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Abstract

Considerable effort has been recently devoted to the design of schemes for the parallel implementation of sequential
Monte Carlo (SMC) methods for dynamical systems, also widely known as particle filters (PFs). In this paper, we
present a brief survey of recent techniques, with an emphasis on the availability of analytical results regarding their
performance. Most parallelisation methods can be interpreted as running an ensemble of lower-cost PFs, and the
differences between schemes depend on the degree of interaction among the members of the ensemble. We also
provide some insights on the use of the simplest scheme for the parallelisation of SMC methods, which consists in
splitting the computational budget intoM non-interacting PFs with N particles each and then obtaining the desired
estimators by averaging over theM independent outcomes of the filters. This approach minimises the parallelisation
overhead yet still displays desirable theoretical properties. We analyse the mean square error (MSE) of estimators of
moments of the optimal filtering distribution and show the effect of the parallelisation scheme on the approximation
error rates. Following these results, we propose a time–error index to compare schemes with different degrees of
parallelisation. Finally, we provide two numerical examples involving stochastic versions of the Lorenz 63 and Lorenz
96 systems. In both cases, we show that the ensemble of non-interacting PFs can attain the approximation accuracy
of a centralised PF (with the same total number of particles) in just a fraction of its running time using a standard
multicore computer.
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1 Introduction
Over the past decade, there has been a continued interest
in the design of schemes for the implementation of parti-
cle filtering algorithms using parallel or distributed hard-
ware of various types, including general purpose devices
such as multi-core CPUs or graphical processing units
(GPUs) [1] and application-tailored devices such as field-
programmable gate arrays (FPGAs) [2]. A particle filter
(PF) is a recursive algorithm for the approximation of the
sequence of posterior probability distributions that arise
from a stochastic dynamical system in state-space form
(see, e.g. [3–6] and references therein for a general view
of the field). A typical PF includes three steps that are
repeated sequentially:
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• Monte Carlo sampling in the space of the state
variables,

• Computation of weights for the generated samples
and, finally,

• Resampling according to the weights.

While at first sight the algorithm may look straightfor-
ward to parallelise (sampling and weighting can be carried
out concurrently without any constraint), the resampling
step involves the interaction of the whole set of Monte
Carlo samples. Several authors have proposed schemes for
‘splitting’ the resampling step into simpler tasks that can
be carried out concurrently. The approaches are diverse
and range from the heuristic [7–9] to the mathemat-
ically well-principled [2, 10–14]. However, the former
are largely based on (often loose) approximations that
prevent the claim of any rigorous guarantees of conver-
gence, whereas the latter involve non-negligible overhead
to ensure the proper interaction of particles.
The goal of this paper is to provide
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(i) A survey of recently proposed, and mathematically
well grounded, parallelisation schemes for particle
filtering and

(ii) Analytical insights into the performance of the
simplest parallelisation method, namely the averaging
of statistically independent PFs.

Besides describing the various methodologies, we aim
at characterising their performance analytically when-
ever possible. For that purpose, we need to introduce
accurate notation, unfortunately a bit more involved
than needed for the mere description of the algorithmic
steps. Then, we describe and provide a basic conver-
gence result for the standard PF and proceed to describe
four different approaches to its parallelisation: the sim-
ple averaging of statistically independent (i.e. non inter-
acting) low-complexity PFs, the method based on the
distributed resampling with non-proportional allocation
(DRNA) procedure of [2, 10, 11], the particle island model
of [13, 14] and the adaptive interaction scheme termed
α-sequential Monte Carlo (α-SMC) in [12].
The simplest parallelisation scheme consists in run-

ning M statistically independent PFs with N particles
(i.e. Monte Carlo samples) each and then averaging the
M independent estimators. This approach has the lim-
itation that the bias of the averaged estimator depends
only on N. Hence, if N is relatively small, the bias is
large even if we use a very high number M of parallel fil-
ters. This drawback can be overcome by allowing some
degree of interaction among the M concurrently running
PFs. The DRNA, particle island and α-SMC approaches
introduce this interaction in different flavours. In DRNA-
based ensembles of PFs, each filter runs separately but it
periodically exchanges a few particles with other mem-
bers of the ensemble using a communication network
[10]. Algorithms in the particle island class rely on two
levels of resampling: conventional resampling at particle
level and island-level resampling, where complete sets of
particles (associated to parallel-running PFs) are repli-
cated or eliminated stochastically [13, 14]. Finally, the
α-SMC scheme of [12] is a very flexible methodology that
enables the adaptive selection of different interaction pat-
terns (i.e. which particles are resampled together) over
time. For each one of these techniques, we describe the
methodology and establish basic theoretical guarantees
for convergence.
In the second part of the paper, we focus on the anal-

ysis of the performance of the simplest parallelisation
scheme, the averaging of M statistically independent PFs
with N particles each. Under mild assumptions, we anal-
yse the mean square error (MSE) of the estimators of
one-dimensional statistics of the optimal filtering distri-
bution and show explicitly the effect of the parallelisation
scheme on the convergence rate. Specifically, we study the

decomposition of the MSE into variance and bias compo-
nents, to show that the variance isO

( 1
MN

)
, i.e. it decreases

linearly with the total number of particles, while the bias
is O

(
1
N2

)
, i.e. it goes to 0 quadratically with N. These

results have already been obtained, e.g. in [13] using the
Feynman-Kac framework of [4]. Here, we aim at providing
a self-contained analysis that illustrates the key theoreti-
cal issues in the convergence of parallel PFs. All proofs are
constructed from elementary principles, and we obtain
explicit error rates (for the bias, the variance and theMSE)
that hold for all M and N, while the theorems in [13] are
strictly asymptotic. While we have focused here on PFs
for discrete-time state-space models, the analysis can be
similarly done for continuous-time systems, and, indeed,
the basic results needed for that case can be found in
[15]. Finally, in order to compare different parallelisation
schemes, we introduce a time–error index that combines
time complexity (asymptotic order of the running time)
and estimation accuracy (asymptotic error rates) into a
single quantitative figure of merit that can be used to
compare schemes with different degrees of interaction.
The rest of the paper is organised as follows. In

Section 2, we present basic background material, and
notation, for the analysis of PFs. Section 3 is devoted to
a survey of parallelisation schemes for particle filtering.
Our analysis of the ensemble of non-interacting PFs is pre-
sented in Section 4. In Section 5, we present numerical
results for two examples, namely the filtering of stochastic
versions of the Lorenz 63 and Lorenz 96 systems, respec-
tively. The latter is often used as a simplified model of
atmospheric dynamics, and it has the property that it
can be scaled to an arbitrary dimension. Our simulation
results show that the use of averaged estimators computed
from ensembles of non-interacting filters can be advanta-
geous in terms of accuracy (not only running times) as the
system dimension grows. Finally, Section 6 is devoted to
a discussion of the obtained results, together with some
concluding remarks.

