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Abstract

This paper introduces a new algorithm to approximate smoothed additive functionals of partially observed diffusion
processes. This method relies on a new sequential Monte Carlo methodwhich allows to compute such approximations
online, i.e., as the observations are received, and with a computational complexity growing linearly with the number
of Monte Carlo samples. The original algorithm cannot be used in the case of partially observed stochastic differential
equations since the transition density of the latent data is usually unknown. We prove that it may be extended to
partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for
instance using general Poisson estimators. This estimator is proved to be consistent and its performance are illustrated
using data from two models.
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1 Introduction
This paper introduces a new algorithm to solve the
smoothing problem for hidden Markov models (HMMs)
whose hidden state is a solution to a stochastic differential
equation (SDE). These models are referred to as partially
observed diffusion (POD) processes in [27]. The hidden
state process (Xt)t≥0 is assumed to be a solution to a
SDE, and the only information available is given by noisy
observations (Yk)0≤k≤n of the states (Xk)0≤k≤n (where Xk
stands for Xtk ) at some discrete time points (tk)0≤k≤n.
The bivariate stochastic process {(Xk ,Yk)}0≤k≤n is a state-
space model such that conditional on the state sequence
(Xk)0≤k≤n the observations (Yk)0≤k≤n are independent
and for all 0 ≤ � ≤ n the conditional distribution of Y�

given {Xk}0≤k≤n depends on X� only.
Statistical inference for HMMs often requires to solve

Bayesian filtering and smoothing problems, i.e., the com-
putation of the posterior distributions of sequences of
hidden states given observations. The filtering problem
refers to the estimation, for each 0 ≤ k ≤ n, of the dis-
tributions of the hidden state Xk given the observations
(Y0, . . . ,Yk). Smoothing stands for the estimation of the
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distributions of the sequence of states
(
Xk , . . . ,Xp

)
given

observations (Y0, . . . ,Y�) with 0 ≤ k ≤ p ≤ � ≤ n. These
posterior distributions are crucial to compute maximum
likelihood estimators of unknown parameters using the
observations (Y0, . . . ,Yn) only. For instance, the E-step
of the EM algorithm introduced in [9] boils down to the
computation of a conditional expectation of an additive
functional of the hidden states given all the observations
up to time n. Similarly, by Fisher’s identity, recursive max-
imum likelihood estimates may be computed using the
gradient of the log likelihood which can be written as the
conditional expectation of an additive functional of the
hidden states. See [7, Chapters 10 and 11], [19, 23, 24, 31]
for further references on the use of these smoothed
expectations of additive functionals applied to maximum
likelihood parameter inference in latent data models.
However, in most cases, the exact computation of these

expectations is usually not possible explicitly. Sequential
Monte Carlo (SMC) methods are popular algorithms
to approximate smoothing distributions with random
particles associated with importance weights. [17, 22]
introduced the first particle filters and smoothers for
state-space models by combining importance sampling
steps to propagate particles with resampling steps to
duplicate or discard particles according to their impor-
tance weights. In the case of HMMs, approximations of
the smoothing distributions may be obtained using the
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forward filtering backward smoothing algorithm (FFBS)
and the forward filtering backward simulation algorithm
(FFBSi) developed respectively in [11, 18, 22], and [16].
Both algorithms require first a forward pass which pro-
duces a set of particles and weights approximating the
sequence of filtering distributions up to time n. Then,
a backward pass is performed to compute new weights
(FFBS) or sample trajectories (FFBSi) in order to approxi-
mate the smoothing distributions. Recently, [28] proposed
a new SMC algorithm, the particle-based rapid incre-
mental smoother (PaRIS), to approximate on-the-fly (i.e.,
using the observations as they are received) smoothed
expectations of additive functionals. Unlike the FFBS
algorithm, the complexity of this algorithm grows only
linearly with the number of particlesN and contrary to the
FFBSi algorithm, no backward pass is required. One of the
best features of PaRIS algorithm is that it may be imple-
mented online, using the observations (Yk)k≥0 as they are
received, without any increasing storage requirements.
Unfortunately, these methods cannot be applied directly

to POD processes since some elementary quantities, such
as transition densities of the hidden states, are not avail-
able explicitly. In the context of SDEs, discretization pro-
cedures may be used to approximate transition densities.
For instance, the classical Euler-Maruyama method, the
Ozaki discretization which proposes a linear approxima-
tion of the drift coefficient between two observations
[29, 32], or Gaussian-based approximations using Tay-
lor expansions of the conditional mean and variance
of an observation given the observation at the previ-
ous time step, [20, 21, 33]. Other approaches based on
Hermite polynomials expansion were also introduced by
[1–3] and were extended in several directions recently,
see [25] and all the references on the approximation
of transition densities therein. However, even the most
recent discretization-based approximations of the transi-
tion densities induce a systematic bias in the approxima-
tion of the transition densities, see for instance [8].
To overcome this difficulty, [13] proposed to solve the

filtering problem by combining SMC methods with an
unbiased estimate of the transition densities based on the
generalized Poisson estimator (GPE). In this case, only
the Monte Carlo error has to be controlled as there is
no Taylor expansion to approximate unknown transition
densities, i.e., no discretization scheme is used. The
only solution to solve the smoothing problem for POD
processes using SMC methods without any discretization
procedure has been proposed in [27] and extends the
fixed-lag smoother of [26]. Using forgetting properties
of the hidden chain, the algorithm improves the perfor-
mance of [13] to approximate smoothing distributions
but at the cost of a bias, this time due to the fixed lag
approximation, that does not vanish as the number of
particles grows to infinity.

In this paper, we propose to use SMC methods to
obtain consistent approximations of smoothing expecta-
tions of POD processes by extending the PaRIS algorithm.
The proposed algorithm allows to approximate smoothed
expectations of additive functionals online, with a com-
plexity growing only linearly with the number of particles
and without any discretization procedure or Taylor expan-
sion of the transition densities. The crucial and simple
result (Lemma 1) of the application of the PaRIS algorithm
to POD processes is that the acceptance rejection mech-
anism introduced in [10] ensuring the linear complexity
of the procedure is still correct when the transition den-
sities are replaced by unbiased estimates. The usual FFBS
and FFBSi algorithms may not extend this easily since
they both require the computation of weights defined
as ratios involving the transition densities, thus replac-
ing these unknown quantities by unbiased estimates does
not lead to unbiased estimators of the weights. The lin-
ear version of the FFBSi algorithm proposed in [10] could
be extended in a similar way as PaRIS algorithm but it
would still require a backward pass and would not be an
online smoother. The proposed generalized random ver-
sion of PaRIS algorithm, hereafter named GRand PaRIS
algorithm, may not only be applied to POD processes but
also to any general state-space model where the transition
density of the hidden chain may be approximated using a
positive and unbiased estimator.
Section 2 describes the model and the smoothing quan-

tities to be estimated. Section 3 provides the algorithm
to approximate smoothed additive functionals using unbi-
ased estimates of the transition density of the hidden
states. This section also details the application of this algo-
rithm when the transition density are approximated using
a GPE. In Section 4, classical convergence results for SMC
smoothers are extended to the setting of this paper and
illustrated with numerical experiments in Section 5. All
proofs are postponed to Appendix.

