼ U([ 0, max{π(z), qt(z|St)}] ), (2) then if v′ ≤ dt(z), add z to the set of support points, i.e.,St+1 = St ∪ {z}. a The interval
[ 0, max{π(z), qt(z|St)}] and the distance dt(z). b The case when v′ ≤ dt(z) so that the point is incorporated in the set of support points whereas
c illustrates the case when v′ > dt(z); hence,St+1 = St . Note that as the proposal function qt becomes closer and closer to π (i.e., dt(z) decreases
for any z), the probability of adding a new node toSt decreases
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Table 2 Examples of test function ηt(z, d) for different update
rules (recall that d = dt(z) = |qt(z|St) − π(z)|)
Rule 1 ηt(d) = 1 − e−βd

Rule 2
ηt(d) =

⎧

⎨

⎩

1, if d > εt ,

0, if d ≤ εt

Rule 3 ηt(z, d) = d
max{π(z),qt(z|St)}

In the first and second cases, we have ηt(z, d) = ηt(d)

Note that Conjecture 1 essentially shows that the
“sticky” condition is fulfilled for PWC and PWL propos-
als and continuous, bounded targets with bounded first
and second derivatives. Note also that this conjecture
implies that qt(x|St) → π(x) almost everywhere. Com-
bining Theorem 1 and Conjecture 1 we get the following
corollary.

Corollary 2 Let x1, x2, . . . , xT−1 be the set of states gen-
erated by the AISM algorithm in Table 1, using either
a PWC or a PWL sticky proposal function, q̃t(x|St) =
1
ct qt(x|St), constructed according to Definition 2 and a test
rule fulfilling the conditions in Definition 3. Let π̃(x) =
1
cπ π(x) be a continuous and bounded target pdf that has
bounded first and second derivatives for all x ∈ X . Then,

‖π(x) − qt(x)‖TV → 0 as t → ∞.

Proof By Theorem 1 we have

‖pt(x) − π̃(x)‖TV ≤ 2
t
∏

�=1
(1 − a�),

with the a� given by Eq. (10). Now, since q�(x|S�) → π(x)
almost everywhere by Conjecture 1, we have c� → cπ
and thus a� → 1 as � → ∞. Consequently, ‖π(x) −
qt(x)‖TV → 0 as t → ∞.

Finally, we also have a bound on the expected growth
of the number of support points, as provided by the
following theorem.

Theorem 3 (Expected rate of growth of the number of
support points) Let dt(z) = |π(z) − qt(z)| be the L1 dis-
tance between the bounded target, π(x), and an arbitrary
sticky proposal function, qt(x), constructed according to
Definition 2. Let also ηt(z, d) = ηt(d) be an acceptance
function that only depends on z through d = dt(z) and
fulfills the conditions in Definition 3. The expected proba-
bility of adding a new support point in the AISM algorithm
of Table 1 at the t-th iteration is

E [Pa|xt−1,St] ≤ ηt(dt(xt−1) + C · D1(π , qt)), (11)

where D1(π , qt) = ∫

X dt(z)dz, and C = maxz∈X q̃t(z|St)
is a constant that depends on the sticky proposal

used. Furthermore, under the conditions of Conjecture 1,
E[Pa|xt−1,St]→ 0 as t → ∞.

Proof See Appendix C.1.

Theorem 3 sets a bound on the expected probability
of adding new support points, and thus on the expected
rate of growth of the number of support points. Fur-
thermore, under certain smoothness assumptions for the
target (i.e., that π(x) is twice continuously differentiable),
it also guarantees that this expectation tends to zero as the
number of iterations increases, hence implying that less
points are added as the algorithm evolves. Finally, note
that Theorem 3 has been derived only for ηt(z, d) = ηt(d).
However, under certain mild assumptions, it can be easily
extended to more general test functions, as stated in the
following corollary.

Corollary 4 Let ηt(z, dt(z)) = ηt(˜dt(z)), where˜dt(z) =
˜dt(π(z), qt(z)) is some valid semi-metric and ηt(˜dt(z)) is
a concave function of˜dt(z). Then, if the rest of the condi-
tions in Theorem 3 are satisfied, the expected probability
of adding a new support point in the AISM algorithm of
Table 1 at the t-th iteration is

E[Pa|xt−1,St]≤ ηt
(

˜dt(xt−1) + C ·˜D1(π , qt)
)

, (12)

where ˜D1(π , qt) = ∫

X
˜dt(z)dz and C = maxz∈X q̃t(z|St).

Furthermore, under the conditions of Conjecture 1,
E [Pa|xt−1,St] → 0 as t → ∞.

Proof See Appendix C.2.

Note that Corollary 4 allows us to extend the results
of Theorem 3 to update rule 3, which corresponds to
ηt(z, dt(z)) = ˜dt(z) with ˜dt(z) = d

max{π(z),qt(z|St)} and d
denoting the L1 norm.

6 Related works
6.1 Other examples of sticky MCMCmethods
The novel class of adaptive independent MCMCmethods
encompasses several existing algorithms already available
in the literature, as shown in Table 3. We denote the pro-
posal pdf employed in these methods as pt(x) and, for
simplicity, we have removed the dependence on St in the
function qt(x). The Griddy Gibbs Sampler [15] builds a
proposal pdf as in Eq. (3), which is never adapted later.
ARMS [12] and IA2RMS [13] use as proposal density

pt(x) ∝ min
{

qt(x),π(x)
}

,

where qt(x) is built using different alternative methods
[12, 13, 16, 18]. Note that it is possible to draw easily
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Table 3 Special cases of sticky MCMC algorithms

Features Griddy Gibbs ARMS IA2RMS

Main reference [15] [12] [13]

Proposal pdf pt(x) pt(x) = q̃t(x) pt(x) ∝ min{qt(x),π(x)} pt(x) ∝ min{qt(x),π(x)}
Proposal Constr. Eq. (3) [12],[16] Eqs. (3)-(4), [13]

Update rule or Pa(z) Never update, i.e., If qt(z) ≥ π(x) then Rule 3, Rule 3

Rule 2 If qt(z) < π(x) then

with ε = ∞, i.e., no update, i.e.,

Pa(z) = 0 for all z. Rule 2 with ε = ∞, i.e.,

Pa(z) = max
[

1 − π(z)
qt(z)

, 0
]

The ARS method in [19] is a special case of ARMS and IA2RMS, so that ARS can be considered also belonging to the new class of techniques

from pt(x) ∝ min{qt(x),π(x)} using the rejection sam-
pling principle [24, 25], i.e., using the following procedure
(in order to draw one sample xa):

1. Draw x′ ∼ q̃t(x) ∝ qt(x) and u′ ∼ U([ 0, 1]).
2. If u′ ≤ π(x′)

qt(x′) , then set xa = x′.
3. Otherwise, if u′ >

π(x′)
qt(x′) , repeat from 1.

The accepted sample xa has pdf pt(x) ∝ min{qt(x),
π(x)}. Moreover, ARMS adds new points to St using the
update Rule 3, only when qt(z) ≥ π(z), so that

Pa(z) = 1 − π(z)
qt(z)

Otherwise, if qt(z) < π(z), ARMS does not add new
nodes (see the discussion in [13] about the issues in
ARMS mixing). Then, the update rule for ARMS can be
written as

Pa(z) = max
[

1 − π(z)
qt(z)

, 0
]

. (13)

Furthermore, the double update check used in IA2RMS
coincides exactly with Rule 3 when

pt(x) ∝ min{qt(x),π(x)}
is employed as proposal pdf. Finally, note that ARMS and
IA2RMS contain ARS in [19] as special case when qt(x) ≥
π(x), ∀x ∈ X and ∀t ∈ N. Hence, ARS can be considered
also a special case of the new class of algorithms.

6.2 Related algorithms
Other related methods, using non-parametric proposals,
can be found in the literature. Samplers for drawing from
univariate pdfs, using similar proposal constructions, has
been proposed in [20] but the sequence of adaptive pro-
posals does not converge to the target. Interpolation pro-
cedures for building the proposal pdf are also employed
in [22, 23]. The authors in [22, 23] suggest to build the
proposal by b-spline procedures. However, in this case,

the resulting proposal is a random walk-type (not inde-
pendent) and the resulting algorithm is not adaptive.
Furthermore, there is not a convergence of the shape of
proposal to the shape to target, but only local approxima-
tions via b-spline interpolation. The methods [12, 13, 15]
are included in the sticky class of algorithms, as pointed
out in Section 6.1. In [16], the authors suggest an alter-
native proposal construction considering pieces of second
order polynomial, in order to be used with the ARMS
structure [12].
The adaptive rejection sampling (ARS) method [19, 26]

is not an MCMC technique, but it is strongly related to
the sticky approach, since it also employs an adaptive
non-parametric proposal pdf. ARS needs to be able to
build a proposal such that qt(x) ≥ π(x), ∀x ∈ X and
∀t ∈ N. This is possible only when more requirements
about the target are assumed (for instance, log-concavity).
For this reason, several extensions of the standard ARS
have been also proposed [25, 27, 28], for tackling wider
classes of target distributions. In [29], the non-parametric
proposal is still adapted by in this case the number of
support points remains constant, fixed in advance by the
user. Different construction non-parametric procedures
in order to address multivariate distributions have been
also presented [21, 30, 31].
Other techniques have been developed to be applied

specifically for Monte Carlo-within-in-Gibbs scenario
when it is possible to draw directly from the full-
conditional pdfs. In [32], an importance sampling approx-
imation of the univariate target pdf is employed and
a resampling step is performed in order to provide an
“approximate” sample from the full-conditional. In [18],
the authors suggest a non-adaptive strategy for building a
suitable non-parametric proposal via interpolation. In this
work, the interpolation procedure is first performed using
a huge amount of nodes and then many of them are dis-
carded, according to a suitable criteria. Several other alter-
natives involving MH-type algorithms have been used for
sampling efficiently from the full-conditional pdfs within
a Gibbs sampler [5–7, 15, 33–35].
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7 Adaptive independent sticky MTM
In this section, we consider an alternative MCMC struc-
ture for the second stage described in Section 2: using a
multiple-try Metropolis (MTM) approach [36, 37]. The
resulting technique, Adaptive Independent Sticky MTM
(AISMTM), is an extension of AISM that considers multi-
ple candidates as possible new state, at each iteration. This
improves the ability of the chain to explore the state space
[37]. At iteration t, AISMTM builds the proposal density
qt(x|St) (step 1 of Table 4) using the current set of support
points St . Let xt = x be the current state of the chain and
x′
j (j = 1, . . . ,M) a set of i.i.d. candidates simulated from
qt(x|St) (see step 2 of Table 4). Note that AISMTM uses
an independent proposal [2], just like AISM. As a conse-
quence, the auxiliary points in step 2.3 of Table 4 can be
deterministically set ([1], pp. 119-120), [37].
In step 2, a sample x′ is selected among the set of can-

didates {x′
1, . . . , x′

M}, with probability proportional to the
importance sampling weights,

wt(z) = π(z)
qt(z|St)

, ∀j ∈ {1, . . . ,M}.
The selected candidate is then accepted or rejected

according to the acceptance probability α given in step 2.
Finally, step 3 updates the set St ,including a new point

z′ ∈ Z = {z1, . . . , zM},
with probability Pa(z′) = ηt(z′, dt(z′)). Note that xt /∈ Z ,
and thus AISMTM is an independent MCMC algorithm

Table 4 Adaptive independent sticky Multiple-try Metropolis

For t = 0, . . . , T − 1:

1 Construction of the proposal: Build a proposal function qt(x|St)

via a suitable interpolation procedure using the set of support
pointsSt (see Section 3).