2 Background
2.1 Notation and preliminaries
We first introduce some common notations to be used
through the paper, broadly classified by topics. Below,
R denotes the real line, while for an integer d ≥ 1,

R
d =

dtimes
︷ ︸︸ ︷
R × . . . × R.

• Functions.
– The supremum norm of a real function

f : Rd → R is denoted as
‖f ‖∞ = supx∈Rd |f (x)|.

– B(S) is the set of bounded real functions over
S ⊆ R

d , i.e. f ∈ B(Rd) if, and only if, f has
domain S and ‖f ‖∞ < ∞.



Crisan et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:31 Page 3 of 18

• Measures and integrals. Let S ⊆ R
d be a subset of Rd .

– B(S) is the σ -algebra of Borel subsets of S.
– P(S) is the set of probability measures over

the measurable space (B(S), S).
– (f ,μ) �

∫
f (x)μ(dx) is the integral of a real

function f : S → R with respect to (w.r.t.) a
measure μ ∈ P(S).

– Given a probability measure μ ∈ P(S), a Borel
set A ∈ B(S) and the indicator function

IA(x) =
{
1, if x ∈ A
0, otherwise ,

μ(A) = (IA,μ) is the probability of A.

• Sequences, vectors and random variables (r.v.’s).

– We use a subscript notation for sequences,
namely xt1:t2 �

{
xt1 , . . . , xt2

}
.

– For an element x = (x1, . . . , xd) ∈ R
d of a

Euclidean space, its norm is denoted as
‖x‖ =

√
x21 + . . . + x2d .

– The Lp norm of a real r.v. Z, with p ≥ 1, is
written as ‖Z‖p � E[ |Z|p]1/p, where E[ ·]
denotes expectation w.r.t. the distribution of Z.

2.2 State-space Markov models in discrete time
Consider two random sequences, {Xt}t≥0 and {Yt}t≥1, tak-
ing values in X ⊆ R

dx and R
dy , respectively. Let Pt be

the joint probability measure for the collection of random
variables {X0,Xn,Yn}1≤n≤t .
We refer to the sequence {Xt}t≥0 as the state (or sig-

nal) process, and we assume that it is an inhomogeneous
Markov chain governed by an initial probability measure
τ0 ∈ P(X ) and a sequence of Markov transition kernels
τt : B(X ) × X → [0, 1]. To be specific, we define

τ0(A) � P0 {X0 ∈ A} , (1)
τt (A|xt−1) � Pt {Xt ∈ A|Xt−1 = xt−1} , t ≥ 1, (2)

where A ∈ B(X ) is a Borel set. The sequence {Yt}t≥1 is
termed the observation process. Each r.v. Yt is assumed
to be conditionally independent of other observations
given Xt ; hence, the conditional distribution of the r.v. Yt
given Xt = xt is fully described by the probability den-
sity function (pdf) gt(yt|xt) > 0. We often use gt as a
function of xt (i.e. as a likelihood) and hence we write
gyt (x) � gt(y|x). The prior τ0, the kernels {τt}t≥1 and the
functions {gt}t≥1 describe a stochastic Markov state-space
model in discrete time.
The stochastic filtering problem consists in the compu-

tation of the posterior probability measure of the state Xt
given the sequence of observations up to time t. Specifi-
cally, for a given observation record {yt}t≥1, we seek the
probability measures

πt(A) � Pt
{
Xt ∈ A|Y1:t = y1:t

}
, t = 0, 1, 2, ...

where A ∈ B(X ). For many practical problems, the inter-
est actually lies in the computation of statistics of πt , e.g.
the posterior mean or the posterior variance of Xt . Such
statistics can be written as integrals of the form (f ,πt), for
some function f : X → R. Note that, for t = 0, we
recover the prior signal measure, i.e. π0 = τ0.
An associated problem is the computation of the one-

step-ahead predictive measure

ξt(A) � Pt
{
Xt ∈ A|Y1:t−1 = y1:t−1

}
, t = 1, 2, ...

This measure can be explicitly written in terms of the
kernel τt and the filter πt−1. Indeed, for any integrable
function f : X → R, we readily obtain (see, e.g. ([6]
Chapter 10))

(f , ξt) =
∫ ∫

f (x)τt(dx|x′)πt−1(dx′) (3)

= (
(f , τt),πt−1

)
,

and we write ξt = τtπt as shorthand.
The filter at time t, πt , can be obtained from the pre-

dictive measure, ξt , and the likelihood, gytt , by way of
the so-called projective product [6] or Boltzman-Gibbs
transformation [4], πt = gytt � ξt , defined as

(
f , gytt � ξt

)
�
(
fgytt , ξt

)

(
gytt , ξt

)

for any integrable function f : X → R. Combined with
(3), this yields the recursive formula

πt = gytt � τtπt−1. (4)

It is key to the analysis of Section 4 to keep track of the
sequence of non-normalised measures {ρt}t≥0, where

ρ0 = π0, ρt = gytt · τtρt−1 (5)

and, for any integrable function f : X → R and any
measure α ∈ P(X ), we define

(
f , gytt · α

)
�
(
fgytt ,α

)
. (6)

We remark that ρt is not a probability measure but a
non-normalised version of πt , namely

(f ,πt) = (f , ρt)
(1, ρt)

,

where 1(x) = 1 is the constant unit function.