2 Model and framework
Let (Xt)t≥0 be defined as a weak solution to the following
SDE in R

d :

X0 = x0 and dXt = α(Xt)dt + �(Xt)dWt , (1)

where (Wt)t≥0 is a standard Brownian motion on R
d, α :

R
d → R

d, and � : Rd → R
d×d . The solution to (1) is

supposed to be partially observed at times t0 = 0, . . . , tn
through an observation process (Yk)0≤k≤n in (Rm)n+1. In
the following, for all 0 ≤ k ≤ n, the state Xtk at time k is
referred to as Xk . For all 0 ≤ k ≤ n, the distribution of
Yk given Xk has a density with respect to a reference mea-
sure λ on R

m given by g(Xk , ·). For the sake of simplicity,
the shorthand notation gk(Xk) for g(Xk ,Yk) is used. The
distribution of X0 has a density with respect to a refer-
ence measure μ on R

d given by χ . For all 0 ≤ k ≤ n − 1,
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the conditional distribution of Xk+1 given Xk has a density
qk(Xk , ·) with respect to μ.
For all 0 ≤ k ≤ k′ ≤ n, the joint smoothing distribu-

tions of the hidden states are defined, for all measurable
function h on (Rd)k

′−k+1, by:

φk:k′|n [h] = E [h (Xk , . . . ,Xk′)|Y0:n]
and φk = φk:k|k denotes the filtering distributions. The
aim of this paper is to approximate expectations of the
form:

φ0:n|n [Hn] = E [Hn(X0:n)|Y0:n] ,

where Hn =
n−1∑

k=0
hk(Xk ,Xk+1) , (2)

when {hk}n−1
k=0 are given functions on R

d × R
d. Smoothed

additive functionals as (2) are crucial for maximum like-
lihood inference of latent data models. These quanti-
ties appear naturally when computing the Fisher score
in hidden Markov models or the intermediate quan-
tity of the expectation maximization algorithm (see
Section 5). They are also pivotal to design online expecta-
tion maximization-based algorithms which motivates the
method introduced in this paper that does not require
growing storage and can process observations online.
The algorithm proposed in this paper is based on

sequential Monte Carlo methods which offer a flexi-
ble framework to approximate such distributions with
weighted empirical measures associated with random
samples. At each time step, the samples are moved ran-
domly in R

d and associated with importance weights. In
general situations, the computation of these importance
weights involve the unknown transition density of the pro-
cess (1). The solution introduced in Section 3 requires an
unbiased estimator of these unknown transition densities.
Moreover, this estimator must be almost surely positive
and upper bounded. Statistical inference of stochastic
differential equations is an active area of research, and
several solutions have been proposed to design unbiased
estimates of these transition densities. Those estimators
require different assumptions on the model (1), we pro-
vide below several solutions that can be investigated.

General Poisson estimators This paper focuses mainly
on GPEs which have been widely used recently and
applied in a variety of disciplines. These estimators
require that the diffusion coefficient � is constant and
equal to the identity matrix, see [13]. They may be applied
to reducible SDE for which there exists an invertible and
infinitely differentiable function η such that the process
{Zt = η(Xt)}t≥0 satisfies the SDE z0 = η(x0) and

dZt = β(Zt)dt + dWt . (3)

By Ito’s formula, it is straightforward to show that, in
the case of a reducible diffusion, the Jacobian matrix of η

satisfies

∇η = �−1 ,

and, in the case d = 1,

β : u �→ α(η−1(u))

�(η−1(u))
− �′ (η−1(u)

)

2
.

In the case of a scalar diffusion, this Lamperti transform
is given by

η : x �→
∫ x

x0
�−1(u)du .

In the general case, [3, Proposition 1] shows that when
� is non-singular, the SDE is reducible if and only if, for all
1 ≤ i, j, k ≤ d,

∂�−1
i,j

∂xk
= ∂�−1

i,k
∂xj

. (4)

In the case of a diagonal matrix � (4) is equivalent to
assume that � is such that for each 1 ≤ i ≤ d, �i,i depends
on xi only. [3] notes that the reducibility condition (4)
holds also for some non-diagonal matrices �. This is true
in particular in the case d = 2 for stochastic volatility
models where σ is of the form:

�(x) =
(
a(x1) a(x1)b(x2)
0 c(x2)

)
.

GPEs consider that the process (Xt)t≥0 satisfies the SDE
(1) with � being the identity matrix, i.e., we consider a dif-
fusion after the application of the Lamperti transform. In
addition, designing GPEs also requires that

i) α is of the form α(x) = ∇xA(x) where A : Rd → R is
a twice continuously differentiable function ;

ii) the function x �→ (‖α(x)‖2 + 	A(x)
)
/2 is lower

bounded where 	 is the Laplace operator.

Assumption (i) is somewhat restrictive as it requires α

to derive from a scalar potential, however, it has natu-
ral applications in many fields such as movement ecol-
ogy, see [15]. Assumption (ii) is a technical condition
which ensures that exact sampling of processes solution to
(1) using acceptance rejection methods, see for instance
[4, 5, 13]. In addition to provide an unbiased estimate of
the transition density, the GPE ensure that this estimate is
almost surely positive. Moreover, as detailed below, under
additional conditions, a GPE that is almost surely upper
bounded can be defined.

Continuous importance sampling-based estimators
In the case the previous assumptions are not fulfilled, in
particular assumption (i), alternatives to GPEs are given by
continuous importance sampling procedures for SDE. In



Gloaguen et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:9 Page 4 of 14

[34], for each 0 ≤ k ≤ n−1, the transition density between
tk and tk+1 is expressed as an infinite expansion obtained
using the Kolmogorov backward operator associated with
(1). This analytical expression of the transition density is
not tractable and is estimated by updating random sam-
ples at random times between tk and tk+1 using tractable
proposal distributions (for instance, based on an Euler dis-
cretization of the original SDE). Then, these samples are
associated with random weights to ensure that the pro-
posed estimator is unbiased. More recently, [14] extended
the discrete time importance sampling estimator by intro-
ducing updates at random times associated with a renewal
process. The random samples are weighted using the Kol-
mogorov forward operator associated with the SDE which
relies on the first two order derivatives of the drift and
diffusion coefficients (and is therefore tractable).
The unbiasedness of these procedures and the con-

trols of the variability of the estimates require moments
assumptions and Holder type conditions on the parame-
ters of the SDE (1). Their efficiency require a fair amount
of tuning as they highly depend on the proposal densi-
ties used to obtain the Monte Carlo samples and the point
processes generating the underlying random times. In
addition to unbiasedness, the proposed algorithm in this
work requires that the estimator of the transition density
is almost surely positive and upper bounded. This implies
additional assumptions on the SDE depending on the cho-
sen estimate and could lead to interesting perspectives.