2 MTM step:

2.1 Draw x′1, . . . , x′M ∼ q̃t(x|St) ∝ qt(x|St) and compute the

weights wt(x′i ) = π(x′i )
qt(x′i |St)

.

2.2 Select x′ = x′j among theM tries with probability
proportional to wt(x′i ), for i = 1, . . . ,M.

2.3 Set the auxiliary point x∗i = x′i and zi = x′i for i 
= j.
Moreover, set x∗j = xt−1.

2.4 Set xt = x′ and zj = xt−1 with probability

α = min

[

1,
wt(x′1) + · · · + wt(x′M)

wt(x∗1 ) + · · · + wt(x∗M)

]

.

Otherwise, set xt = xt−1 and zj = x′ .

3 Test to updateSt : (see Section 7.1) Select a point z′ within the set
{z1, . . . , zM}, with probability proportional to some suitable
weights ϕt(zi), for i = 1, . . . ,M, and set

St+1 =
⎧

⎨

⎩

St ∪ {z′}, with prob. Pa(z) = ηt(z′ , dt(z′)),
St , with prob. 1 − Pa(z),

where dt(z) = |π(z) − qt(z|St)|. For further information see
Section 7.1.

according to Holden’s definition [14]. For the sake of sim-
plicity, we only consider the case where a single point can
be added to St at each iteration. However, this update step
can be easily extended to allow for more than one sam-
ple to be included into the set of support points. Note also
that AISMTM becomes AISM forM = 1.
AISMTM provides a better choice of the new support

points than AISM (see Section 9). The price to pay for this
increased efficiency is the higher computational cost per
iteration. However, since the proposal quickly approaches
the target, it is possible to design strategies with a decreas-
ing number of tries (M1 ≥ M2 ≥ · · · ≥ Mt ≥ · · · ≥ MT )
in order to reduce the computational cost.

7.1 Update rules for AISMTM
The update rules presented above require changes that
take into account the multiple samples available, when
used in AISMTM. As an example, let us consider the
update scheme in Eq. (7). Considering for simplicity that
only a single point can be incorporated to St , the update
step forSt can be split in two parts: choose a “bad” point in
Z ∈ {z1, . . . , zM} and then test whether it should be added
or not. Thus, first a z′ = zi is selected among the samples
in Z with probability proportional to

ϕt(zi) = max
{

wt(zi),
1

wt(zi)

}

= max{π(zi), qt(zi|St)}
min{π(zi), qt(zi|St)} ,

= dt(zi)
min{π(zi), qt(zi|St)} + 1,

(14)

for i = 1, . . . ,M.8 This step selects (with high probability)
a sample where the proposal value is far from the target.
Then, the point z′ is included in St with probability

Pa(z′) = ηt(z′, dt(z′)) = 1 − 1
ϕt(z′)

,

= dt(z′)
max{π(z′), qt(z′|St)} ,

exactly as in Eq. (7). Therefore, the probability of adding a
point zi to St is

PZ(zi) = ϕt(zi)ηt(zi, dt(zi)),

= ϕt(zi)Pa(zi) = ϕt(zi) − 1
∑M

j=1 ϕt(zj)
,

that is a probability mass function defined over M + 1
elements: z1, . . ., zM and the event {no addition} that, for
simplicity, we denote with the empty set symbol ∅. Thus,
the update rule in step 3 of Table 4 can be rewritten as a
unique step,
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St+1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

St ∪ {z1}, with prob. PZ(z1) = ϕt(z1)−1
∑M

j=1 ϕt(zj)
,

...
St ∪ {zM}, with prob. PZ(zM) = ϕt(zM)−1

∑M
j=1 ϕt(zj)

,

St , with prob. PZ(∅) = M
∑M

j=1 ϕt(zj)
,

(15)

where we have used 1 −∑(r)
i=1 PZ(zi) = M

∑M
j=1 ϕt(zj)

.

8 Range of applicability andmultivariate
generation

The range of applicability of the sticky MCMCmethods is
briefly discussed below. On the one hand, sticky MCMC
methods can be employed as stand-alone algorithms.
Indeed, in many applications, it is necessary to draw sam-
ples from complicated univariate target pdf (as example
in signal processing, see [38]). In this case, the sticky
schemes provide virtually independent samples (i.e., with
correlation close to zero) very efficiently. It is also impor-
tant to remark that AISM and AISMTM also provide
automatically an estimation of the normalizing constant of
the target (a.k.a.marginal likelihood or Bayesian evidence)
(since, with a suitable choice of the update test, the pro-
posal approaches the target pdf almost everywhere). This
is usually a hard task using MCMCmethods [1, 2, 11].
AISM and AIMTM can be also applied directly to

draw from a multivariate distribution if a suitable con-
struction procedure of the multivariate sticky proposal is
designed (e.g, see [30, 31, 39, 40] and ([21], Chapter 11)).
However, devising and implementing such procedures in
high dimensional state spaces are not easy tasks. There-
fore, in this paper, we focus on the use of the sticky
schemes within other Monte Carlo techniques (such as
Gibbs sampling or the hit and run algorithm) to draw from
multivariate densities. More generally, Bayesian inference
often requires drawing samples from complicated multi-
variate posterior pdfs, π̃(x|y) with

x =[ x1, . . . , xL]∈ R
L, L > 1.

For instance, this happens in blind equalization and
source separation, or spectral analysis [3, 4]. For simplic-
ity, in the following we denote the target pdf as π̃(x).
When direct sampling from π̃(x) in the spaceRL is unfea-
sible, a common approach is the use of Gibbs-type sam-
plers [2]. This type of methods split the complex sampling
problem into simpler univariate cases. Below we briefly
summarize some well-known Gibbs-type algorithms.
Gibbs sampling. Let us denote as x(0) a randomly

chosen starting point. At iteration k ≥ 1, a Gibbs sam-
pler obtains the �-th component (� = 1, . . . , L) of x,
x�, drawing from the full conditional π̃�

(

x|x(k)
1:�−1, x

(k−1)
�+1:L

)

given all the information available, namely:

1. Draw x(k)
� ∼ π̃�

(

x|x(k)
1:�−1, x

(k−1)
�+1:L

)

for � = 1, . . . , L.

2. Set x(k) =
[

x(k)
1 , . . . , x(k)

L

]�
.

The steps above are repeated for k = 1, . . . ,NG,
where NG is the total number of Gibbs iterations. How-
ever, even sampling from π̃� can often be complicated.
In some specific situations, rejection samplers [41–45]
and their adaptive versions, adaptive rejection sampling
(ARS) algorithms, are employed to generate (one) sam-
ple from π̃� [12, 19, 25, 27–29, 40, 46, 47]. The ARS
algorithms are very appealing techniques since they con-
struct a non-parametric proposal in order to mimic
the shape of the target pdf, yielding in general excel-
lent performance (i.e., independent samples from π̃�

with an high acceptance rate). However, their range
of application is limited to some specific classes of
densities [19, 47].
More generally, it is impossible to draw from a full-

conditional pdf π̃� (neither a rejection sampler can be
applied), an additional MCMC sampler is required in
order to draw from π̃� [33]. Thus, in many practical sce-
narios, we have an MCMC (e.g., an MH sampler) inside
another MCMC scheme (i.e., the Gibbs sampler). In the
so-called MH-within-Gibbs approach, only one MH step
is often performed within each Gibbs iteration, in order to
draw from each complicated full-conditionals. This hybrid
approach preserves the ergodicity of the Gibbs sampler
and provides good performance in many cases. On the
other hand, several authors have noticed that using a sin-
gle MH step for the internal MCMC is not always the best
solution in terms of performance (cf. [48]). Other approx-
imated approaches have been also proposed, considering
the application of the importance sampling within the
Gibbs sampler [32].
Using a larger number of iterations for the MH algo-

rithm, there is more probability of avoiding the “burn-
in” period so that the last sample be distributed as
the full-conditional [33–35]. Thus, this case is closer to
the ideal situation, i.e., sampling directly from the full-
conditional pdf. However, unless the proposal is very
well tailored to the target, a properly designed adap-
tive MCMC algorithm should provide less correlated
samples than a standard MH algorithm. Several more
sophisticated (adaptive or not) MH schemes for the appli-
cation “within-Gibbs” have been proposed in literature
[12, 13, 16, 18, 20, 23, 49, 50]. In general, these tech-
niques employ a non-parametric proposal pdf in the same
fashion of the ARS schemes (and as the sticky MCMC
methods). It is important to remark that performing
more steps of a standard or adaptive MH within a Gibbs
sampler can provide better performance than performing
a longer Gibbs chain applying only one MH step (see, e.g.,
[12, 13, 16, 17]).
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Recycling Gibbs sampling. Recently, an alternative
Gibbs scheme, called Recycling Gibbs (RG) sampler, has
been proposed in literature [51]. The combined use of
RG with a sticky algorithm is particularly interesting since
RG recycles and employs all the samples drawn from
each full-conditional pdfs in the final estimators. Clearly,
this scheme fits specially well for the use of a adaptive
stickyMCMC algorithm where different MCMC steps are
performed for each full-conditional pdfs.
Hit and Run. The Gibbs sampler only allows move-

ments along the axes. In certain scenarios, e.g., when the
variables x� are highly correlated, this can be an important
limitation that slows down the convergence of the chain
to the stationary distribution. The Hit and Run sampler is
a valid alternative. Starting from x(0), at the k-th iteration,
it applies the following steps:

1. Choose uniformly a direction d(k) in R
L. For

instance, it can be done drawing L samples v� from a
standard GaussianN (0, 1), and setting

d(k) = v√
vv� ,

where v =[ v1, . . . , vL].
2. Set x(k) = x(k−1) + λ(k)d(k) where λ(k) is drawn from

the univariate pdf

p(λ) ∝ π̃
(

x(k−1) + λd(k)
)

,

where π̃
(

x(k−1)
� + λd(k)

)

is a slice of the target pdf

along the direction d(k).