2.3 Standard particle filter
Assume that a sequence of observations Y1:T = y1:T , for
some T < ∞, is given. Then, the sequences of measures
{πt}t≥1, {ξt}t≥1 and {ρt}t≥0 can be numerically approxi-
mated using particle filtering. PFs are numerical methods
based on the recursive relationships (4) and (6). The sim-
plest algorithm, often called ‘standard particle filter’ or
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‘bootstrap filter’ [16] (see also [17]), can be described as
follows.

Algorithm 1: Bootstrap filter
1. Initialisation. At time t = 0, draw N i.i.d. samples,

x(n)
0 , n = 1, . . . ,N , from the distribution τ0.

2. Recursive step. Let
{
x(n)
t−1

}

1≤n≤N
be the particles

(samples) generated at time t − 1. At time t, proceed
with the two steps below.

(a) For n = 1, ...,N , draw a sample x̄(n)
t from the

probability distribution τt
(
·|x(n)

t−1

)
and

compute the normalised weight

w(n)
t =

gytt
(
x̄(n)
t

)

∑N
k=1 g

yt
t

(
x̄(k)
t

) . (7)

(b) For n = 1, ...,N , let x(n)
t = x̄(k)

t with
probability w(k)

t , k ∈ {1, ...,N}.

Step 2.(b) is referred to as resampling or selection. In the
form stated here, it reduces to the so-called multinomial
resampling algorithm [18, 19], but the convergence of the
filter can be easily proved for various other schemes (see,
e.g. the treatment of the resampling step in [6]).
Using the sets

{
x̄(n)
t

}

1≤n≤N
and

{
x(n)
t

}

1≤n≤N
, we con-

struct random approximations of ξt , ρt and πt , namely

ξNt = 1
N

N∑

n=1
δx̄(n)

t
, πN

t = 1
N

N∑

n=1
δx(n)

t
, ρN

t = GN
t πN

t (8)

where δx is the delta unit-measure located at x ∈ R
dx and1

GN
t = 1

Nt

t∏

k=1

⎛

⎝
N∑

j=1
gykk

(
x̄(j)
k

)
⎞

⎠ . (9)

For any integrable function f on the state space, it is
straightforward to approximate the integrals

(
f , ξt

)
,
(
f ,πt

)

and
(
f , ρt

)
as

(f , ξt) ≈ (
f , ξNt

) = 1
N

N∑

n=1
f
(
x̄(n)
t

)
,

(
f ,πt

) ≈ (
f ,πN

t
) = 1

N

N∑

n=1
f
(
x(n)
t

)
and

(
f , ρt

) ≈ (
f , ρN

t
) = GN

t
(
f ,πN

t
)
,

respectively.
The convergence of PFs has been analysed in different

ways [4, 6, 20–23]. Here, we use simple results for the con-
vergence of the Lp norms (p ≥ 1) of the approximation

errors. For the approximation of integrals w.r.t. ξt and πt ,
we have the following standard result.

Lemma 1 Assume that the sequence of observations
Y1:T = y1:T is fixed (with T < ∞), gytt ∈ B(X ) and gytt > 0
(in particular,

(
gytt , ξt

)
> 0) for every t = 1, 2, ...,T. Then

for any f ∈ B(X ), any p ≥ 1 and every t = 1, . . . ,T,
∥
∥(f , ξNt

)− (
f , ξt

)∥∥
p ≤ c̄t‖f ‖∞√

N
and (10)

∥
∥(f ,πN

t
)− (

f ,πt
)∥∥

p ≤ ct‖f ‖∞√
N

, (11)

where c̄t and ct are finite constants independent of N,
‖f ‖∞ = supx∈X |f (x)| < ∞ and the expectations are
taken over the distributions of the measure-valued random
variables ξNt and πN

t , respectively.

Proof This result is a special case of, e.g. Lemma 1
in [24].

Remark 1 The constants c̄t and ct can be easily shown
to increase exponentially with t. It is possible to find error
rates independent of t by imposing additional assumptions
on the state-space model (related to the stability of the
optimal filter, πt) [4, 25].

3 Parallelisation schemes for particle filtering
3.1 Non-interacting particle filters
Assume we intend to run a PF with K particles. Most par-
allelisation schemes split the set of particles

{
x(k)
t

}

1≤k≤K
into subsets and then run separate (but possibly interact-
ing) PFs for each subset. To be specific, assume that the
complete set of K particles can be divided into M subsets
with N elements each, i.e. K = MN , and we construct
disjoint subsets

{
x(m,n)
t

}

1≤n≤N
, form = 1, ...,M,

such that
M⋃

m=1

{
x(m,n)
t

}

1≤n≤N
=
{
x(k)
t

}

1≤k≤K
.

In the simplest scheme, M independent (i.e. non-
interacting) PFs are run separately. Assume for simplicity
that the standard PF outlined in Algorithm 1 is used on
each subset. Then, at each time t, we have M estimates of
the filtering measure, namely

π
m,N
t = 1

N

N∑

n=1
δx(m,n)

t
, m = 1, . . . ,M. (12)

Assuming that the goal is to approximate integrals of the
form

(
f ,πt

)
, for some integrable real function f : X →R,
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then we obtain an ensemble of M independent and iden-
tically distributed (i.i.d.) estimators

(
f ,πm,N

t

)
= 1

N

N∑

n=1
f
(
x(m,n)
t

)
, m = 1, . . . ,M,

which can be averaged to yield

(
f ,πM×N

t

)
= 1

M

M∑

m=1

(
f ,πm,N

t

)
= 1

MN

M∑

m=1

N∑

n=1
f
(
x(m,n)
t

)
,

(13)

where we have denoted πM×N
t = 1

M
∑M

m=1 π
m,N
t .

This scheme is straightforward to implement, and it
does not involve any parallelisation overhead as theM PFs
do not interact. A self-contained analysis of theMSE of the
ensemble estimator

(
f ,πM×N

t

)
is presented in Section 4.