3 The generalized random PaRIS algorithm
The algorithm is based on the following link between the
filtering and smoothing distributions for additive func-
tionals, see [28]:

φ0:n|n [h] = φn [Tn[ h] ] , where
Tn [h] (Xn) = E [h(X0:n)|Xn,Y0:n] .

(5)

The approximation of (5) requires first to approximate
the sequence of filtering distributions. Sequential Monte
Carlo methods provide an efficient and simple solution
to obtain these approximations using sets of particles
{
ξ�
k
}N
�=1 associated with weights

{
ω�
k
}N
�=1, 0 ≤ k ≤ n.

At time k = 0, N particles
{
ξ�
0
}N
�=1 are sampled inde-

pendently according to ξ�
0 ∼ η0, where η0 is a probability

density with respect to μ. Then, ξ�
0 is associated with the

importance weights ω�
0 = χ

(
ξ�
0
)
g0
(
ξ�
0
)
/η0

(
ξ�
0
)
. For any

bounded and measurable function h defined on R
d, the

expectation φ0[ h] is approximated by

φN
0 [h]= 1

�N
0

N∑

�=1
ω�
0h
(
ξ�
0

)
, �N

0 :=
N∑

�=1
ω�
0 .

Then, for 1 ≤ k ≤ n, using
{(

ξ�
k−1,ω

�
k−1

)}N

�=1
, the

auxiliary particle filter of [30] samples pairs
{(
I�k , ξ

�
k
)}N

�=1
of indices and particles using an instrumental transition
density pk−1 on R

d × R
d and an adjustment multiplier

function ϑk on R
d. Each new particle ξ�

k and weight ω�
k at

time k are computed following these steps:

- choose a particle index I�k at time k − 1 in {1, . . . ,N}
with probabilities proportional to ω

j
k−1ϑk

(
ξ
j
k−1

)
, for j

in {1, . . . ,N} ;
- sample ξ�

k using this chosen particle according to

ξ�
k ∼ pk−1

(
ξ
I�k
k−1, ·

)
;

- associate the particle ξ�
k with the importance weight:

ω�
k :=

qk−1

(
ξ
I�k
k−1, ξ

�
k

)
gk
(
ξ�
k
)

ϑk

(
ξ
I�k
k−1

)
pk−1

(
ξ
I�k
k−1, ξ

�
k

) . (6)

The expectation φk[ h] is approximated by

φN
k [h] := 1

�N
k

N∑

�=1
ω�
kh
(
ξ�
k

)
, �N

k :=
N∑

�=1
ω�
k .

The most simple choice for pk−1 and ϑk is the boot-
strap filter proposed by [17] which sets pk−1 = qk−1 and
for all x ∈ R

d, ϑ(x) = 1. In the case of POD processes,
qk−1 is unknown but it can be replaced by any approxi-
mation to sample the particles as any choice of pk−1 can
be made. The approximation can be obtained using a
discretization scheme such as Euler method or a Poisson-
based approximation as detailed below. A more appealing
choice is the fully adapted particle filter which sets for all
x, x′ ∈ R

d , pk−1
(
x, x′) ∝ qk−1

(
x, x′) gk

(
x′) and for all

x ∈ R
d , ϑ(x) = ∫

qk−1
(
x, x′) gk

(
x′)μ

(
dx′). Here, again

qk−1 has to be replaced by an approximation. In Section 5,
it is replaced by the Gaussian approximation provided by
a Euler scheme which leads to a Gaussian proposal density
pk−1 as the observation model is linear and Gaussian.
The PaRIS algorithm uses the same decomposition as

the FFBS algorithm introduced in [12] and the FFBSi
algorithm proposed by [16] to approximate smoothing
distributions. It combines both the forward-only version
of the FFBS algorithm with the sampling mechanism of
the FFBSi algorithm. It does not produce an approxima-
tion of the smoothing distributions but of the smoothed
expectation of a fixed additive functional and thus may be
used to approximate (2). Its crucial property is that it does
not require a backward pass, the smoothed expectation is
computed on-the-fly with the particle filter and no storage
of the particles or weights is needed.
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PaRIS algorithm relies on the following fundamental
property of Tk[Hk] when Hk is as in (2):

Tk
[
Hk
]
(Xk )=E

[
Tk−1

[
Hk−1

] (
Xk−1

)
+ hk−1

(
Xk−1,Xk

)∣∣
∣Xk ,Y0:k−1

]
,

=
∫

φk−1
(
dxk−1

)
qk−1

(
xk−1,Xk

){
Tk−1

[
Hk−1

](
xk−1

)
+hk−1

(
xk−1,Xk

)}

∫
φk−1

(
dxk−1

)
qk−1

(
xk−1,Xk

) .

Therefore, [28] introduces sufficient statistics τ ik (start-
ing with τ i0 = 0, 1 ≤ i ≤ N), approximating Tk [Hk]

(
ξ ik
)
,

for 1 ≤ i ≤ N and 0 ≤ k ≤ n. First, replacing φk−1 by φN
k−1

in the last equation leads to the following approximation
of Tk [Hk]

(
ξ ik
)
:

TN
k [Hk]

(
ξ ik
) =

N∑

j=1
�N

k−1(i, j)
{
Tk−1

[
Hk−1

](
ξ
j
k−1

)
+hk−1

(
ξ
j
k−1, ξ

i
k

)}
,

(7)

where

�N
k (i, �) =

ω�
kqk

(
ξ�
k , ξ

i
k+1

)

∑N
�=1 ω�

kqk
(
ξ�
k , ξ

i
k+1

) , 1 ≤ � ≤ N . (8)

Computing exactly these approximations would lead to
a complexity growing quadratically with N because of the
normalizing constant in (8). Therefore, PaRIS algorithm
sample particles in the set

{
ξ
j
k−1

}N

j=1
with probabilities

�N
k (i, ·) to approximate the expectation (7) and produce

τ ik . Choosing Ñ ≥ 1, at each time step 0 ≤ k ≤ n − 1 these
statistics are updated according to the following steps:

(i) Run one step of a particle filter to produce
{(

ξ�
k ,ω

�
k
)}

for 1 ≤ � ≤ N .
(ii) For all 1 ≤ i ≤ N , sample independently J i,�k in

{1, . . . ,N} for 1 ≤ � ≤ Ñ with probabilities �N
k (i, ·),

given by (8).
(iii) Set

τ ik+1 :=
1
Ñ

Ñ∑

�=1

{
τ
Ji,�k
k + hk

(
ξ
Ji,�k
k , ξ ik+1

)}
.