Also in this case, we need to be able to draw from
the univariate pdf p(λ) using either some direct sampling
technique or another Monte Carlo method (e.g., see [50]).
There are several methods similar to the Hit and Run

where drawing from a univariate pdf is required; for
instance, the most popular one is the Adaptive Direction
Sampling [52].
Sampling from univariate pdfs is also required inside

other types of MCMC methods. For instance, this is the
case of exchange-type MCMC algorithms [53] for han-
dling models with intractable partition functions. In this
case, efficient techniques for generating artificial obser-
vations are needed. Techniques which generalize the
ARS method, using non-parametric proposals, have been
applied for this purpose (see [54]).

9 Numerical simulations
In this section, we provide several numerical results
comparing the sticky methods with several well-known
MCMC schemes, such as the ARMS technique [12],
the adaptive MH method in [10], and the slice sampler
[55].9 The first two experiments (which can be easily
reproduced by interested users) correspond to bi-modal

one-dimensional and two-dimensional targets, respec-
tively, and are used as benchmarks to compare differ-
ent variants of the AISM and AISMTM methods with
other techniques. They allow us to show the benefits of
the non-parametric proposal construction, even in these
two simple experiments. Then, in the third example, we
approximate the hyper-parameters of a Gaussian process
(GP) [56], which is often used for regression purposes in
machine learning for signal processing applications.

9.1 Multimodal target distribution
We study the ability of different algorithms to simulate
multimodal densities (which are clearly non-log-concave).
As an example, we consider a mixture of Gaussians as
target density,

π̃(x) = 0.5N (x; 7, 1) + 0.5N (x;−7, 0.1),

where N
(

x;μ, σ 2) denotes the normal distribution with
mean μ and variance σ 2. The two modes are so sepa-
rated that ordinary MCMC methods fail to visit one of
the modes or remains indefinitely trapped in one of them.
The goal is to approximate the expected value of the tar-
get (E[X]= 0 with X ∼ π̃(x)) via Monte Carlo. We
test the ARMS method [12] and the proposed AISM and
AISMTM algorithms. For AISM and AISMTM, we con-
sider different construction procedures for the proposal
pdf:

• P1: the construction given in [12] formed by
exponential pieces, specifically designed for ARMS.

• P2: alternative construction formed by exponential
pieces obtained by a linear interpolation in the
log-pdf domain, given in [13].

• P3: the construction using uniform pieces in Eq. (3).
• P4: the construction using linear pieces in Eq. (4).

Furthermore, for AISM and AISMTM, we consider the
Update Rule 1 (R1) with different values of the parame-
ter β , the Update Rule 2 (R2) with different value of the
parameter ε, and the Update Rule 3 (R3) for the inclu-
sion of a new node in the set St (see Section 4). More
specifically, we first test AISM and AISMTM with all the
construction procedures P1, P2, P3, and P4 jointly with
the rule R3. Then, we test AISM with the construction P4
and the update test R2 with ε ∈ {0.005, 0.01, 0.1, 0.2}. For
Rule 1 we consider β ∈ {0.3, 0.5, 0.7, 2, 3, 4}. All the algo-
rithms start with S0 = {−10,−8, 5, 10} and initial state
x0 = −6.6. For AISMTM, we have set M ∈ {10, 50}. For
each independent run, we perform T = 5000 iterations of
the chain.
The results given in Table 5 are the averages over 2000

runs, without removing any sample to account for the ini-
tial burn-in period. Table 5 shows the Mean Square Error
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(MSE) in the estimation E[X], the auto-correlation func-
tion ρ(τ) at different lags, τ ∈ {1, 10, 50} (normalized, i.e.,
ρ(0) = 1), the approximated effective sample size (ESS) of
the produced chain ([57], Chapter 4)

ESS ≈ T
1 + 2

∑∞
τ=1 ρ(τ)

, (16)

(clearly, ESS ≤ T), the final number of support pointsmT
and the computing time normalized with respect to the
time spent by ARMS [12]. For simplicity, in Table 5, we
have reported only the case of R2 with ε ∈ {0.005, 0.01};
however, other results are shown in Fig. 5.
AISM and AIMTM outperform ARMS, providing a

smaller MSE and correlation (both close to zero). This is
because ARMS does not allow a complete adaptation of
the proposal pdf as highlighted in [13]. The adaptation in
AISM andAIMTMprovides a better approximation of the
target than ARMS, as also indicated by the ESS which is
substantially higher in the proposed methods. ARMS is in
general slower than AISM for two main reasons. Firstly,
the construction P1 (used by ARMS) is more costly since
it requires the computation of several intersection points
[12]. It is not required for the procedures P2, P3, and P4.
Secondly, the effective number of iterations in ARMS is
higher than T = 5000 (the averaged value is ≈ 5057.83)

due to the discarded samples in the rejection step (in this
case, the chain is not moved forward).
Figure 6a–d depicts the averaged autocorrelation func-

tion ρ(τ) for τ = 1, . . . , 100 for the different techniques
and constructions. Figure 6e–h shows the average accep-
tance probability (AAP; the value of α of the MH-type
techniques) of accepting a new state as function of the
iterations t. We can see that, with AISM and AIMTM,
AAP approaches 1 since qt becomes closer and closer to π .
Figure 7 shows the evolutions of the number of support
points, mt , as function of t = 1, . . . ,T = 5000, again
for the different techniques and constructions. Note that,
with AIMTM and P3-P4, AAP approaches 1 so quickly
and the correlation is so small (virtually zero) that it is
difficult to recognize the corresponding curves which are
almost constant close to one or zero, respectively. The
constructions P3 and P4 provide the better results. In
this experiment, P4 seems to provide the best compro-
mise between performance and computational cost. We
also test AISM with update R2 for different values of ε

(and different constructions). The number of nodes mt
and AAP as function of t for these cases are shown in
Fig. 5. These figures and the results given in Table 5 show
that AISM-P4-R2 provides extremely good performance
with a small computational cost (e.g., the final number of

Table 5 (Ex-Sect-9.1). For each algorithm, the table shows the mean square error (MSE), the autocorrelation (ρ(τ)) at different lags, the
effective sample size (ESS), the final number of support points (mT ), the computing times normalized w.r.t. ARMS (Time)

Algorithm MSE ρ(1) ρ(10) ρ(50) ESS mT Time

ARMS [12] 10.04 0.4076 0.3250 0.2328 89.12 118.19 1.00

AISM-P1-R3 3.0277 0.1284 0.1099 0.0934 235.76 152.63 1.23

AISM-P2-R3 2.9952 0.1306 0.1125 0.0929 235.01 71.14 0.27

AISM-P3-R3 0.0290 0.0535 0.0165 0.0077 609.05 279.65 0.65

AISM-P4-R3 0.0354 0.0354 0.0195 0.0086 608.76 84.87 0.33

AISMTM-P1 (M = 10) 0.6720 0.0726 0.0696 0.0624 336.84 159.01 2.35

R3 (M = 50) 0.1666 0.0430 0.0395 0.0316 617.10 160.75 5.45

AISMTM-P2 (M = 10) 0.5632 0.0588 0.0525 0.0443 440.23 72.16 1.13

R3 (M = 50) 0.1156 0.0345 0.0303 0.0231 746.45 72.53 4.38

AISMTM-P3 (M = 10) 0.0105 0.0045 0.0001 0.0001 4468.10 315.78 2.60

R3 (M = 50) 0.0099 0.0041 0.0001 0.0001 4843.81 360.73 10.59

AISMTM-P4 (M = 10) 0.0108 0.0036 0.0011 0.0014 3678.79 92.67 1.86

R3 (M = 50) 0.0098 0.0001 0.0001 0.0001 4912.07 101.78 7.25

AISM-P4-R2 (ε = 0.01) 0.0412 0.0407 0.0213 0.0074 604.95 35.01 0.11

(ε = 0.005) 0.0321 0.0360 0.0181 0.0072 610.01 43.32 0.20

AISM-P4-R1 (β = 0.3) 0.1663 0.2710 0.1368 0.0593 216.75 25.56 0.08

(β = 0.7) 0.1046 0.1781 0.0866 0.0441 356.21 33.55 0.11

(β = 2) 0.0824 0.0947 0.0408 0.0204 677.73 46.81 0.21

(β = 3) 0.0371 0.0720 0.0281 0.0099 714.90 52.76 0.23

(β = 4) 0.0310 0.0621 0.0253 0.0096 802.18 58.66 0.24
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Fig. 5 (Ex-Sect-9.1). Evolution of the number of support pointsmt and average acceptance probability (AAP), as function of t = 1, . . . , T for AISM, for
different constructions, and update rule R2 with ε = 0.005 (square), ε = 0.01 (cross), ε = 0.1 (triangle) and ε = 0.2 (circle). Moreover, in a–d the
evolution ofmt of AISM with the update rule R3 is also shown with solid line. Note that the range of values in a–d is different. (e)-(f)-(g)-(h)
Acceptance Rate as function of the iteration t

points is only mT ≈ 43 with ε = 0.005). This shows
that the update rule R2 is a very promising choice given
the obtained results. Moreover, we can observe that the
update rule R1 is very parsimonious in adding new points
even considering a great range of values of β , from 0.3
to 4. The results are good also in this case with R1,
so that this rule seems to be a more robust interesting
alternative to R2 (which seems more dependent on the
choice of β). Finally, Fig. 8 shows the histograms of the
5000 samples obtained by one run of AISM-P3-R1 with

β = 0.1 and β = 3. The target pdf is depicted in solid
line and the final construction proposal pdf is shown in
dashed line.

9.2 Missing mode experiment
Let us consider again the previous bimodal target pdf,

π̃(x) = 0.5N (x; 7, 1) + 0.5N (x;−7, 0.1),

shown in Fig. 8. Here, we consider a bad choice of the
initial support points, such as S0 = {5, 6, 10} cutting out
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Fig. 6 (Ex-Sect-9.1). (a)-(b)-(c)-(d) Autocorrelation Function ρ(τ) at lags from 1 to 100 and (e)-(f)-(g)-(h) Averaged Acceptance Probability (AAP) as
function of t, for the different methods. In each plot: P1 (solid line), P2 (dashed-dotted line), P3 (dotted line), and P4 (dashed line). Note the different
range of values of ρ(τ)

one of the two modes (we consider that no information
about the range of the target pdf is provided). We test the
robust implementation described in Appendix E.1, i.e., we
employ the proposal density defined

q̃(x) = αt q̃1(x) + (1 − αt )̃q2(x|St), (17)

where q̃1(x) = N
(

x; 0, σ 2
p

)

and q̃2(x|St) is a sticky
proposal constructed using the procedure P3 in Eq. (3)
(we use the update rule 1 with β = 0.1). We consider

the most defensive strategy defining αt = α0 = 0.5
for all t. We test σp ∈ {2, 3, 8, 10}. We compute the
mean absolute error (MAE), in estimating the variance
Var[X]= 49.55 where X ∼ π̃(x), with different MCMC
methods generating chains of length T = 104. We com-
pare this Robust AISM-P3-R1 scheme with a standard
MH method using q̃1(x) as proposal pdf and the Adap-
tive MH technique where the scale parameter σ

(t)
p is

adapted online [10] (starting with σ
(0)
p ∈ {2, 3, 8, 10}). The
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Fig. 7 (Ex-Sect-9.1). (a)-(b)-(c)-(d) Evolution of the number of support pointsmt as function of t = 1, . . . , T , for the different methods. In each plot:
construction P1 (solid line), P2 (dashed-dotted line), P3 (dotted line) and P4 (dashed line)

results, averaged over 103 independent runs, are given in
Table 6.
9.3 Heavy-tailed target distribution
In this section, we test the AISM method from drawing
with a target heavy tails. We show that the sticky MCMC
schemes can be applied in this scenario, even by using a
proposal pdf with exponential (i.e., “light”) tails. However,
we recall that an alternative construction of the tails is
always possible, as suggested in Appendix E.2 using Pareto
tails, for instance. More specifically, we consider the Lévy
density, i.e.