A key result, to be explicitly shown in our analysis but
also pointed out in [13] and [12], is that the estimation
bias

∣
∣
∣E
[
(f ,πt) −

(
f ,πM×N

t

)]∣∣
∣ decreases asO

(
N−2). This

implies that if the number of particles per subset, N,

is kept fixed, then the MSE, E
[∣
∣
∣(f ,πt) −

(
f ,πM×N

t

)∣∣
∣
2
]
,

remains bounded away from zero even if the number of
subsets is made arbitrarily large, i.e. M → ∞. This can
be a drawback depending on the type of parallel comput-
ing configuration to be used. In multicore computers, for
example, the number of subsets M can be expected to
be moderate (of the order of cores available) and N can
often be made large enough to make the bias negligible.
On the other hand, implementations based on low-power
processors, such as graphical processing units (GPUs) or
wireless networks, are more efficient when operating with
a large number of subsets, M, and a low number of par-
ticles per subset, N. In these scenarios, the bias of the
non-interacting ensemble estimator in Eq. (13) can be sig-
nificant. The solution to this limitation is to introduce
some degree of interaction among theM parallel-running
PFs. Some relevant schemes are described below.

3.2 Distributed resampling with non-proportional
allocation

The scheme termed distributed resampling with non-
proportional allocation (DRNA) for the parallelisation of
PFs was originally introduced in [2] (Section IV.A.3), but it
has been only recently that a theoretical characterisation
of its performance has been obtained [10, 11, 26].
The same as in Section 3.1, assume that we have a bud-

get of K = MN particles, which are split into M subsets
with N particles each. We run a standard PF for each

subset2 which, in addition to the particles and weights,
keeps track of the aggregated non-normalised weight

W (m)∗
t = W (m)∗

t−1

N∑

n=1
gytt

(
x(m,n)
t

)
. (14)

Note that W (m)∗
t represents the likelihood of the mth

subset of particles
{
x(m,n)
t

}

1≤n≤N
. The normalised aggre-

gated weights are computed as

W (m)
t = W (m)∗

t
∑M

i=1W
(i)∗
t

, m = 1, . . . ,M.

In this scheme, the M parallel PFs are not indepen-
dent. Every t0 time steps, the PFs exchange subsets of
particles and weights using a communication network [2].
This exchange can be formally described by means of a
deterministic one-to-one map

β : {1, ...,M} × {1, ...,N} → {1, ...,M} × {1, ...,N}
that keeps the number of particles per subset,N, invariant.
Specifically, (u, v) = β(m, n) means that the nth particle
of the mth subset is transmitted to the uth subset, where
it becomes particle number v. In summary, if we have the
particles

{
x(m,n)
t

}

1≤n≤N ;1≤m≤M
,

then, after the exchange step, the particles are re-labelled
as

{
xβ(m,n)
t

}

1≤n≤N ;1≤m≤M
.

Typically, only small subsets of particles are exchanged,
hence β(m, n) = (m, n) for most values of m and n.
The resulting parallel particle filtering algorithm can be
outlined as shown below (adapted from [10]).
We remark that every PF operates independently of all

others except for the particle exchange, step 2.(c), which
is carried out every t0 time steps. The degree of inter-
action can be controlled by designing the map β(m, k)
in a proper way. Typically, exchanging a subset of parti-
cles with ‘neighbour’ PFs is sufficient. For example, if we
assume the parallel PFs are arranged in a ring configu-
ration, then the mth PF can exchange, say, two particles
with PF number m − 1 and another two particles with PF
number m + 1, in such a way that all parallel PFs retain
N particles (four of them received from their neighbours)
after the exchange.
We also note that the local resampling step is carried

out independently, and concurrently, for each parallel-
running PF and it does not change the aggregate weights,
i.e. W̄ (m)∗

t = ∑N
n=1 w̄

(m,n)∗
t = ∑N

n=1 w̃(m,n)∗. We assume a
multinomial resampling procedure, but other procedures
can be used in an obvious manner.



Crisan et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:31 Page 6 of 18

Algorithm 2: DRNA-based parallel PFs with M sub-
sets, N particles per subset and periodic particle
exchanges every t0 time steps
1. Initialisation: Form = 1, ...,M (concurrently) draw

x(m,n)
0 ∼ τ0(dx), n = 1, ...,N , and set w(m,n)∗

0 = 1
MN

andW (m)∗
0 = 1/M.

2. Recursive step: Assume
{
x(m,n)
t−1 ,w(m,n)∗

t−1
}
1≤n≤N and

W (m)∗
t−1 are available form = 1, ...,M.

(a) Form=1, ...,M (concurrently) and n=1, ...,N ,

drawx̄(m,n)
t ∼ τt

(
dx|x(m,n)

t−1

)
,

computew̄(m,n)∗
t = w(m,n)∗

t−1 gytt
(
x̄(m,n)
t

)
,

and setW̄ (m)∗
t =

N∑

n=1
w̄(m,n)∗
t .

(b) Local resampling: form = 1, ...,M
(concurrently) set x̃(m,n)

t = x̄(m,j)
t with

probability w̄(m,j)
t = w̄(m,j)∗

t
W̄ (m)∗

t
, for n = 1, ...,N and

j ∈ {1, ...,N}.
Set w̃(m,n)∗

t = W̄ (m)∗
t
N for each m and all n.

(c) Particle exchange: If t is an integer multiple of
t0, then set

xβ(m,n)
t = x̃(m,n)

t and wβ(m,n)∗
t = w̃(m,n)∗

t

for every (m, n)∈{1, ...,M}×{1, ...,N}. Also set
W (m)∗

t = ∑N
n=1 w

(m,n)∗
t for everym = 1, ...,M.

Otherwise, set x(m,n)
t = x̃(m,n)

t ,
w(m,n)∗
t = w̃(m,n)∗

t ,W (m)∗
t = W̄ (m)∗

t .

The ensemble estimator of the optimal filter πt is now
computed as the weighted average

πM×N
t =

M∑

m=1
W (m)

t π
m,N
t , where π

m,N
t = 1

N

N∑

n=1
δx(m,n)

t
.