Then, (2) is approximated by

φN
0:n|n [τn] = 1

�N
n

N∑

i=1
ωi
nτ

i
n .

It is clear from steps (i) to (iii) that each time a new
observation Yn+1 is received, the quantities

(
τ in+1

)
1≤i≤N

can be updated only using Yn+1,
(
τ in
)
1≤i≤N and the parti-

cle filter at time n. This means that storage requirements
do not increase when processing additional data.
As proved in [28], the algorithm is asymptotically con-

sistent (as N goes to infinity) for any precision parameter
Ñ . However, there is a significant qualitative difference

between the cases Ñ = 1 and Ñ ≥ 2. As for the FFBSi
algorithm, when there exists σ+ such that 0 < qk <

σ+, PaRIS algorithm may be implemented with O(N)

complexity using the accept-reject mechanism of [10].
In general situations, PaRIS algorithm cannot be used

for stochastic differential equations as qk is unknown.
Therefore, the computation of the importance weights
ω�
k and of the acceptance ratio of [10] is not tractable.

Following [13, 27], filtering weights can be approximated
by replacing qk

(
ξ�
k , ξ

i
k+1

)
by an unbiased estimator

q̂k
(
ξ�
k , ξ

i
k+1; ζk

)
, where ζk is a random variable in R

q such
that

q̂k
(
ξ�
k , ξ

i
k+1; ζk

)
>0 a.s and

E

[
q̂k
(
ξ�
k , ξ

i
k+1; ζk

)∣∣
∣GN

k+1

]
= qk

(
ξ�
k , ξ

i
k+1

)
,

where for all 0 ≤ k ≤ n,

FN
k = σ

{
Y0:k ;

(
ξ�
u ,ω�

u, τ �
u

)
; J�,jv ; 1 ≤ � ≤ N , 0 ≤ u ≤ k, 1

≤ j ≤ Ñ , 0 ≤ v < k
}
,

GN
k+1 = FN

k ∨ σ
{
Yk+1;

(
ξ�
k+1,ω

�
k+1

)
; 1 ≤ � ≤ N

}
.

Practical choices for ζk are discussed below, see for
instance (14) which presents the choice made for the
implementation of such estimators in our context. In the
case where qk is unknown, the filtering weights in (6) then
become

ω̂�
k :=

q̂k−1

(
ξ
I�k
k−1, ξ

�
k ; ζk−1

)
gk
(
ξ�
k
)

ϑk

(
ξ
I�k
k−1

)
pk−1

(
ξ
I�k
k−1, ξ

�
k

) . (9)

In Algorithm 1,M independent copies
(
ζm
k−1

)

1≤m≤M
of

ζk−1 are sampled and the empirical mean of the associated
estimates of the transition density are used to compute
ω̂�
k instead of a single realization. Therefore, to obtain a

generalized random version of PaRIS algorithm, we only
need to be able to sample from the discrete probability
distribution �N

k (i, ·) in the case of POD processes.
Consider the following assumption: for all 0 ≤ k ≤ n−1,

there exists a random variable σ̂ k+ measurable with respect
to GN

k+1 such that,

supx,y,ζ q̂k(x, y; ζ ) ≤ σ̂ k+ . (10)

Lemma1 Assume that (10) holds for some 0 ≤ k ≤ n−1.
For all 1 ≤ i ≤ N, define the random variable Jik as
follows:

repeat
Sample independently ζ , U ∼ U [0, 1], and J ∈
{1, . . . ,N} with probabilities proportional to{
ω̂1
k , . . . , ω̂

N
k
}
.
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until U ≤ q̂k
(
ξ
J
k , ξ

i
k+1, ζ

)
/σ̂ k+.

Set Jik = J .
Then, the conditional probability distribution given GN

k+1
of Jik is �N

k (i, ·).

Proof See Appendix.

Note that Lemma 1 still holds if assumption (10) is
relaxed and replaced by

supj,y,ζ q̂k
(
ξ
j
k , y, ζ

)
≤ σ̂ k+ . (11)

It is worth noting that under assumptions (10) or (11),
the linear complexity property of PaRIS algorithm is
ensured. The following assumption can also be consid-
ered. For all 1 ≤ i ≤ N ,

supj,ζ q̂k
(
ξ
j
k , ξ

i
k+1, ζ

)
≤ σ̂

k,i
+ . (12)

If only assumption (12) holds, the algorithm has a
quadratic complexity. The bound of (10) is uniform (it
does not depend on the particles) and can be used for
every particle 1 ≤ i ≤ N . However, this bound can be
large (with respect to the simulated set of particles) for
the algorithm of Lemma 1. The bound of (12) requires N
computations per particle (therefore, N2 computations).
However, it is clear that this second bound is sharper
that the one of (10) for the acceptance rejection proce-
dure and may lead to a computationally more efficient
algorithm.

Bounded estimator of qk using GPEs For x, y ∈ R
d, by

Girsanov and Ito’s formulas, the transition density qk(x, y)
of (1) satisfies, with �k = tk+1 − tk ,

qk(x, y) =ϕ�k (x, y) exp
{
A(y) − A(x)

}

E
W

x,y,�k

[
exp

{
−
∫ �k

0
φ(ws)ds

}]
,

where Wx,y,�k is the law of Brownian bridge starting at x
at 0 and hitting y at �k , (wt)0≤t≤�k is such a Brownian
bridge, ϕ�k (x, y) is the p.d.f. of a normal distribution with
mean x and variance �k , evaluated at y and φ : Rd → R is
defined as

φ(x) = (‖α(x)‖2 + 	A(x)
)
/2 .