π̄(x) ∝ π(x) = 1
(x − λ)3/2

exp
(

− ν

2(x − λ)

)

, (18)

∀x ≥ λ. Given a random variable X ∼ π̄(x), we have
that E[X]= ∞ and Var[X]= ∞ due to the heavy-tail of
the Lévy distribution. However, the normalizing constant,
1
cπ , such that π̄(x) = 1

cπ π(x) integrates to one, can be

determined analytically, and is given by 1
cπ =

√

ν
2π .

Our goal is estimating the normalizing constant 1
cπ via

Monte Carlo simulation, when λ = 0 and ν = 2. In gen-
eral, it is difficult to estimate a normalizing constant using
MCMC outputs [2, 58, 59]. However, in the sticky MCMC
algorithms (with update rules as R1 and R3 in Table 2),
the normalizing constant of the adaptive non-parametric
proposal approaches the normalizing constant of the tar-
get. We compare AISM-P4-R3 and different Multiple-try

a b

Fig. 8 (Ex-Sect-9.1). a Histogram of the 5000 samples obtained by one run of AISM-P3-R1 with β = 0.1 (28 final points). b Histogram of the 5000
samples obtained by one run of AISM-P3-R1 with β = 3 (79 final points). The target pdf, π̃(x), is depicted in solid line and the final construction
proposal pdf, q̃T (x), is shown in dashed line
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Table 6 (Ex-Sect-9.2). Mean absolute error (MAE) in the
estimation of the var[ X]= 49.55, for different techniques and
different scale parameters σp (T = 104)

Algorithm σp = 2 σp = 3 σp = 8 σp = 10

Standard MH 13.51 0.94 0.27 0.35

Adaptive MH 3.28 0.29 0.24 0.28

Robust AISM 1.79 0.16 0.13 0.14

Metropolis (MTM) schemes. For the MTM schemes, we
use the following procedure: given the MTM outputs
obtained in one run, we use these samples as nodes, then
construct the approximated function using the construc-
tion P4 (considering these nodes), and finally compute the
normalizing constant of this approximated function. Note
that we use the same construction procedure P4, for a fair
comparison.
For AISM, we start with only m0 = 3 support points,

S0 = {s1 = 0, s2, s3}, where two nodes are randomly cho-
sen at each run, i.e., s2, s3 ∼ U([ 1, 10] ) with s2 < s3.
We also test three different MTM techniques, two
of them using an independent proposal pdf (MTM-ind)
and the last one a random walk proposal pdf (MTM-
rw). For the MTM schemes, we set M = 1000 tries and
importance weights designed again to choose the best
candidate in each step [37]. We set T = 5000 for all
the methods. Note that, the total number of target val-
uation E of AISM is only E = T = 5000 whereas we
E = MT = 5 · 106 for the MTM-ind schemes and E =
2MT = 107 for the MTM-rw algorithm (see [37] for fur-
ther details). For the MTM-ind methods, we use an inde-
pendent proposal q̃(x) ∝ exp(−(x − μ)2/(2σ 2)) with μ ∈
{10, 100} and σ 2 = 2500. In MTM-rw, we have a random
walk proposal q̃(x|xt−1) ∝ exp

(−(x − xt−1)2
/(

2σ 2))

with σ 2 = 2500. Note that we need to choose huge
values of σ 2 due to the heavy-tailed feature of the
target.
The results, averaged over 2000 runs, are summarized in

Table 7. Note that the real value of 1
cp when ν = 2 is 1√

π
=

0.5642. The AISM-P4-R3 provides better results than
all of the MTM approaches tested with only a fraction
of their computational cost. Furthermore, AISM-P4-R3
avoids the critical issue of parameter selection (selecting a

Table 7 Estimation of the normalizing constant 1
cπ

= 0.5642 for
the Lévy distribution (T = 5000)

Technique MSE Target evaluation

AISM-P4-R3 0.0015 E = T = 5000

MTM-ind 0.0028
E = MT = 5 · 106

0.0024

MTM-rw 0.0054 E = 2MT = 107

small value of σ 2 in this case can easily lead to very poor
performance).

9.4 Sticky MCMCmethods within Gibbs sampling
9.4.1 Example 1: comparing differentMCMC-within-Gibbs

schemes
In this example we show that, even in a simple bivari-
ate scenario, AISM schemes can be useful within a Gibbs
sampler. Let us consider the bimodal target density

π̃(x1, x2) ∝ exp
(

− (x21 − A + Bx2)2

4
− x21

2σ 2
1

− x22
2σ 2

2

)

,

with A = 16, B = 10−2, and σ 2
1 = σ 2

2 = 104
2 .

Densities with this non-linear analytic form have been
used in the literature (cf. [10]) to compare the perfor-
mance of different Monte Carlo algorithms. We apply NG
steps of a Gibbs sampler to draw from π̃(x1, x2), using
ARMS [12], AISM-P4-R3, and AISMTM-P4-R3 within
of the Gibbs sampler to generate samples from the full-
conditionals, starting always with the initial support set
S0 = {−10,−6,−4.3, 0, 3.2, 3.8, 4.3, 7, 10}. From each full-
conditional pdf, we draw T samples and take the last
one as the output from the Gibbs sampler. We also apply
a standard MH algorithm with a random walk proposal
q
(

x�,t|x�,t−1
) ∝ exp

(

(x�,t − x�,t−1)2
/(

2σ 2
p

))

for � ∈
{1, 2}, σp ∈ {1, 2, 10}, 1 ≤ t ≤ T . Furthermore, we
test an adaptive parametric approach (as suggested in
[8]). Specifically, we apply the adaptive MH method in
[10] where the scale parameter of q(x�,t|x�,t−1) is adapted
online, i.e., σp,t varies with t (we set σp,0 = 3). We
also consider the application of the slice sampler [55]
and the Hamiltonian Monte Carlo (HMC) method [60].
For the standard MH and the slice samplers we have
used the function mhsample.m and slicesample.m
directly provided by MATLAB. For HMC, we consider
the code provided in [61] with εd = 0.01 as discretiza-
tion parameter and L = 1 as length of the trajectory.10 We
recall that a preliminary code of AISM is also available at
Matlab-FileExchange webpage.
We consider two initializations for all the methods-

within-Gibbs: (In1) x(k)
�,0 = 1; (In2) x(k)

�,0 = 1 and x(k)
�,0 =

x(k−1)
�,T for k = 1, . . . ,NG. We use all the samples to
estimate four statistics that involve the first four moments
of the target: mean, variance, skewness, and kurtosis.
Table 8 provides the mean absolute error (MAE; averaged
over 500 independent runs) for each of the four statistics
estimated, and the time required by the Gibbs sampler
(normalized by considering 1.0 to be the time required by
ARMS with T = 50).
The results are provided in Table 8. First of all, we notice

that AISM outperforms ARMS and the slice sampler for
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Table 8 (Ex-Sect-9.4.1). Mean absolute error (MAE) in the estimation of four statistics (first component) and normalized computing time

Technique T NG Init.
MAE

Avg. MAE Time
Mean Variance Skewness Kurtosis

Panel I

AISM-P4 3 2000 In1 0.878 0.781 0.437 0.223 0.579 0.066

5 0.749 0.576 0.389 0.160 0.468 0.098

10 0.266 0.057 0.136 0.020 0.120 0.178

50 0.101 0.041 0.051 0.003 0.049 0.741

AISMTM-P4 3 2000 In1 0.251 0.056 0.128 0.017 0.113 0.202

(M = 5) 10 0.096 0.031 0.048 0.003 0.044 0.642

ARMS 3 2000 In1 3.408 11.580 3.384 11.572 7.486 0.077

5 3.151 9.839 2.650 7.079 5.679 0.116

10 2.798 7.665 2.024 4.124 4.152 0.223

50 1.918 3.407 1.134 1.292 1.937 1.000

MH (σp = 1) 100 2000 In1 3.509 12.308 3.671 13.666 8.288 0.602

MH (σp = 2) 1.756 3.077 0.978 0.963 1.693 0.602

MH (σp = 10) 0.075 0.037 0.036 0.002 0.038 0.602

MH (σp = 1) 1000 2000 In1 3.508 12.302 3.665 13.624 8.274 4.052

MH (σp = 2) 1.601 2.560 0.874 0.769 1.451 4.052

MH (σp = 10) 0.074 0.036 0.036 0.002 0.037 4.052

MH (σp = 10) 1 2000 In1 0.697 11.598 0.883 3.622 4.200 0.033

10000 0.493 9.881 0.611 2.905 3.472 0.162

3
2000

0.352 6.510 0.290 0.927 2.019 0.042

10 0.085 1.411 0.043 0.160 0.424 0.081

Adaptive MH
100

2000 In1
0.415 0.304 0.234 0.068 0.255 0.634

1000 0.075 0.038 0.037 0.002 0.038 4.107

HMC
10

2000 In1
0.091 1.509 0.042 0.123 0.441 0.092

100 0.078 0.037 0.039 0.002 0.039 0.630

Slice 3 2000 In1 0.810 1.174 0.415 0.231 0.658 0.156

10 0.607 0.372 0.306 0.096 0.345 0.463

50 0.156 0.043 0.077 0.007 0.071 2.311

Panel II

AISM-P4 3

2000
In2

0.138 0.055 0.070 0.006 0.067 0.066

5 0.112 0.050 0.057 0.004 0.056 0.098

10 0.093 0.045 0.046 0.002 0.046 0.178

3 10000 0.095 0.023 0.050 0.002 0.042 0.335

AISMTM-P4 3 2000 In2 0.085 0.036 0.043 0.002 0.042 0.202

(M = 5) 4000 0.083 0.028 0.042 0.002 0.038 0.400

(M = 10) 2000 0.073 0.031 0.036 0.002 0.035 0.316



Martino et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:5 Page 18 of 28

Table 8 (Ex-Sect-9.4.1). Mean absolute error (MAE) in the estimation of four statistics (first component) and normalized computing
time (Continued)