The particle estimator of (f ,πt) then becomes(
f ,πM×N

t

)
= ∑M

m=1
W (m)

t
N

∑N
n=1 f

(
x(m,n)
t

)
.

The scheme in Algorithm 2 has been proved to converge
uniformly over time, under some standard assumptions,
when the number of particles per subset, N, is kept fixed
and the number of subsets (i.e. the number of parallel
PFs),M, is increased. To be specific, we have the following
result, which is proved in [10] (Section 3.2).

Theorem 1 If the following three assumptions hold:

i. The sequence of observations {yt}t≥1 is fixed (but
otherwise arbitrary) and there exists a real constant

0 < a < ∞ such that 1
a < gytt (x) < a for every t ≥ 1

and every x ∈ X .
ii. The sequence of probability measures {πt}t≥0 is

stable (see [25]).
iii. The particle exchange step guarantees that

E
[(

sup
1≤m≤M

W (m)
rt0

)q]

≤ cq

Mq−ε
, for every r ∈ N

and some constants c < ∞, 0 ≤ ε < 1 and q ≥ 4
independent of M.

Then, for any fixed 0 < N < ∞,

lim
M→∞ sup

t≥0

∥
∥
∥
(
f ,πM×N

t

)
− (f ,πt)

∥
∥
∥
p

= 0

for any f ∈ B(X ) and every 1 ≤ p ≤ q.

Assumption iii. in the latter theorem indicates that none
of the M subsets should accumulate too much aggre-
gate weight compared to the other subsets. This accu-
mulation of weight is precisely controlled by the particle
exchange steps. In a practical implementation, the aggre-
gate weights W (m)∗

t should be monitored and additional
particle exchange steps should be triggered when the
weight of any subset increases beyond some prescribed
threshold.

3.3 Particle islands
The particle island model was introduced in [13] in order
to address the parallel processing of subsets of particles
in SMC methods in a systematic manner. Similar to the
DRNA-based PFs of Section 3.2, the algorithms proposed
in [13] are based on runningM parallel PFs, each one on a
disjoint subset of particles, namely

{
x(m,n)
t

}
1≤n≤N for the

mth filter, and keep track of the non-normalised aggregate
weightsW (m)∗

t defined in Eq. (14).
However, particle island methods do not rely on an

exchange of particles between the PFs running the differ-
ent subsets. Instead, a resampling scheme in two levels is
implemented.

• Particle level: resampling is carried out locally within
each of the M concurrently running PFs. This is
equivalent to the local resampling step in Algorithm 2.

• Island level: the aggregate weightsW (m)
t are used to

resample the particle subsets, or islands, assigned to
the individual PFs. In this step, complete subsets can
be replicated or eliminated (in the same way as
particles are in a conventional, or particle level,
resampling step).

We now outline the double bootstrap filter, an algorithm
described in [13] (Algorithm 1) that performs multino-
mial resampling at both the particle level and the island
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level. While in the version of [13] both resampling steps
are taken at every time step t, we describe a slightly more
general procedure where the island-level resampling steps
are taken periodically, every t0 ≥ 1 time steps. For sim-
plicity, we introduce the notation Xm,N

t = {
x(m,n)
t

}
1≤n≤N

for the subset ofN particles assigned to themth island (ie.
themth concurrently running PF).

Algorithm 3: Double bootstrap filter with M islands
and N particles per island. Island-level resampling
every t0 time steps
1. Initialisation: Draw sets of particles

Xm,N
0 =

{
x(m,n)
0

}

1≤n≤N
,m = 1, ...,M, independently

from the prior distribution τ0.
2. Recursive step: Assume Xm,N

t−1 andW (m)∗
t−1 are available

form = 1, ...,M.

(a) Form=1, ...,M (concurrently) and n=1, ...,N ,

drawx̄(m,n)
t ∼ τt

(
dx|x(m,n)

t−1

)
,

computew̄(m,n)∗
t = w(m,n)∗

t−1 gytt
(
x̄(m,n)
t

)
,

and setW̄ (m)∗
t =

N∑

n=1
w̄(m,n)∗
t .

(b) Particle-level resampling: form = 1, ...,M
(concurrently) set x̃(m,n)

t = x̄(m,j)
t with

probability w̄(m,j)
t = w̄(m,j)∗

t
W̄ (m)∗

t
, for n = 1, ...,N and

j ∈ {1, ...,N}.
Set w̃(m,n)∗

t = W̄ (m)∗
t
N , for each m and all n, and

X̃m,N
t = {x̃(m,n)

t }1≤n≤N form = 1, ...,M.

(c) Island-level resampling: let W̄ (m)
t = W̄ (m)∗

t∑M
l=1 W̄

(l)∗
t

,
m = 1, ...,M, be the normalised island weights.
If t is an integer multiple of t0,

• then, form = 1, ...,M, let Xm,N
t = X̃j,Nt with

probability W̄ (j)
t , j ∈ {1, ...,M}, and set

W (m)∗
t = 1

M ;
• else, form = 1, ...,M, set Xm,N

t = X̃m,N
t and

W (m)∗
t = W̄ (m)∗

t .

In Algorithm 3, a multinomial resampling procedure is
employed both at the particle level and the island level.
Other schemes are obviously possible and some of them
are explored in [13], including ε-interactions and resam-
pling conditional on the effective sample size.
The particle approximation of the optimal filter πt takes

the form πM×N
t = ∑M

m=1W
(m)
t π

m,N
t , where π

m,N
t = 1

N

∑N
n=1 δx(m,n)

t
. This is formally identical to the DRNA-based

Algorithm 2, although the procedure for the computation
of the particles and weights is obviously different.
The asymptotic convergence of the double bootstrap fil-

ter was proved in [13] using the Feynman-Kac machinery
of [4]. Then, in the follow-up paper [14], a central limit
theorem was proved and bounds on the asymptotic vari-
ance of a class of schemes that includes Algorithm 3 were
derived. Here we reproduce the basic convergence result
of [13], adapted to the notation of this paper.