Assume that there exist random variables Lw and Uw

such that for all 0 ≤ s ≤ �k , Lw ≤ φ(ws) ≤ Uw. The
performance of the estimator depends on the choice of
Lw and Uw which is specific to the SDE. In the case of
the models analyzed in Section 5, these bounds are dis-
cussed in [13] for the SINE model and in [27] for the
log-growth model. Note that in the case where φ is not

upper bounded, [5] proposed the EA3 algorithm. This lay-
ered Brownian bridge construction first samples random
variables to determine in which layer the Brownian bridge
lies before simulating the bridge conditional on the event
that it belongs to the layer. By continuity of φ, Lw, and Uw

can be computed easily.
Let κ be a random variable taking values inNwith distri-

bution μ and
(
Uj
)
1≤j≤κ

be independent uniform random
variables on [ 0,�k] and ζk = {κ ,w,U1, . . . ,Uκ } . As
shown in [13], a positive unbiased estimator is given by

q̂k(x, y; ζk) = ϕ�k (x, y) exp
{
A(y) − A(x)

}

× exp {−Uw�} �κ
k

μ(κ)κ !

κ∏

j=1

(
Uw − φ

(
wUj

))
.

(13)

Interesting choices of μ are discussed in [13], and we
focus here on the so called GPE-1, where μ is a Poisson
distribution with intensity (Uw − Lw)�k . In that case, the
estimator (13) becomes

q̂k(x, y; ζk) =

ϕ�k (x, y) exp
{
A(y) − A(x) − Lw�k

} κ∏

j=1

Uw − φ
(
wUj

)

Uw − Lw
.

(14)

On the r.h.s. of (14), the product over κ elements is
bounded by 1. Therefore, a sufficient condition to satisfy
one of the assumptions (10)–(12) is that the function

ρ�k : R
d × R

d �→ R

(x, y) �→ ϕ�k (x, y) exp
{
A(y) − A(x) − Lw�k

}

is upper bounded almost surely by σ̂ k+. In particular, if
Lw is bounded below almost surely, (14) always satisfies
assumption (12) and Algorithm 1 can be used. This condi-
tion is always satisfied for models in the domains required
for the applications of exact algorithms EA1, EA2, and
EA3 defined in [6].
When (10) or (11) holds, it can be nonetheless of prac-

tical interest to choose the bounds σ̂
k,i
+ , 1 ≤ i ≤ N ,

corresponding to (12). Indeed, this might increase signifi-
cantly the acceptance rate of the algorithm, and therefore
reduce the number of draws of the random variable ζk ,
which has a much higher cost than the computation of
ρ�k , as it requires simulations of Brownian bridges. More-
over, this option allows to avoid numerical optimization if
no analytical expression of σ̂ k+ is available. In practice, this
seemsmore efficient in terms of computational time when
N has moderate values.
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Algorithm 1 GRand PaRIS algorithm
for all i ∈ 1, . . . ,N do

Sample ξ i0 ∼ η0, τ i0 = 0 and ω̂i
0 = g0

(
ξ i0
)
χ0
(
ξ i0
)
/

η0
(
ξ i0
)
.

end for
for k ∈ 0, . . . , n − 1 do

for all i ∈ 1, . . . ,N do
Set τ ik+1 = 0;
Sample Iik+1 in {1, . . . ,N} with probabilities pro-
portional to

{
ω̂1
kϑk+1

(
ξ1k
)
, . . . , ω̂N

k ϑk+1
(
ξNk
)}
.

Sample ξ ik+1 ∼ pk
(

ξ
Iik+1
k , ·

)
.

For all 1 ≤ m ≤ M, sample independently ζm
k =(

κm,wm,
(
Um
j

)

1≤j≤κm

)
with κm ∼ μ,wm ∼ W

Xk+1
k

and
(
Um
j

)

1≤j≤κm
∼ U [0,�k]⊗κm .

Compute ω̂i
k+1 using Eq. (9).

for all � ∈ 1, . . . , Ñ do
Sample J i,�k as in Lemma 1.
Update τ ik+1 = τ ik+1+(

τ
Ji,�k
k + hk

(
ξ
Ji,�k
k , ξ ik+1

))
/Ñ .

end for
end for

end for

4 Convergence results
Consider the following assumptions.

H1 (i) For all k ≥ 0 and all x ∈ R
d , gk(x) > 0.

(ii) sup
k≥0

|gk|∞ < ∞.

AssumptionH1 only involves the marginal likelihood gk
of the observations and does not depend on the unbiased
estimation of the transition density. In the case where the
observations are given as in the Section 5, this assump-
tion holds as soon as the variance of the observation is
bounded away from zero.

H2 sup
k≥1

|ϑk|∞ < ∞, sup
k≥1

|pk|∞ < ∞, and sup
k≥1

|ω̂k|∞ < ∞,

where

ω̂0(x) = χ(x)g0(x)
η0(x)

and for k ≥ 1,

ω̂k
(
x, x′; z

) = q̂k−1
(
x, x′; z

)
gk(x′)

ϑk(x)pk−1(x, x′)
.

Assumption H2 depends on the algorithm used to esti-
mate the transition densities and on the tuning parameters
of the SMC filter. The most common choice is ϑk = 1 so
that under H1, the only requirement is to control q̂k−1 and

pk−1. For instance, in the case of the GPE-1, as explained
in Section 3, H2 is satisfied if φ is upper bounded (as for
the EA1).

Lemma 2 For all 0 ≤ k ≤ n − 1, the random variables{
ω̂i
k+1τ

i
k+1

}N

i=1
are independent conditionally on FN

k and

E
[
ω̂1
k+1τ

1
k+1

∣∣FN
k
] =

(
φN
k
[
ϑk+1

])−1
φN
k

[∫
qk(·, x)gk+1(x)

{
τk(·)+hk+1(·, x)

}
dx
]
.

Proof See Appendix

Proposition 1 Assume that H1 and H2 hold and that
for all 1 ≤ k ≤ n, osc(hk) < +∞. For all 0 ≤ k ≤ n and all
Ñ ≥ 1, there exist bk , ck > 0 such that for all N ≥ 1 and
all ε ∈ R

�+,

P
(∣∣φN

k [ τk]−φk [Tkhk]
∣
∣ ≥ ε

) ≤ bk exp
(−ckNε2

)
.