Technique T NG Init.
MAE

Avg. MAE Time
Mean Variance Skewness Kurtosis

MH (σp = 10)

1

10000 In2 0.178 0.126 0.091 0.012 0.102 0.162

20000 0.151 0.112 0.090 0.008 0.090 0.331

30000 0.138 0.063 0.068 0.007 0.069 0.492

2
10000

0.130 0.062 0.066 0.006 0.066 0.196

3 0.125 0.066 0.063 0.006 0.065 0.223

10 2000 0.149 0.083 0.075 0.009 0.079 0.081

Adaptive MH 10
2000 In2

0.158 0.082 0.087 0.012 0.084 0.090

100 0.146 0.076 0.073 0.010 0.076 0.634

HMC 10
2000 In2

0.152 0.092 0.079 0.015 0.084 0.092

100 0.148 0.081 0.070 0.012 0.077 0.630

Slice 3
2000

In2

0.204 0.105 0.103 0.022 0.108 0.156

10 0.188 0.091 0.095 0.018 0.098 0.463

3 10000 0.132 0.051 0.066 0.007 0.064 0.783

All the techniques are used within a Gibbs sampler: NG is the number of iterations of the Gibbs sampler whereas T is is the number of iterations of the technique within Gibbs
(so that T × NG is the global number of MCMC iterations). The best results (in each column, and in each panel) are highlighted with italics

all values of T and NG, in terms of performance and com-
putational time. Regarding the use of the MH algorithm
within Gibbs, the results depend largely on the choice of
the variance of the proposal, σ 2

p , and the initialization,
showing the need for adaptive MCMC strategies. For a
fixed value of T × NG, the AISM schemes provide results
close to the smallest averaged MAE for In1 and the best
results for In2 with a slight increase in the computing
time, w.r.t. the standard MH algorithm. Finally, Table 8
shows the advantage of the non-parametric adaptive inde-
pendent sticky approach w.r.t. the parametric adaptive
approach [8, 10].

9.4.2 Example 2: comparisonwith an ideal Gibbs sampler
The ideal scenario for the Gibbs sampling scheme is that
we are able to draw samples from the full-conditional
pdfs (using a transformation or a direct method). In this
section, we compare the performance of MH and AISM-
within-Gibbs schemes with the ideal case. Let us consider
two Gaussian full-conditional densities,

π̃1(x1|x2) ∝ exp
(

− (x1 − 0.5x2)2

2ξ21

)

, (19)

π̃2(x2|x1) ∝ exp
(

− (x2 − 0.5x1)2

2ξ22

)

, (20)

with ξ1 = 1 and ξ2 = 0.2. The joint pdf is a bivariate
Gaussian pdf with mean vector μ =[ 0, 0]� and covari-
ance matrix � =[ 1.08 0.54; 0.54 0.31]. We apply a Gibbs
sampler with NG iterations to estimate both the mean

and the covariance of the joint pdf. Then, we calculate
the average MSE in the estimation of all the elements in
μ and �, averaged over 2000 independent runs. We use
this simple case, where we can draw directly from the
full-conditionals, to check the performance of MH and
AISM-P3-R3 within Gibbs as a function of T and NG. For
theMH scheme, we use a Gaussian randomwalk proposal,

q̃
(

x(k)
�,t

∣

∣

∣x(k)
�,t−1

)

∝ exp
(

−
(

x(k)
�,t − 0.5x(k)

�,t−1

)2
/

(

2σ 2
p

)

)

for � ∈ {1, 2}, 1 ≤ t ≤ T and 1 ≤ k ≤ NG. For
AISM-P3-R3, we start with S0 = {−2, 0, 2}.
We set NG = 103 and x(i)

�,0 = 1 (both for MH and
AISM-P3-R3), and increase the value of T. The results
can be seen in Fig. 9. AISM-within-Gibbs easily reaches
the same performance as the ideal case (sampling directly
from the full conditionals) even for small values of T,
whereas theMH-within-Gibbs needs a substantially larger
value of T (up to T = 500 for σp = 0.1) to attain a sim-
ilar performance. Note the importance of using a proper
parameter σp for attaining good performance. This obser-
vation shows the importance of employing an adaptive
technique within-Gibbs.

9.5 Sticky MCMCmethods within Recycling Gibbs
sampling

In this section, we test the sticky MCMC methods within
the Recycling Gibbs (RG) sampling scheme where the
intermediate samples drawn from each full-conditional
pdf are sued in the final estimator [51]. We consider a
simple numerical simulation (easily reproducible by any
practitioner) involving a bi-dimensional target pdf
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Fig. 9MSE as function of the number of iterations in the internal
chain (T ), and NG = 1000. The constant dashed line is the MSE
(≈ 0.0012) obtained drawing directly from the full-conditionals (ideal
Gibbs scenario drawing directly from the full-conditional pdfs)

π̃(x1, x2) ∝ exp
(

−
(

x21 − μ1
)2

2δ21
− (x2 − μ2)

2

2δ22

)

,

where μ1 = 4, μ2 = 1, δ1 =
√

5
2 and δ2 = 1. Note

that π̃(x1, x2) is bimodal and is not Gaussian. The goal is
to approximate via Monte Carlo the expected value, E[X]
where X = [X1,X2] ∼ π̃(x1, x2).
We test different Gibbs techniques: the MH [2] and

AISM-P3-R3 algorithm (with update rule 3 and pro-
posal construction in Eq. (3)), within the Standard Gibbs
(SG) and within the RG sampling schemes. For the MH
method, we use a Gaussian random walk proposal,

q
(

x(k)
�,t

∣

∣

∣ x(k)
�,t−1

)

∝ exp

⎛

⎜

⎝
−
(

x(k)
�,t − x(k)

�,t−1

)2

2σ 2

⎞

⎟

⎠
,

for σ > 0, � ∈ {1, 2}, 1 ≤ k ≤ NG and 1 ≤ t ≤ T . We
set x(k)

�,0 = 1 and x(k)
�,0 = x(k−1)

�,T for k = 1, . . . ,NG, for all
schemes.

9.5.1 Optimal scale parameter for MH
First of all, we obtain theMSE in estimation of E[X] for dif-
ferent values of the σ parameter for MH-within-SG (with
T = 1 and NG = 1000). Figure 10a shows the results
averaged over 105 independent runs. The performance of
the Standard Gibbs (SG) sampler depends strongly on the
choice of σ of the internal MH method. We can observe
that there exists an optimal value σ ∗ ≈ 3. This shows
the need of using an adaptive scheme for drawing from
the full-conditional pdfs. In the following, we compare the
performance of AISM with the performance of this opti-
mized MH using the optimal scale parameter σ ∗ = 3,
in order to show the capability of the non-parametric
adaptation employed in AISM, with respect to a standard
adaptation procedure [10].

9.5.2 Comparison among different schemes
For AISM-P3-R3, we start with the set of support points
S0 = {−10,−6,−2, 2, 6, 10}. We have averaged the
MSE values over 105 independent runs for each Gibbs
scheme.
In Fig. 10b (represented in log-scale), we fix NG = 1000

and vary T. As T grows, when a standard Gibbs (SG)
sampler is used, the curves show an horizontal asymp-
tote since the internal chains converge after some value
T ≥ T∗. Considering an RG scheme, the increase of
T yield lower MSE since now we recycle the internal
samples. Figure 10b shows the advantage of using AISM-
R3-P3 even when compared with the optimized MH
method. The advantage of AISM-R3-P3 is clearer with
small T values (10 < T < 30; recall that in this exper-
iment NG = 1000 is kept fixed). The performance of
AISM-R3-P3 and optimized MH (within Gibbs) becomes
more similar as T increases. This is due to the fact that,

a b

Fig. 10 (Ex-Sect-9.5). aMSE (log-scale) as function of σ for MH-within-SG (T = 1 and NG = 1000). bMSE (log-scale) as function of T for different
MCMC-within-Gibbs schemes (we keep fixed NG = 1000). Note the MH is using the optimal scale value σ ∗ = 3 for the (Gaussian) parametric
proposal density
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in this case, with a high enough value of T, the MH
chain is able to exceed its burn-in period and eventually
converges.

9.6 Tuning of the hyper-parameters of a Gaussian
process (GP)

9.6.1 Exponential Power kernel function
Let assume to observe the pairs of data {yj, zj}Pj=1, with
yj ∈ R and zj ∈ R

dZ , and denote the corresponding vec-
tors y = [

y1, . . . , yP
]

and Z = [z1, . . . , zP]. We address
the regression problem of inferring the hidden function
y = f (z), linking the variable y and z. For this goal, we
assume the model

y = f (z) + e, (21)

where e ∼ N
(

e; 0, σ 2). For simplicity, we set dZ = 1.
We consider the f is a Gaussian process (GP) [56], i.e., we
assume a GP prior over f, so f ∼ GP(μ(z), κ(z, r)) where
μ(z) = 0, and the kernel function is

κ(z, r) = exp
(

−|z − r|β
2δ2

)

, β , δ > 0. (22)

Therefore, the vector f = [

f (z1), . . . , f (zP)
]

is dis-
tributed as p(f|Z, κ ,β , δ) = N (f; 0,K) where 0 is a 1 × P
vector, K := κ(zi, zj), for all i, j = 1, . . . ,P is a P × P
matrix, and we have expressed explicitly the dependence
on the choice of the kernel family κ in Eq. (22). More-
over, we denote the hyper-parameters of the model as
θ =[ θ1 = σ , θ2 = β , θ3 = δ], i.e., the standard deviation of
the observation noise and the two parameters of the ker-
nel κ(z, r). We assume a prior with independent truncated
positive Gaussian components for the hyper-parameters
p(θ) = p(σ ,β , δ) = N (σ ; 0, 5)N (β ; 0, 5)N (δ; 0, 5)Iσ IβIγ
where Iv = 1 if v > 0, and Iv = 0 if v ≤ 0. To simplify the
expression of the posterior pdf, let us focus on the filtering
problem and the tune of the parameters, namely we desire
to infer f and θ . Hence, the posterior pdf is given by

p(f, θ |y,Z, κ) = p(y|f,Z, θ , κ)p(f|Z, θ , κ)p(θ)

p(y|Z, κ)
, (23)

with p(y|f,Z, θ , κ) = N
(

y; 0, σ 2I
)

and p(f|y,Z, θ , κ) =
N (f;μp,�p), with mean μp = K

(

K + σ 2I
)−1 y� and

covariance matrix �p = K − K
(

K + σ 2I
)−1 K�, repre-

senting the solution of the GP given the specific choice
of the hyper-parameters θ . The marginal posterior of the
hyper-parameters [56] is

p(θ |y,Z, κ) =
∫

p(f, θ |y,Z, κ)df = p(y|Z, θ , κ)p(θ)

p(y|Z, κ)
.