Theorem 2 Assume that the sequence of observations
y1:T is arbitrary but fixed, T is arbitrarily large but
finite and the likelihood functions gytt (x) are positive and
bounded for 1 ≤ t ≤ T. Then, for any f ∈ B(X ) and every
t = 1, ...,T,

lim
N→∞ lim

M→∞NM×E
[(
f ,πM×N

t

)
− (f ,πt)

]
= B(f , t) < ∞,

and
lim

N→∞ lim
M→∞NM × Var

[(
f ,πM×N

t

)]
= V (f , t) < ∞,

where Var [·] denotes the variance of a random variable
and B(f , t) and V (f , t) are finite constants with respect to
both M and N.

The results in Theorem 2 can be adapted to the case
where the island-level resampling step is removed from
Algorithm 3, effectively converting the double bootstrap
method into an ensemble of non-interacting PFs. It is
proved in [13] that, in such case,

lim
N→∞ lim

M→∞N × E
[(

f ,πM×N
t

)
− (f ,πt)

]
= B̄(f , t) < ∞,

and

lim
N→∞ lim

M→∞NM × Var
[(

f ,πM×N
t

)]
= V̄ (f , t) < ∞

where the constants B̄(f , t) and V̄ (f , t) are independent
of M and N. This implies that the bias of the estima-
tor

(
f ,πM×N

t

)
with non-interacting PFs depends only on

N and cannot be eliminated by taking M → ∞ alone.
The MSE of Algorithm 3, on the other hand, vanishes as
MN → ∞.

3.4 Adaptive interaction pattern: the α-SMC
methodology

Rather thanworkingwith fixed subsets Xm,N
t =

{
x(m,n)
t

}

1≤n≤N
,

m = 1, ...,M, the α-SMCmethodology of [12] enables the
construction of particle filtering algorithms with adaptive
interaction patterns. In particular, it is possible to devise
parallelised PFs within this framework where the subsets
of particles which are resampled together can change from
one time step to the next (including their size, N).
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Let K be the total number of particles. The interaction
pattern for resampling is specified by means of a sequence
of Markov transition matrices αt =

[
α
ij
t

]
where 1 ≤ i ≤

K and 1 ≤ j ≤ K are the row and column indices, respec-
tively. Since αt is a Markov matrix, it satisfies

∑K
j=1 α

ij
t = 1

for every row i. The ith row in αt determines from
which subset of particles we resample x(i)

t . The general
α-SMC method is outlined below. We assume that either
the sequence αt is pre-determined or there is some pre-
scribed rule to select αt given the observations y1:t and the
particles

{
x̄(k)
t

}

1≤n≤K
.

Algorithm 4: α-SMC algorithm

1. Initialisation. At time t = 0, draw K i.i.d. samples, x(k)
0 ,

from the prior τ0 and set w(k)
0 = 1

K for k = 1, . . . ,K .
2. Recursive step. Let

{
x(k)
t−1,w

(k)
t−1

}

1≤i≤K
be the particles

and weights at time t − 1.

(a) For i = 1, ...,K , draw x̄(k)
t from the transition

kernel τt
(
·|x(k)

t−1

)
.

(b) Select the matrix αt and compute the
resampling weights

a(k,j)
t =

α
kj
t w

(j)
t−1g

yt
t

(
x̄(j)
t

)

∑K
i=1 αki

t w
(i)
t−1g

yt
t

(
x̄(i)
t

) ,

k = 1, ...,K and j = 1, ...,K .

(c) For k = 1, ...,K , set x(k)
t = x̄(j)

t with probability
a(k,j)
t , j ∈ {1, ...,K}, and let

w(k)
t =

∑K
i=1 αki

t w
(i)
t−1g

yt
t

(
x̄(i)
t

)

∑K
l=1

∑K
i=1 αli

t w
(i)
t−1g

yt
t

(
x̄(i)
t

) .

The particle approximation of πt produced by Algorithm 4
is πK

t = ∑K
k=1 w

(k)
t δx(k)

t
. The α-SMC scheme can be

particularised to yield most standard particle filtering
algorithms ([12] Section 2.2). Of specific interest for the
purpose of parallelisation is that the DRNA-based PF
(Algorithm 2) can also be described and analysed as an
α-SMC procedure [11].
The convergence of α-SMC methods depends on the

choice of the sequence of interaction matrices αt . Let
us recursively define the matrices αt,t = IK (where IK
denotes the identity matrix) and αs,t , constructed entry-
wise as α

ij
s,t = ∑K

k=1 αik
s+1,tα

kj
s , for i, j ∈ {1, ...,K} and

0 ≤ s < t. Furthermore, define β i
s,t = 1

K
∑K

j=1 α
ji
s,t , for

i = 1, ...,K and 0 ≤ s ≤ t. Then, we have the following
result, proved in [12] (Section 3).

Theorem 3 Assume that gytt is positive and bounded
for every t ≥ 1. If the coefficients {β i

s,t}1≤i≤K are mea-
surable w.r.t. the trivial σ -algebra {X ,∅} and limK→∞
maxi∈{1,...,K} β i

s,t = 0 for all 0 ≤ s ≤ t then

lim
K→∞

E
[∣∣
∣(f ,πt) −

(
f ,πK

t

)∣∣
∣
p] = 0

for any f ∈ B(X ) and p ≥ 1.

4 Error rates for ensembles of non-interacting
particle filters

4.1 Averaged estimators
We turn our attention to the analysis of the ensemble of
non-interacting PFs outlined in Section 3.1. In particular,
we study the accuracy of the particle approximations π

m,N
t

and πM×N
t introduced in Eqs. (12) and (13), respectively.