Proof See Appendix

5 Numerical experiments
This section investigates the performance of the proposed
algorithm with the sine and log-growth models (Fig. 1). In
both cases, the proposal distribution pk is chosen as the
following approximation of the optimal filter (or the fully
adapted particle filter in the terminology of [30]):

pk−1
(
xk−1, xk

) ∝ q̃k−1
(
xk−1, xk

)
gk(xk) ,

where q̃k−1(xk−1, xk) is the p.d.f. of Gaussian distibution
with mean α(xk−1)�k and variance �kId, i.e., the Euler
approximation of Eq. (1). As the observation model is lin-
ear and Gaussian, the proposal distribution is therefore
Gaussian with explicit mean and variance.
In order to evaluate the performance of the proposed

algorithm, the following strategy has been chosen. We
compare the estimation of the EM intermediate quantity
with the one obtained by the fixed lag method of [27], for
different values of the lag (namely, 1,2,5,10,50). The parti-
cle approximation of Q(θ , θ) for each model is computed
using each algorithm, see Fig. 2 for the SINE model and
Fig. 3 for the log-growth model. This estimation is per-
formed 200 times to obtain the estimates Q̂1, . . . , Q̂200,
using Ñ = 2 particles for PaRIS algorithm, and M = 30
replications for theMonte Carlo approximation q̂k of each
qk . Moreover, the E step requires the computation of a
quantity such as (2) with hk = log gk + log qk . log qk is not
available explicitly and is approximated using the unbi-
ased estimator proposed in [27, Appendix B] based on 30
independent Monte Carlo simulations. In order to obtain
a reference value for our study, the intermediate quantity
of the EM algorithm is also estimated 30 times using the
GRand PaRIS algorithm with N = 5000 particles, the
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Fig. 1 SINE model - observations. Process X solution to the SDE (balls)
and observations Y (circles) at times t0 = 0, . . . , t100 = 50

Fig. 2 SINE model - EM intermediate quantity. Estimation of the EM
intermediate quantityQ(θ , θ) using the fixed-lag (FL) technique for
five different lags, and the GRand PaRIS algorithm using 200
replicates. The whiskers represent the extent of the 95% central
values. The dot represents the empirical mean over the 200 replicates.
The dotted line shows the reference value, computed using the
GRand PaRIS algorithm with N = 5000 particles

Fig. 3 Log-growth model - EM intermediate quantity. Estimation of
the EM intermediate quantityQ(θ , θ) using the fixed lag (FL)
technique for five different lags, and the GRand PaRIS algorithm using
200 replicates. The whiskers represent the extent of the 95% central
values. The dot represents the empirical mean over the 200 replicates.
The dotted line shows the reference value, computed using the
GRand PaRIS algorithm with N = 5000 particles

reference value is then computed as the arithmetic mean
of these 30 estimations, and denoted by Q̂�. Figures 2 and
3 display this estimate for an example with one simulated
data set. The GRand Paris algorithm is performed using
N = 400 particles in both cases, the fixed lag technique
using N = 1600 so that both estimations require simi-
lar computational times, resulting a fair comparison. On a
personal computer1, for the parameters mentioned above,
it takes around 25 s to perform each E step.

5.1 The SINE model
The performance of the GRand PaRIS algorithm are first
highlighted using the SINE model, where (Xt)t≥0 is sup-
posed to be the solution to

dXt = sin (Xt − μ) dt + dWt , X0 = x0 . (15)

This simple model has no explicit transition density,
however, GPEs may be computed by simulating Brownian
bridges. The process solution to (15) is observed regularly
at times t0 = 0, . . . , t100 = 50 through the observation
process (Yk)0≤k≤100:

Yk = Xk + εk ,

where the (εk)0≤k≤100 are i.i.d. N
(
0, σ 2

obs
)
, the resulting

set of model parameters is θ = (μ, σobs). In the example
displayed in Fig. 1, we set μ = 0 and σobs = 1.
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In the case of the SINE model, the estimator q̂k defined
by Eq. (14) satisfies both (10) and (11). The corresponding
bound σ̂ k+ can be obtained using numerical optimization.
If that bound is chosen, the GRand PaRIS algorithm has
linear complexity in the number of particles. As an alter-
native, it is worth noting here that the bounds σ̂

k,i
+ , 1 ≤

i ≤ N , defined by (12) can also be used. This method has a
quadratic cost in the number of particles but provides the
optimal bound for the algorithm of Lemma 1. This may
reduce significantly the expected time before acceptance,
in particular when the time step �k is large. In the experi-
ment configuration presented here, both bounds resulted
in an equivalent computational time.
This same experiment was reproduced on 100 different

simulated data sets. For each simulation s, the empiri-
cal absolute relative bias arbs and the empirical absolute
coefficient of variation acvs are computed as

arbs =
∣
∣m(Q̂s) − Q̂s

�

∣
∣

∣
∣Q̂s

�

∣
∣ ,

acvs = σ(Q̂s)
∣
∣m(Q̂s)

∣
∣ ,

where m
(
Q̂s) and σ

(
Q̂s) are the empirical mean and

standard deviation of the sequence Qs
1, . . . ,Q

s
200. For

each estimation method, the resulting distributions
of arb1, . . . , arb100 and acv1, . . . , acv100 are shown in
Figs. 4 and 5.
The GRand PaRIS algorithm outperforms the fixed-lag

methods for any value of the lag as the bias is the lowest
(it is already negligible for N = 400) and with a lower

Fig. 4 SINE model - bias. Distribution of the empirical absolute
relative bias

Fig. 5 SINE model - variance. Distribution of the empirical absolute
coefficient of variation

variance than fixed lag estimates with negligible bias (i.e.,
in this case, lags larger than 10). Small lags lead to strongly
biased estimates for the fixed-lag method, and unbiased
estimates are at the cost of a large variance. It is worth
noting here that the lag for which the bias is small is model
dependent.

Generalized EM procedure The performance of our
algorithm is also assessed in the case where θ and the
variance σ 2

obs are unknown and estimated using a gener-
alized EM algorithm. The study is done using a data set
with n = 200 observations simulated with μ = 0
an d σ 2

obs = 1. The GRand PaRIS algorithm is used
to perform the E step, with the same settings as before
for N, Ñ , and M. As there is no closed form solution to
compute the M step of the EM algorithm and propose
new parameter estimates, we use a generalized EM proce-
dure: given the current estimation θ(k) :=

(
μ(k), σ (k)

obs

)
, the

functionQ
(·, θ(k)) is approximated for 50 new candidates

θ1, . . . , θ50 chosen by the user. The new estimate is set as

θ(k+1) = argmaxiQ
(
θi, θ(k)

)
.

This procedure has the nice property of using the same
particle filter and the same retrospective sampling of
Lemma 1 for all candidates, avoiding to repeat this time
consuming procedure. The number of candidates and the
way to choose them is problem dependent and then left
to the user. In our case, we sampled candidates using
Gaussian distributions around the current estimate θ(k),
decreasing the variance when k increases. Figures 6 and 7
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Fig. 6 SINE model - EM. Estimation of μ

illustrate the performance of the estimation for 12 differ-
ent initializations of μ (resp. σobs) uniformly chosen in
]−π ,π [ (resp. in ] 0, 6[), illustrating a convergence after
only a few iterations of the EM procedure.