(24)

where

p(y|Z, θ , κ) =
∫

p(y|Z, f, θ , κ)p(f|Z, θ , κ)df. (25)

Hence, the log-marginal posterior is

log
[

p(θ |y,Z, κ)
] ∝ −1

2
y(K

+ σ 2I)−1y� − 1
2
log[ det[K

+ σ 2I]]− 1
10

3
∑

i=1
θ2i , (26)

for θ1, θ2, θ3 > 0, where clearly K depends on θ1 = σ ,
θ2 = β and θ3 = δ.11 We apply a Gibbs sampler from
drawing from p(θ |y,Z, κ). We fix Z =[−10 : 0.1 :
10] (i.e., a grid between −10 and 10 with step 0.1);
hence, P = 201, and the data y are artificially gener-
ated according to the model (21) considering the values
θ∗ = [σ ∗ = 1,β∗ = 0.5, δ∗ = 3]. We average the results
using 103 independent runs. At each run, we generate
new data y according to the model with θ∗, and run
the Gibbs sampler in order to approximate p(θ |y,Z, κ)

considering NG = 2000 samples (without removing any
burn-in period). We approximate the expected value of
the posterior ̂θ ≈ Ep[ θ ] using these NG samples and
compare with θ∗ (with enough number of data, it can be
considered the ground-truth). For drawing from the full-
conditional pdfs, we set T = 10, we employ a standard
MH with Gaussian random proposal a q(x�,t|x�,t−1) ∝
exp
(

−(x�,t − x�,t−1)2/
(

2σ 2
p

))

for � ∈ {1, 2, 3}, and we
test different values of σp ∈ {1, 2, 3}. Moreover, we apply
AISM-P4-R3 with T = 10 and the initial support points
S0 = {0.01, 0.2, 0.5, 1, 2, 4, 7, 10}. We also test the IA2RMS
method [13] which is a special case of AISM technique
(see Section 6.1). For IA2RMS, we use the construction
procedure P4 as in AISM (both methods employ the
update rule R3). The initializations for all techniques is
set x(k)

�,0 = 1 and x(k)
�,0 = x(k−1)

�,T for � = 1, 2, 3 and k =
1, . . . ,NG. The mean square error (MSE) in the estima-
tion of θ∗, averaged over 103 runs, is shown in Table 9.
AISM outperforms the MH methods. IA2RMS provides
better results w.r.t. AISM since it uses a better equiva-
lent proposal pt(x) ∝ min{qt(x),π(x)}. However, IA2RMS
is slower than AISM due to its rejection step (necessary
in order to produce samples from the equivalent pro-
posal pt(x) ∝ min{qt(x),π(x)}). We recall that IA2RMS
is a special case of AISM technique. Finally, Table 9
shows the MSE in the estimation of the hyper-parameters
θ∗ employing a Riemann quadrature, i.e., using a grid
approximation [0,A]3 with A = 100 and with step εg ∈
{0.1, 0.2, 0.5, 1, 2} (note this method excludes the possi-
bility that the hyper-parameters are greater than A). The
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Table 9 (Ex-Sect-9.6.1). MSE in the estimation of the hyper-parameters θ∗ with NG = 2000

Algorithm MH (σp = 1) MH (σp = 2) MH (σp = 3) IA2RMS-P4 AISM-P4-R3

MSE 6.21 5.08 6.83 3.12 3.46

Time 1 1 1 1.64 1.42
Note that IA2RMS is a special case of AISM which employs the equivalent proposal pt(x) ∝ min{qt(x),π(x)}, and the rule R3 (see Section 6.1). In IA2RMS, we have used the
construction procedure P4 in order to build qt(x). The computing times are normalized w.r.t. the time spent by MH

computing times are normalized w.r.t. the time spent by
MH in Tables 9 and 10.

9.6.2 Automatic Relevant Determination kernel function
Here we consider the estimation of the hyper-parameters
of the Automatic Relevance Determination (ARD) covari-
ance ([62], Chapter 6). Let us assume again the P observed
data pairs {yj, zj}Pj=1, with yj ∈ R and

zj = [zj,1, zj,2, . . . , zj,dZ
]� ∈ R

dZ ,

where dZ is the dimension of the input features. We also
denote the corresponding P × 1 output vector as y =
[ y1, . . . , yP]� and the dZ ×P input matrix Z =[ z1, . . . , zP].
We again address the regression problem of inferring the
unknown function f which links the variable y and z.
Thus, the assumed model is y = f (z) + e, where e ∼
N
(

e; 0, σ 2), and that f (z) is a realization of a Gaussian
process (GP) [56]. Hence f (z) ∼ GP(μ(z), κ(z, r)) where
μ(z) = 0, z, r ∈ R

dZ , and we consider the ARD kernel
function

κ(z, r) = exp

⎛

⎝−
dZ
∑

�=1

(z� − r�)2

2δ2�

⎞

⎠ , with δ� > 0, (27)

for � = 1, . . . , dZ . Note that we have a different hyper-
parameter δ� for each input component z�; hence, we also
define δ = δ1:dZ =[ δ1, . . . , δdZ ]. Unlike in the previous
section, note that here β is assumed known (β = 2).
This type of kernel function is often employed to per-
form an automatic relevance determination (ARD) of the
input components with respect the output variable ([62],
Chapter 6). Namely, using ARD allows us to infer the rela-
tive importance of different components of inputs: a small
value of δ� means that a variation of the �-component z�
impacts the output more, while a high value of δ� shows

Table 10 (Ex-Sect-9.6.1). MSE in the estimation of the
hyper-parameters θ∗ employing a Riemann quadrature, i.e., using
a grid approximation [0, 100]3 with step εg

MSE 10.52 8.72 4.09 2.67 1.01

εg 2 1 0.5 0.2 0.1

Time 0.11 0.36 1.25 7.31 20.71

The computing times are normalized w.r.t. the time spent by MH in Table 9

virtually independence between the �-component and the
output. Therefore, the complete vector containing all the
hyper-parameters of the model is

θ = [

θ1:dZ = δ1:dZ , θdZ+1 = σ
]

,

θ = [δ, σ ] ∈ R
dZ+1,

i.e., all the parameters of the kernel function in Eq. (22)
and standard deviation σ of the observation noise. We
assume p(θ) = ∏dZ+1

�=1
1
θα
�
Iθ�

where α = 1.3, Iv = 1 if
v > 0, and Iv = 0 if v ≤ 0. We desire to compute the
expected value E[�] with � ∼ p(θ |y,Z, κ), via Monte
Carlo quadrature.
More specifically, we apply a AISM-P4-R3 within-Gibbs

(with S0 = {0.01, 0.5, 1, 2, 5, 8, 10, 15}) and the Single
Component Adaptive Metropolis (SCAM) algorithm [63]
within-Gibbs to draw from π(θ) ∝ p(θ |y,Z, κ). Note that
dimension of the problem is D = dX + 1 since θ ∈
R
D. For SCAM, we use the Gaussian random walk pro-

posal q(x�,t|x�,t−1) ∝ exp
(

−(x�,t − x�,t−1)2/
(

2γ 2
�,t

))

. In
SCAM, the scale parameters γ�,t are adapted (one for each
component) considering all the previous corresponding
samples (starting with γ�,0 = 1).
We generated the P = 500 pairs of data, {yj, zj}Pj=1, draw-

ing zj ∼ U
(

[ 0, 10]dZ
)

and yj according to the model
in Eq. (21), considered dZ ∈ {1, 3, 5, 7, 9} so that D ∈
{2, 4, 6, 8, 10}, and set σ ∗ = 1

2 and δ∗
� = 2, ∀�, for all

the experiments (recall that θ∗ =[ δ∗, σ ∗]). We consider
θ∗ as ground truth and compute the MSE obtained by the
different Monte Carlo techniques.
We have averaged the results using 103 independent

runs. We consider NG = 1000 and T = 20 for both
schemes, AISM-within-Gibbs and SCAM-within-Gibbs.
The results are provided in Table 11. We can see that

Table 11 (Ex-Sect-9.6.2). MSE for different techniques and
different dimensions D = dZ + 1 of the inference problem
(number of hyper-parameters), with T = 20 and NG = 1000 for
both schemes

Algorithm D = 2 D = 4 D = 6 D = 8 D = 10

SCAM within-Gibbs 0.0452 0.3013 1.61 2.87 4.68

AISM-P4-R3 within-Gibbs 0.0170 0.1521 0.5821 1.33 2.67
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AISM-P4-R3 provides the better performance and the dif-
ference increases with the dimension D = dZ + 1 of the
problem.

10 Conclusions
In this work, we have introduced a new class of adap-
tive MCMC algorithms for any-purpose stochastic sim-
ulation. We have discussed the general features of the
novel family, describing the different parts which form a
generic sticky adaptive MCMC algorithm. The proposal
density used in the new class is adapted on-line, con-
structed by employing non-parametric procedures. The
name “sticky” remarks that the proposal pdf becomes pro-
gressively more and more similar to the target. Namely,
a complete adaptation of the shape of the proposal is
obtained (unlike using parametric proposals). The role
of the update control test for the inclusion of new sup-
port points has been investigated. The design of this
test is extremely important, since it controls the trade-
off between computational cost and the efficiency of the
resulting algorithm. Moreover, we have discussed how the
combined design of a suitable proposal construction and a
proper update test ensures the ergodicity of the generated
chain.
Two specific sticky schemes, AISM and ASMTM, have

been proposed and tested exhaustively in different numer-
ical simulations. The numerical results show the efficiency
of the proposed algorithms with respect to other state-of-
the-art adaptive MCMC methods. Furthermore, we have
showed that other well-known algorithms already intro-
duced in the literature are encompassed by the novel
class of methods proposed. A detailed description of the
related works in the literature and their range of appli-
cability are also provided, which is particularly useful for
the interested practitioners and researchers. The novel
methods can be applied both as a stand-alone algorithm
or within any Monte Carlo approach that requires sam-
pling from univariate densities (e.g., the Gibbs sampler,
the hit-and-run algorithm or adaptive direction sampling).
A promising future line is designing suitable construc-
tions of the proposal density in order to allow the direct
sampling from multivariate target distributions (similarly
as [21, 30, 31, 39, 40]). However, we remark that the struc-
ture of the novel class of methods is valid regardless of the
dimension of the target.

Endnotes
1 The adjective “sticky” highlights the ability of the

proposed schemes to generate a sequence of proposal
densities that progressively “stick” to the target.

2 The purpose of this work is to provide a family
of methods applicable to a wide range of signal pro-
cessing problems. A generic Matlab code (not focusing

on any specific application) is provided at http://www.
lucamartino.altervista.org/STICKY.zip.