We adopt the mean square error (MSE) for integrals of
bounded real functions,

MSE ≡ E
[((

f ,πM×N
t

)
− (f ,πt)

)2]
, f ∈ B(X ),

as a performance metric. Since the underlying state-space
model is the same for all filters and they are run in
a completely independent manner, the measured-valued
random variables π

m,N
t , m = 1, ...,M, are i.i.d., and it is

straightforward to show (via Lemma 1) that

E
[((

f ,πM×N
t

)
− (f ,πt)

)2] ≤ c2t ‖f ‖2∞
MN

, (15)

for some constant t independent of N and M. However,
the inequality (15) does not illuminate the effect of the
choice of N. In the extreme case of N = 1, for example,
πM×N
t reduces to the outcome of a sequential impor-

tance sampling algorithm, with no resampling, which is
known to degenerate quickly in practice. Instead of (15),
we seek a bound for the approximation error that provides
some indication on the trade-off between the number of
independent filters, M, and the number of particles per
filter, N.
With this purpose, we tackle the classical decomposi-

tion of the MSE in variance and bias terms. First, we
obtain preliminary results that are needed for the analysis
of the average measure πM×N

t . In particular, we prove that
the random non-normalised measure ρN

t produced by the
bootstrap filter (Algorithm 1) is unbiased and attains Lp
error rates proportional to 1√

N , i.e. the same as ξNt and
πN
t . We use these results to derive an upper bound for the

bias of πN
t which is proportional to 1

N . The latter enables
us to deduce an upper bound for the MSE of the ensem-
ble approximation πM×N

t consisting of two additive terms
that depend explicitly on M and N. Specifically, we show
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that the variance component of the MSE decays linearly
with the total number of particles,K = MN , while the bias
term decreases withN2, i.e. quadratically with the number
of particles per filter.

4.2 Assumptions on the state space model
All the results to be introduced in the rest of Section 4
hold under the (mild) assumptions of Lemma 1, which we
summarise below for convenience of presentation.

Assumption 1 The sequence of observations Y1:T = y1:T
is arbitrary but fixed, with T < ∞.

Assumption 2 The likelihood functions are bounded
and positive, i.e.

gytt ∈ B(X ) and gytt > 0 for every t = 1, 2, ...,T .

Remark 2 Note that Assumptions 1 and 2 imply that

• (gytt ,α) > 0, for any α ∈ P(X ), and
• ∏T

k=1 g
yt
t ≤ ∏T

k=1 ‖gytt ‖∞ < ∞,

for every t = 1, 2, ...,T.

Remark 3 We seek simple convergence results for a fixed
time horizon T < ∞, similar to Lemma 1. Therefore,
no further assumptions related to the stability of the opti-
mal filter for the state-space model [4, 25] are needed.
If such assumptions are imposed then stronger (time uni-
form) asymptotic convergence can be proved, similar to
Theorem 1 in Section 3.2. See [11] for additional results
that apply to the independent filters π

m,N
t and the ensem-

ble πM×N
t .

4.3 Bias and error rates
Our analysis relies on some properties of the particle
approximations of the non-normalisedmeasures ρt , t ≥ 1.
We first show that the estimate ρN

t in Eq. (8) is unbiased.

Lemma 2 If Assumptions 1 and 2 hold, then

E
[(
f , ρN

t
)] = (f , ρt)

for any f ∈ B(X ) and every t = 1, 2, ...,T.

Proof See Appendix 1 for a self-contained proof.

Remark 4 The result in Lemma 2 was originally proved
in [4]. For the case 1(x) = 1, it states that the estimate(
1, ρN

t
)
of the proportionality constant of the posterior dis-

tribution πt is unbiased. This property is at the core of
recent model inference algorithms such as particle MCMC
[27], SMC2 [28] or some population Monte Carlo [29]
methods.

Combining Lemma 2 with the standard result of
Lemma 1 leads to an explicit convergence rate for the Lp
norms of the approximation errors

(
f , ρN

t
)− (f , ρt).

Lemma 3 If Assumptions 1 and 2 hold, then, for any f ∈
B(X ), any p ≥ 1 and every t = 1, 2, ...,T, we have the
inequality

‖ (f , ρN
t
)− (f , ρt)‖p ≤ c̃t‖f ‖∞√

N
, (16)

where c̃t < ∞ is a constant independent of N.

Proof See Appendix 2.

Finally, Lemmas 2 and 3 together enable the calculation
of explicit rates for the bias of the particle approximation
of (f ,πt). This is a key result for the decomposition of the
MSE into variance and bias terms. To be specific, we can
prove the following theorem.

Theorem 4 If 0 < (1, ρt) < ∞ for t = 1, 2, ...,T and
Assumptions 1 and 2 hold, then, for any f ∈ B(X ) and
every 0 ≤ t ≤ T, we obtain

∣
∣E
[(
f ,πN

t
)− (

f ,πt
)]∣∣ ≤ ĉt‖f ‖∞

N
,

where ĉt < ∞ is a constant independent of N.

Proof Let us first note that
(
f ,πt

) = (
f , ρt

)
/(1, ρt) and

(
f ,πN

t
) =

(
f , ρN

t
)

GN
t

(17)

=
(
f , ρN

t
)

GN
t
(
1,πN

t
) (18)

=
(
f , ρN

t
)

(
1, ρN

t
) , (19)

where (17) follows from the construction of ρN
t , (18) holds

because
(
1,πN

t
) = 1 and (19) is, again, a consequence of

the definition of ρN
t . Therefore, the difference

(
f ,πN

t
) −(

f ,πt
)
can be written as

(
f ,πN

t
)− (

f ,πt
) =

(
f , ρN

t
)

(
1, ρN

t
) − (f , ρt)

(1, ρt)

and, since
(
f , ρt

) = E
[(
f , ρN

t
)]

(from Lemma 2), the bias
can be expressed as

E
[(
f ,πN

t
)− (f ,πt)

] = E
[ (

f , ρN
t
)

(
1, ρN

t
) −

(
f , ρN

t
)

(1, ρt)

]

. (20)
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Someelementarymanipulations on (20) yield the equality

E
[(
f ,πN

t
)− (

f ,πt
)]= E

[
(
f ,πN

t
) (1, ρt)−

(
1, ρN

t
)

(1, ρt)

]

. (21)

If we realise that E
[
(1, ρt) − (

1, ρN
t
)] = 0 (again, a con-

sequence of Lemma 2) and move the factor (1, ρt)−1 out
of the expectation, then we easily rewrite Eq. (21) as