5.2 Log-growthmodel
Following [6] and [28], the performance of the proposed
algorithm are also illustrated with the log-growth model
(Fig. 8) defined by

dZt = κZt

(
1 − Zt

γ

)
dt + σZtdWt , Z0 = z0 . (16)

In order to use the exact algorithms of [6] and the GPE
of [13], we consider (16) after the Lamperti transform, i.e.,
the process defined by Xt = η(Zt), with η(z) : = −
log(z)/σ , which satisfies the following SDE:

dXt =

:=α(Xt)︷ ︸︸ ︷(
σ

2
− κ

σ
+ κ

γ σ
exp(−σXt)

)
dt + dWt , X0 = x0 = η(z0) .

(17)

In this case, the conditions of the exact Algorithm 2
defined in [6] are satisfied, as for any m ∈ R there exists

Fig. 7 SINE model - EM. Estimation of σobs
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Fig. 8 Log-growth model - observations. Process X solution to the
SDE (balls) and observations Y (circles) at times t0 = 0, . . . , t100 = 50

Um such that for all x ≥ m, ψ(x) := α2(x) + α′(x) ≤
Um. Moreover, ψ is lower bounded uniformly by L. Then,
GPE estimators may be computed by simulating the mini-
mum of a Brownian bridge, and simulating Bessel bridges
conditionally to this minimum, as proposed by [6].
The process solution to (17) is observed regularly at

times t0 = 0, . . . , t50 = 100 through the observation
process (Yk)0≤k≤50 defined as

Yk = Xk + εk ,

where the (εk)0≤k≤50 are i.i.d.N
(
0, σ 2

obs
)
. The parameters

are given by

θ = (κ = 0.1, σ = 0.1, γ = 1000, σobs = 2) .

In the case of the log-growth model, the estimator q̂k(·)
defined by Eq. (14) satisfies (11), leading to a GRand PaRIS
algorithm with linear complexity in the number of parti-
cles. However, the remarks about the bound σ̂ k+ made for
the SINE model above still hold in this case. The interme-
diate quantity of the EM algorithm is evaluated as for the
SINE model, see Figs. 3, 9, and 10.
The results for the fixed-lag technique are similar to the

ones presented in [27, Figure 1] using the same model. For
small lags, the variance of the estimates is small, but the
estimation is highly biased. The bias rapidly decreases as
the lag increases, together with a great increase of vari-
ance. Again, the GRand PaRIS algorithm outperforms the
fixed lag smoother as it shows a similar (vanishing) bias as
the fixed lag for the largest lag and a smaller variance than
the fixed lags estimates with negligible bias.

Fig. 9 Log-growth model - bias. Distribution of the empirical absolute
relative bias

Note that in this case, the Lamperti transform to obtain
a diffusion with a unitary diffusion term depends on σ .
The process (Xt)t≥0 is a function of σ and is not directly
observed if σ is unknown, which prevents a direct use of
an EM algorithm to estimate σ . Following [6, Section 8.2],
this may be overcome with a two-step transformation of
the process (Zt)t≥0.

Fig. 10 Log-growth model - variance. Distribution of the empirical
absolute coefficient of variation
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6 Conclusions
This paper presents a new online SMC smoother for
partially observed differential equations. This algorithm
relies on an acceptance-rejection procedure inspired from
the recent PaRIS algorithm. The main result of the arti-
cle for practical applications is that the mechanism of this
procedure remains valid when the transition density is
approximated by a an unbiased positive estimator. The
proposed procedure therefore extends the PaRIS algo-
rithm to HMMs whose transition density is unknown and
can be unbiasedly approximated. The GRand PaRIS algo-
rithm outperforms the existing fixed lag smoother for
POD processes of [27], as it does not introduce any intrin-
sic and non-vanishing bias. In addition, numerical sim-
ulations highlight a better variance using data from two
different models. It can be implemented for the class of
models for which exact algorithms of [6] are valid, with a
linear complexity inN in the best cases, or at worse inN2.

Endnote
1 (i7-6600U CPU @ 2.60GHz)

Appendix
Proofs
Proof of Lemma 1 Let τ be the first timedraws are accepted

in the accept-reject mechanism. For all � ≥ 1, write

Ak
� =

{
U� < q̂k

(
ξ
J�
k , ξ ik+1, ζ

�
k

)
/σ̂ k+

}
.

Let h be a function defined on {1, . . . ,N},
E

[
h
(
J i,jk
)∣∣
∣GN

k+1

]

=
∑

m≥1
E
[
h(Jm)1τ=m|GN

k+1
]
,

=
∑

m≥1

(m−1∏

�=1
E

[
1
(Ak

� )c

∣
∣
∣GN

k+1

]
)

E

[
h(Jm)1Ak

m

∣
∣
∣GN

k+1

]
,

=
∑

m≥1

⎛

⎝
m−1∏

�=1
E

⎡

⎣1 −
q̂k
(
ξ
J�
k , ξ ik+1; ζ

�
k

)

σ̂ k+

∣∣
∣
∣
∣
∣
GN
k+1

⎤

⎦

⎞

⎠

× E

⎡

⎣h(Jm)
q̂k
(
ξ
Jm
k , ξ ik+1; ζ

m
k

)

σ̂ k+

∣
∣
∣
∣
∣
∣
GN
k+1

⎤

⎦ ,

=
∑

m≥1

⎛

⎝E

⎡

⎣1 −
qk
(
ξ
J1
k , ξ1k+1

)

σ̂ k+

∣
∣
∣
∣
∣
∣
GN
k+1

⎤

⎦

⎞

⎠

m−1

E

⎡

⎣h(J1)
qk
(
ξ
J1
k , ξ1k+1

)

σ̂ k+

∣
∣
∣
∣
∣∣
GN
k+1

⎤

⎦ ,

= E

[
h(J1)qk

(
ξ
J1
k , ξ ik+1

)∣∣
∣GN

k+1

]/
E

[
qk
(
ξ
J1
k , ξ ik+1

)∣∣
∣GN

k+1

]
,

=
N∑

�=1

h(�)ω�
k−1qk

(
ξ�
k , ξ

i
k+1

)

∑N
m=1 ωm

k−1qk
(
ξmk , ξ ik+1

) ,

=
N∑

�=1
�N

k−1(i, �)h(�) ,

which concludes the proof.

Proof of Lemma 2 The independence is ensured by the
mechanism of SMC methods. By (9),

E
[
ω̂i
k+1τ

i
k+1

∣
∣FN

k
] =

E

⎡

⎢
⎢
⎣

q̂k
(

ξ
Iik+1
k , ξ ik+1; ζk

)
gk+1

(
ξ ik+1

)

ϑk+1

(
ξ
Iik+1
k

)
pk
(

ξ
Iik+1
k , ξ ik+1

) τ ik+1

∣
∣
∣
∣
∣
∣
∣
∣

FN
k

⎤

⎥
⎥
⎦ .