3A preliminary version of this work has been published
in [64]. With respect to that paper, the following major
changes have been performed: we discuss exhaustively the
general structure of the new family (not just a particu-
lar algorithm); we perform a complete theoretical analysis
of the AISM algorithm; we extend substantially the dis-
cussion about related works; we introduce the AISMTM
algorithm; we show how sticky methods can be used
to sample from multi-variate pdfs by embedding them
within a Gibbs sampler or the hit and run algorithm; and
we provide additional numerical simulations (including
comparisons with other benchmark sampling algorithms
and the estimation of the hyper parameters of a Gaussian
processes).

4 For simplicity, we assume that π(x) is bounded. How-
ever, the case of unbounded target pdfs can also be tackled
by designing a suitable proposal construction that takes
into account the vertical asymptotes of the target func-
tion. Similarly, we consider a target function defined in a
continuous space X for the sake of simplicity, although
the support domain could also be discrete.

5Note that any other MCMC technique could be used.
6Note that dt(z) ≤ max{π(z), qt(z|St)} ≤ Mπ , since

Mt = max
z∈X qt(z|St) ≤ Mπ for all of the construc-

tions described in Section 3 for the proposal function.
Therefore, all the εt ≥ Mπ lead to equivalent update rules.

7 Regarding the definition of εt , this threshold should
decrease over time (to guarantee that new support points
can always be added), but not too fast (to avoid adding
too many points and thus increasing the computational
cost). Selecting the optimum threshold can be very chal-
lenging, but many of the rules that have been used in the
area of stochastic filtering for the update parameter could
be used here. For instance, good update rules could be
εt = κMπ · e−γ t or εt = κMπ

t+1 for some appropriate values
of 0 < κ < 1 and γ > 0. Exploring this issue is out of the
scope of this paper, but we plan to address this in future
works.

8We have used the equality dt(zi) = |π(zi)−qt(zi|St)| =
max{π(zi), qt(zi|St)} − min{π(zi), qt(zi|St)}.

9 Preliminary Matlab code for the AISM algorithm,
with the constructions described in Section 3.1 and
the update control rule R3, is provided at https://
www.mathworks.com/matlabcentral/fileexchange/

http://www.lucamartino.altervista.org/STICKY.zip
http://www.lucamartino.altervista.org/STICKY.zip
https://www.mathworks.com/matlabcentral/fileexchange/
https://www.mathworks.com/matlabcentral/fileexchange/
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54701-adaptive-independent-sticky-

metropolis-aism-algorithm.
10 Other related codes can be also found at

http://mc-stan.org.
11 Recall that if θ1θ2θ3 ≤ 0 then p(θ |y,Z, κ) = 0.
12Note that we can always guarantee that qt(x|St) is

heavier tailed than π(x) by using an appropriate construc-
tion for the tails of the proposal, as discussed in Section 3
and Appendix E.2.

13 If we consider the complementary case (i.e., π(si+1) ≥
π(si) and thus qt(x) = π(si+1) ∀x ∈ It,i) we obtain exactly
the same bound following an identical procedure.

14 The same conclusion is obtained if we consider a
point s′ ∈ (smt ,∞).

15Note that the proposals are assumed to be uniformly
heavier tailed than the target by Condition 4 of Defini-
tion 1. Therefore, we can guarantee that enough candidate
samples are generated in the tails.

Appendix A: Proof of Theorem 1
Note that Eq. (9) in Theorem 1 is a direct consequence
of Theorem 2 in [14], which requires xt ∼ q(x|St) to be
independent of the current state, xt−1, and the satisfaction
of the strong Doeblin condition. Regarding the first issue,
xt is independent of xt−1 by construction of the algo-
rithm, so we only need to focus on the second issue. The
strong Doeblin condition is satisfied if, given a proposal
pdf, q̃t(x|St) = 1

ct qt(x|St), and a target, π̃(x) = 1
cπ π(x)

with support X ⊆ R, there exists some at ∈ (0, 1] such
that, for all x ∈ X and t ∈ N,

1
at
q̃t(x|St) ≥ π̃(x). (28)

First of all, note that Eq. (28) can be rewritten as

at ≤ cπ
ct

qt(x|St)

π(x)
∀x ∈ X and ∀t ∈ R. (29)

Then, note also that
cπ
ct

qt(x|St)

π(x)
≥ cπ

ct
min
x∈X

{

qt(x|St)

π(x)

}

≥ min
{

1,
cπ
ct

min
x∈X

{

qt(x|St)

π(x)

}}

,

where the last inequality is due to the fact that min{1, x} ≤ x.
Therefore, a possible value of at that allows us to satisfy
Eq. (29) is

at = min
{

1,
cπ
ct

min
x∈X

{

qt(x|St)

π(x)

}}

. (30)

From Eq. (30) it is clear that at ≤ 1, so all that remains
to be shown is that at > 0. Let us recall that It =

(s1, smt ], where s1 and smt are the smallest and largest sup-
port points in St = {s1, . . . , smt }, respectively. Then, since
qt(x|St) > 0 for all x ∈ X (condition 1 in Definition 1)
and t ∈ N, and π(x) is assumed to be bounded, we have

min
{

1,
cπ
ct

min
x∈It

{

qt(x|St)

π(x)

}}

> 0.

And regarding the tails, note that qt(x|St) must be
uniformly heavier tailed by construction (condition 4 in
Definition 1),12so qt(x|St) ≥ π(x) for all x ∈ Ic

t =
(−∞, s1]∪(smt ,∞) and we also have

min
{

1,
cπ
ct

min
x∈Ic

t

{

qt(x|St)

π(x)

}}

> 0.

Therefore, we conclude that 0 < at ≤ 1, the strong
Doeblin condition is satisfied and thus all the conditions
for Theorem 2 in [14] are fulfilled.

Appendix B: Argumentation for Conjecture 1
Let us define It = (s1, smt ] and Ic

t = (−∞, s1]∪(smt ,∞),
where s1 and smt are the smallest and largest points of
the set of support points at time step t, St = {s1, . . . , smt }
with s1 < . . . < smt . Then, the L1 distance between the
target and the proposal can be expressed as D1(π , qt) =
DIt (π , qt) + DIc

t (π , qt), where DIt (π , qt) = ∫

It dt(x) dx
and DIc

t (π , qt) = ∫Ic
t
dt(x) dx with dt(x) = |π(x) − qt(x)|.

Let us focus first on DIt (π , qt). Since qt(x) is constructed
as a piecewise polynomial approximation on the intervals
It,i = (si, si+1],

DIt (π , qt) =
mt−1
∑

i=1
DIt,i(π , qt), (31)

where

DIt,i(π , qt) =
∫

It,i
dt(x)dx

is the L1 distance between the target and the proposal in
the i-th interval. Now, using Theorem 3.1.1 in [65] we can
easily bound dt(x) for the �-th order interpolation poly-
nomial (with � ∈ {0, 1} in this case) used within the i-th
interval. For � = 0 and assuming that π(si) ≥ π(si+1) (and
thus qt(x) = π(si) ∀x ∈ It,i) without loss of generality,13

dt(x) = |π(x) − qt(x)|
= |x − si||π̇(ξ)|
≤ (si+1 − si) max

x∈It,i
|π̇(x)| < ∞,

where π̇(ξ) denotes the first derivative of π(x) evaluated
at x = ξ , ξ ∈ (si, si+1] is some point inside the interval
whose value depends on x, xi and π(x), and this bound is
finite since we assume that the first derivative of π(x) is
bounded. Therefore, for the PWC approximation we have
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DIt (π , qt) ≤
mt−1
∑

i=1
(si+1 − si)2 max

x∈It,i
|π̇(x)|

≤ max
x∈It

|π̇(x)| ·
mt−1
∑

i=1
(si+1 − si)2 < ∞. (32)

Similarly, for � = 1 we have

dt(x) = |π(x) − qt(x)|
= |x − si||x − si+1|

2
|π̈(ξ)|

≤ (si+1 − si)2

2
max
x∈It,i

|π̈(x)| < ∞,

where π̈(ξ) denotes the second derivative of π(x) eval-
uated at x = ξ , ξ ∈ (si, si+1] is some point inside the
interval, and this bound is again finite since we assume
that the second derivative of π(x) is also bounded. And
the L1 distance for the PWL approximation can thus be
bounded as

DIt (π , qt) ≤
mt−1
∑

i=1

(si+1 − si)3

2
max
x∈It,i

|π̈(x)|

≤ 1
2
max
x∈It

|π̈(x)| ·
mt−1
∑

i=1
(si+1 − si)3 < ∞.

(33)

Note that the two cases can be summarized in a single
expression:

DIt (π , qt) ≤ L(�)
t , (34)

where

L(�)
t = C(�)

t ·
mt−1
∑

i=1
(si+1 − si)�+1, (35)

with C(0)
t = maxx∈It |π̇(x)| and C(1)

t = 1
2 maxx∈It |π̈(x)|.

Now, let us assume that a new point, s′ ∈ It,k =
[

sk , sk+1
]

for 1 ≤ k ≤ mt − 1, is added at some itera-
tion t′ > t using the mechanism described in the AISM
algorithm (see Table 1) and that no other points have been
incorporated to the support set for t+ 1, . . . , t′ − 1. In this
case, the construction of the proposal function changes
only inside the interval It,k , which splits now into It′,k =
[ sk , s′] and It′,k+1 =[ s′, sk+1]. Then, the new bound for the
distance inside It′ = It is DIt′ (π , qt′) ≤ L(�)

t′ , with

L(�)

t′ = L(�)
t + C(�)

t

[

(

s′ − sk
)�+1 + (sk+1 − s′

)�+1

−(sk+1 − sk)�+1
]

< L(�)
t , (36)

where the last inequality is obtained by applying Newton’s
binomial theorem, which states that A�+1 + B�+1 < (A +
B)�+1 for any A,B > 0, using A = s′ − sk > 0 and B =
sk+1 − s′ > 0. Hence, the bound in Eq. (36) can never
increase when a new support point is incorporated and
indeed tends to decrease as new points are added to the
support set.
Note that we could still have L(�)

t → K > 0 as t → ∞.
However, the conditions of Definition 1 ensure that the
support of the proposal always contains the support of
the target (i.e., qt(x|St) > 0 whenever π(x) > 0 for any
t and St) and it has uniformly heavier tails (implying that
qt(x|St) → 0 slower than π(x) as x → ±∞). Conse-
quently, support points can be added anywhere inside the
support of the target, X ⊆ R. This implies that L(�)

t → 0
as t → ∞, since (si+1 − si) → 0 as more points are added
inside It , and thus also DIt (π , qt) → 0 as t → ∞. Let us
focus now on DIc

t (π , qt). Let us assume, without loss of
generality, that a new point, s′ ∈ (−∞, s1],14 is added at
some iteration t′ > t using the mechanism described in
the AISM algorithm (see Table 1) and that no other points
have been incorporated to the support set for t + 1, . . . , t′ − 1.
In this case, it is clear that the distance in the tails
decreases (i.e., DIc

t′ (π , qt) < DIc
t (π , qt)) at the expense

of increasing the distance in the central part of the target
(i.e., DIt′ (π , qt) > DIt (π , qt)). However, even if this leads
to a momentary increase in the overall distance, note that
we still have DIt′ (π , qt) → 0 as t′ → ∞ as long as new
support points can be added inside It′ , something which
is guaranteed by the AISM algorithm. Finally, since there
is always a non-null probability of incorporating points in
the tails,15 thus implying that DIc

t (π , qt) → 0 as t → ∞,
since Ic

t becomes smaller and smaller as t increases.
Therefore,wecanguarantee that using the AISM algorithm

in Table 1, with a valid proposal that fulfills Definition 1 and
an acceptance rule according to Definition 3, we obtain a
sticky proposal that fulfills Definition 2.