Note that by Lemma 1,

E
[
τ ik+1

∣
∣GN

k+1
]=

N∑

�=1

ω�
kqk

(
ξ�
k , ξ

i
k+1

) (
τ �
k + hk

(
ξ�
k , ξ

i
k+1

))

∑N
�′=1 ω�′

k qk
(
ξ�′
k , ξ ik+1

) ,

E

[
q̂k
(

ξ
Iik+1
k , ξ ik+1; ζk

)∣∣∣
∣G

N
k+1

]
= qk

(
ξ
Iik+1
k , ξ ik+1

)
.

Since τ ik+1 and ζk are independent conditionally to GN
k+1:

E

[
τ ik+1q̂k

(
ξ
Iik+1
k , ξ ik+1; ζk

)∣∣
∣
∣G

N
k+1

]

= qk
(
ξ
Iik+1
k , ξ ik+1

) N∑

�=1

ω�
kqk

(
ξ�
k , ξ

i
k+1

)(
τ �
k + hk

(
ξ�
k , ξ

i
k+1

))

∑N
�′=1 ω�′

k qk
(
ξ�′
k , ξ ik+1

) .

Moreover, conditionally to FN
k , the probability density

function of
(
ξ ik+1, I

i
k+1

)
is given by

(x, j) �→
ω
j
kϑk+1

(
ξ
j
k

)
pk
(
ξ
j
k , x
)

�N
k φN

k
[
ϑk+1

] .

Therefore, this yields

E
[
ω̂i
k+1τ

i
k+1

∣
∣FN

k
]

= (
φN
k
[
ϑk+1

])−1
N∑

j=1

ω
j
k

�k

∫
ϑk+1

(
ξ
j
k

) qk
(
ξ
j
k , x
)
gk+1(x)

ϑk+1
(
ξ
j
k

)
pk
(
ξ
j
k , x
)

×
N∑

�=1

ω�
kqk

(
ξ�
k , x

) (
τ �
k + hk

(
ξ�
k , x

))

∑N
�′=1 ω�′

k qk
(
ξ�′
k , x

) pk
(
ξ
j
k , x
)
dx ,

= (
φN
k
[
ϑk+1

])−1

×
N∑

�=1

ω�
k

�k

⎡

⎣
∫ ∑N

j=1 ω
j
kqk

(
ξ
j
k , x
)

∑N
�′=1 ω�′

k qk
(
ξ�′
k , x

) gk+1(x)qk
(
ξ�
k , x

)

(
τ �
k + hk

(
ξ�
k , x

))
dx

⎤

⎦

= (
φN
k
[
ϑk+1

])−1
φN
k

[∫
qk(·, x)gk+1(x) {τk(·) + hk(·, x)} dx

]
,

which concludes the proof.

Proof of Proposition 1 The results is proved by induc-
tion. At time k = 0, the result holds using that for all
1 ≤ i ≤ N , ρi

0 = 0 and the convention T0 [h0] = 0. In
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addition, φN
0 is a standard importance sampler estimator

of φ0 with ω̂i
0 ≤ |ω̂0|∞ so that for any bounded function

h on X,

P
(∣∣φN

0 [ h]−φ0[ h]
∣
∣ ≥ ε

) ≤ b0 exp
(−c0Nε2

)
.

Assume the results holds for k ≥ 0 and that ϑk+1 = 1
for simplicity. Write

φN
k+1

[
τk+1

]− φk+1
[
Tk+1

[
hk+1

]] = aN/bN ,

where aN = N−1∑N
i=1 ω̂i

k+1

(
τ ik+1 − φk+1

[
Tk+1[ hk+1]

])

and bN = N−1∑N
i=1 ω̂i

k+1. By Lemma 2, the random vari-
ables {ω̂i

k+1τ
i
k+1}Ni=1 are independent conditionally on FN

k
and by H2,
∣
∣ω̂i

k+1
(
τ ik+1 − φk+1

[
Tk+1

[
hk+1

]])∣∣ ≤ 2|ω̂k+1|∞|Hk+1|∞ .

Therefore, by Hoeffding inequality,

P
(∣∣aN − E

[
aN
∣
∣FN

k
]∣∣ ≥ ε

) =
E
[
P
( ∣∣aN− E

[
aN
∣∣FN

k
]∣∣ ≥ ε

∣∣FN
k
)] ≤ 2 exp

(−ckNε2
)
.

On the other hand,

E
[
aN
∣
∣FN

k
] = φN

k [ϒk] ,

where

ϒk(xk) =
∫

qk(·, x)gk+1(x)
(
τk(xk) + hk+1(xk , x)

−φk+1
[
Tk+1[ hk+1]

])
dx .

By [28, Lemma 11], φk [ϒk] = 0 which implies by the
induction assumption that

P
(∣∣E

[
aN
∣
∣FN

k
]∣∣ ≥ ε

) ≤ bk exp
(−ckNε2

)
.

Then,

P (|aN | ≥ ε) ≤ bk exp
(−ckNε2

)
.

Similarly, as bN ≤ |ω̂k|∞, by Hoeffding inequality,

P
(∣∣bN − E

[
bN
∣
∣FN

k
]∣∣ ≥ ε

)

= E
[
P
(∣∣bN−E

[
bN
∣
∣FN

k
]∣∣≥ε

∣
∣FN

k
)] ≤ 2 exp

(−ckNε2
)
.

Note that

E
[
bN
∣
∣FN

k
] = φN

k

[∫
qk(·, x)gk+1(x)dx

]
.

By the induction assumption,

P

(∣∣
∣
∣E
[
bN
∣
∣FN

k
]− φk

[∫
qk(·, x)gk+1(x)dx

]∣∣
∣
∣ ≥ ε

)

≤ bk exp
(−ckNε2

)
.

The proof is completed using Lemma 3.

Lemma 3 Assume that aN , bN , and b are random vari-
ables defined on the same probability space such that there
exist positive constants β , B, C, and M satisfying

(i) |aN/bN | ≤ M, P-a.s. and b ≥ β , P-a.s.,
(ii) For all ε > 0 and all N ≥ 1,

P [|bN − b| > ε] ≤ B exp
(−CNε2

)
,

(iii) For all ε > 0 and all N ≥ 1,
P [|aN | > ε] ≤ B exp

(−CN (ε/M)2
)
.

Then,

P

{∣∣∣
∣
aN
bN

∣
∣∣
∣ > ε

}
≤ B exp

(

−CN
(

εβ

2M

)2
)

.

Proof See [10].
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