Appendix C: Support points
In this appendix we provide the proofs of Theorem 3
and Corollary 4, which bound the expected growth of the
number of support points.

C.1 Proof of Theorem 3
Given the support set St and the state xt−1, the expected
probability of adding a new point to St at the t-th iteration
is given by

E [Pa(z)|xt−1,St] =
∫

X
Pa(z)pt(z|xt−1,St) dz,

=
∫

X
ηt(z, dt(z))pt(z|xt−1,St) dz,

(37)
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where dt(z) = ∣∣π(z) − qt(z|St)
∣

∣ and

pt(z|xt−1,St) =
∫

X
pt
(

z|x′, xt−1,St
)

pt
(

x′|xt−1,St
)

dx′,

(38)

represents the kernel function of AISM given xt−1 and St .
Since candidate points x′ ∈ X are directly drawn from
the proposal pdf, we have pt

(

x′|xt−1,St
) = q̃t

(

x′|St
)

,
and from the structure of the AISM in Table 1 it is
straightforward to see that

pt(z|x′, xt−1,St) =α(xt−1, x′)δ(z − xt−1)

+ [1 − α(xt−1, x′)
]

δ(z − x′),

where α(xt−1, x′) = min
[

1, π(x′)qt(xt−1|St)
π(xt−1)qt(x′|St)

]

. Inserting
these two expressions in Eq. (38), the kernel function of
AISM becomes

pt(z|xt−1,St) =
[∫

X
α(xt−1, x′) q̃t(x′|St) dx′

]

× δ(z − xt−1)

+ [1 − α(xt−1, z)] q̃t(z|St) (39)

Let us recall now the integral form of Jensen’s inequality
for a concave function ϕ(x) with support X ⊆ R [66]:
∫

X
ϕ(x)f (x) dx ≤ ϕ

(∫

X
xf (x) dx

)

,

which is valid for any non-negative function f (x) such that
∫

X f (x) dx = 1. Then, since we assume that ηt(z, d) =
ηt(d), ηt(d) is a concave function of d by condition 4 of
Definition 3, and

∫

X pt(z|xt−1,St)dz = 1, we have

E[Pa(z)|xt−1,St] =
∫

X
ηt(dt(z))pt(z|xt−1,St) dz

≤ ηt (E [dt(z)|xt−1,St]) , (40)

with

E [dt(z)|xt−1,St] = ηt

(∫

X
dt(z)pt(z|xt−1,St) dz

)

=
[∫

X
α(xt−1, x′) q̃t(x′|St) dx′

]

dt(xt−1)

+
∫

X

[

1 − α(xt−1, z)
]

dt(z)̃qt(z|St) dz,

(41)

where we have used (39) to obtain the final expression
in (41). Now, for the first term in the right hand side
of (41), note that

[∫

X α(xt−1, x′) q̃t(x′|St) dx′] ≤ 1, since
0 ≤ α(xt−1, x′) ≤ 1 and

∫

X q̃t(x′|St) dx′ = 1. And for the
second term, we have

∫

X

[

1 − α(xt−1, z)
]

dt(z)̃qt(z|St) dz

≤
∫

X
dt(z)̃qt(z|St) dz

≤ C · D1(π , qt),

where we recall that D1(π , qt) = ∫

X dt(z) dz =
∫

X |π(z) − qt(z|St)| dz and C = maxz∈X q̃t(z|St) < ∞,
since we have assumed that π(x) is bounded and thus,
by condition 4 in Definition 1, q̃t(z|St) is also bounded.
Therefore, we obtain

E[ dt(z)|xt−1,St]≤ dt(xt−1) + C · D1(π , qt), (42)

and inserting (42) into (40) we have the following bound
for the expected probability of adding a support point at
the t-the iteration,

E[Pa(z)|xt−1,St]≤ ηt
(

dt(xt−1) + C · D1(π , qt)
)

. (43)

Finally, noting C < ∞, that both dt(xt−1) → 0
and D1(qt ,π) → 0 as t → ∞ by Conjecture 1, and
that ηt(0) = 0 by condition 2 in Definition 3, we have
E[Pa(z)|xt−1,St]→ 0 as t → ∞.

C.2 Proof of Corollary 4
First of all, recall that a semi-metric fulfills all the proper-
ties of a metric except for the triangle inequality. There-
fore, we have˜dt(π(z), qt(z)) ≥ 0,˜dt(π(z), qt(z)) = 0 ⇐⇒
π(z) = qt(z) and ˜dt(π(z), qt(z)) = ˜dt(qt(z),π(z)). Now,
from the proof of Theorem 3 (see Appendix C.1) we
can see that ηt is not used until Eq. (40). Since ηt(˜dt(z))
is a concave function of ˜dt(z), we can still use Jensen’s
inequality and this equation becomes

E[Pa(z)|xt−1,St]≤ ηt
(

E[˜dt(z)|xt−1,St]
)

,

where, following the same procedure as in Appendix C.1
(which is still valid due to the fact that˜dt(π(z), qt(z)) is a
semi-metric), the term inside ηt can be now bounded by

E
[

˜dt(z)|xt−1,St
] ≤˜dt(xt−1) + C ·˜Dt(π , qt),

with ˜Dt(π , qt) = ∫X ˜dt(z) dz. Therefore, we have
E [Pa(z)|xt−1,St] ≤ ηt

(

˜dt(xt−1) + C ·˜Dt(π , qt)
)

,

with E[Pa(z)|xt−1,St]→ 0 as t → ∞ under the condi-
tions of Conjecture 1.

Appendix D: Variate generation
The proposal density q̃t(x|St) ∝ qt(x|St), built using one
of the interpolation procedures in Section 3.1, is com-
posed of mt + 1 pieces (including the two tails). More
specifically, the function qt(x|St) can be seen as a finite
mixture

q̃t(x|St) =
m
∑

i=0
ηiφi(x),
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with
∑mt

i=0 ηi = 1, whereas φi(x) is a linear pdf or a uni-
form pdf (depending on the employed construction; see
Eqs. (3)-(4)) defined in the interval Ii, and φi(x) = 0 for
x /∈ Ii. The tails, φ0(x) and φmt (x), are truncated exponen-
tial pdfs (or Pareto tails see Appendix E.2). Hence, in order
to draw a sample from q̃t(x|St) ∝ qt(x|St), it is necessary
to perform the following steps:

1. Compute the area Ai below each piece composing
qt(x|St), i = 0, . . . ,mt . This is straightforward for
the construction procedures in Eqs. (3)-(4) since the
function qt(x|St) is formed by linear or constant
pieces, so that it can be easily done analytically.
Moreover, since the tails are exponential functions
also in this case we compute the areas below A0 and
Amt analytically. Then, we need to normalize them,

ηi = Ai
∑m

j=1 Aj
, for i = 0, . . . ,m.

2. Choose a piece (i.e., an index j∗ ∈ {0, . . . ,mt})
according to the weights ηi for i = 0, . . . ,mt .

3. Given the index j∗, draw a sample x′ in the interval
Ij∗ with pdf φj∗(x), i.e., x′ ∼ φj∗(x).

Appendix E: Robust algorithms
In this appendix, we briefly discuss how to increase the
robustness of the method, both with respect to a bad
choice of the initial set S0 (e.g., when information about
the range of the target pdf is not available) and w.r.t. the
heavy tails that appear in many target pdfs.

E.1 Mixture of proposal densities
Let us define a proposal density as

q̃(x) = αt q̃1(x) + (1 − αt )̃q2(x|St), (44)

where q̃2(x|St) is a sticky proposal pdf built as described
in Section 3. The density q̃1(x) is a generic proposal func-
tion with an explorative task. The explorative behavior of
q̃1 can be controlled by its scale parameter. The weight αt
can be kept constant αt = α0 = 0.5 for all t (this is the
most defensive strategy), or it can be decreased with the
iteration t, i.e., αt → 0 as t → ∞. The joint adaptation
of the weight αt , the scale parameter of q̃1 and q̃2 using a
sticky procedure needs and deserves additional studies.

E.2 Heavy tails
The choice of the tails for the proposal is important for
two reasons: (a) to accelerate the convergence of the chain
to the target (especially for heavy-tailed target distribu-
tions) and (b) to increase the robustness of the method
w.r.t. the initial choice of the set S0. Indeed, often the con-
struction of tails with a bigger area below them can reduce
the dependence on a specific choice of the set of initial
support points. For heavy tailed constructions, there are

several possibilities. For instance, here we propose to use
Pareto pieces, which have the following analytic form

qt(x|St) = eρ0
1

|x − μ0|γ0 , ∀x ∈ I0,

qt(x|St) = eρmt
1

|x − μmt |γmt
,∀x ∈ Imt ,

with γj > 1, j ∈ {0,mt}. In the log-domain, this results in

w0(x) = ρ0 − γ0 log(|x − μ0|), forx ∈ I0,
wmt (x) = ρmt − γmt log(|x − μmt |), forx ∈ Imt ,

i.e., qt(x|St) = exp (wi(x)) with i ∈ {0,mt}. Let us denote
V (x) = log[π(x)]. Fixing the parameters μj, j ∈ {0,mt},
the remaining parameters, ρj and γj, are set in order to sat-
isfy the passing conditions through the points (s1,V (s1))
and (s2,V (s2)), and through the points (smt−1,V (smt−1))
and (smt ,V (smt )), respectively. The parameters μj can be
arbitrarily chosen by the user, as long as they fulfill the
following inequalities:

μ0 > s2, μmt < smt−1.

Values of μj such that μ0 ≈ s2 and μmt ≈ smt−1 yield
small values of γj (close to 1) and, as a consequence, fatter
tails. Larger differences in |μ0−s2| and |μmt −smt−1| yield
γj → +∞, i.e., lighter tails. Note that we can compute
analytically the integral of qt(x) in I0 and Imt :

A0 = eρ0
γ0 − 1

1
(μ0 − s1)γ0−1 ,

Amt = eρmt

γmt − 1
1

(smt − μmt )
γmt−1 .

Moreover, we can also draw samples easily from each
Pareto tail using the inversion method [2].
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