E
[(
f ,πN

t
)− (f ,πt)

]= 1
(1, ρt)

E
[(
f ,πN

t
) (

(1, ρt) − (
1, ρN

t
))]

− (f ,πt)

(1, ρt)
E
[
(1, ρt) − (

1, ρN
t
)]

= 1
(1, ρt)

E
[((

f ,πN
t
)− (

f ,πt
))

(
(1, ρt) − (

1, ρN
t
))]

≤ 1
(1, ρt)

√

E
[((

f ,πN
t
)− (

f ,πt
))2]

×
√

E
[(

(1, ρt) − (
1, ρN

t
))2] (22)

≤ 1
(1, ρt)

(
ct‖f ‖∞

N
× c̃t

N

)
= ĉt‖f ‖∞

N
,

(23)

where we have applied the Cauchy-Schwartz inequality to
obtain (22), (23) follows from Lemmas 1 and 3 and

ĉt = ctc̃t‖f ‖∞
(1, ρt)

< ∞

is a constant independent of N. �
The result in Theorem 4 was originally proved in [30],

albeit by a different method.
For any f ∈ B(X ), let EN

t (f ) denote the approximation
difference, i.e.

EN
t (f ) �

(
f ,πN

t
)− (

f ,πt
)
.

This is a r.v. whose second-order moment yields the
MSE of

(
f ,πN

t
)
. It is straightforward to obtain a bound

for the MSE from Lemma 1 and, by subsequently using
Theorem 4, we readily find a similar bound for the vari-
ance of EN

t (f ), denoted Var
[
EN
t (f )

]
. These results are

explicitly stated by the corollary below.

Corollary 1 If 0 < (1, ρt) < ∞ for t = 1, 2, ...,T and
Assumptions 1 and 2 hold, then, for any f ∈ B(X ) and any
0 ≤ t ≤ T, we obtain

E
[(
EN
t
(
f
))2] ≤ c2t ‖f ‖2∞

N
and (24)

Var
[
EN
t
(
f
)] ≤

(
cvt
)2 ‖f ‖2∞
N

, (25)

where ct and cvt are finite constants independent of N.

Proof The inequality (24) for the MSE is a straightfor-
ward consequence of Lemma 1. Moreover, we can write
the MSE in terms of the variance and the square of the
bias, which yields

E
[(
EN
t (f )

)2] = Var
[
EN
t (f )

]+ E2
[
EN
t
] ≤ c2t ‖f ‖2∞

N
. (26)

Since Theorem 4 ensures that
∣
∣E
[
EN
t
] ∣∣ ≤ ĉt‖f ‖∞

N , then
the inequality (26) implies that there exists a constant cvt <

∞ such that (25) holds. �

4.4 Error rate for the averaged estimators
Let us run M independent PFs with the same (fixed)
sequence of observations Y1:T = y1:T , T < ∞, and N par-
ticles each. The randommeasures output by themth filter
are denoted

ξ
m,N
t , π

m,N
t and ρ

m,N
t , withm = 1, 2, ...,M.

Obviously, all the theoretical properties established in
Section 4.3, as well as the basic Lemma 1, hold for each
one of theM independent filters.

Definition 1 The ensemble approximation of πt with M
independent filters is the discrete random measure πM×N

t
constructed as

πM×N
t = 1

M

M∑

m=1
π
m,N
t ,

and the averaged estimator of
(
f ,πt

)
is
(
f ,πM×N

t

)
.

It is apparent that similar ensemble approximations
can be given for ξt and ρt . Moreover, the statistical
independence of the PFs yields the following corollary
as a straightforward consequence of Theorem 4 and
Corollary 1.

Corollary 2 If 0 < (1, ρt) < ∞ for t = 1, 2, ...,T and
Assumptions 1 and 2 hold, then, for any f ∈ B(X ) and any
0 ≤ t ≤ T, the inequality

E
[((

f ,πM×N
t

)
− (

f ,πt
))2

]
≤ (cvt )2‖f ‖2∞

MN
+ ĉ2t ‖f ‖2∞

N2 (27)

holds for some constants cvt and ĉt independent of N andM.

Proof Let us denote

EM×N
t

(
f
) =

(
f ,πM×N

t

)
− (

f ,πt
)

and

Em,N
t

(
f
) =

(
f ,πm,N

t

)
− (

f ,πt
)
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form = 1, 2, ...,M. Since πM×N
t is a linear combination of

i.i.d. random measures, we easily obtain that

∣
∣
∣E
[
EM×N
t (f )

]∣∣
∣
2 =

∣
∣
∣
∣
∣
1
M

M∑

m=1
E
[
Em,N
t (f )

]
∣
∣
∣
∣
∣

2

=
∣
∣
∣E
[
Em,N
t (f )

]∣∣
∣
2

≤ ĉt‖f ‖∞
N

, for anym ≤ M, (28)

where the inequality follows from Theorem 4. Moreover,
again because of the independence of the random mea-
sures, we readily calculate a bound for the variance of
EM×N
t (f ),

Var
[
EM×N
t (f )

]
= 1

M
Var

[
Em,N
t (f )

]
≤ (cvt )2‖f ‖2∞

MN
, (29)

where the inequality follows from Corollary 1. Since

E
[(

EM×N
t

)2] = Var
[
EM×N
t

]
+
∣
∣∣E
[
EM×N
t

]∣∣∣
2
, combining

(29) and (28) yields (27) and concludes the proof.

The inequality in Corollary 2 shows explicitly that the
bias of the estimator

(
f ,πM×N

t

)
cannot be arbitrarily

reduced when N is fixed, even if M → ∞. This feature
is already discussed in Section 3.3. Note that the inequal-
ity (27) holds for any choice ofM and N, while Theorem 2
yields asymptotic limits.

Remark 5 According to the inequality (27), the bias of
the estimator

(
f ,πM×N

t

)
is controlled by the number of

particles per subset, N, and converges quadratically, while,
for fixed N, the variance decays linearly with M. The MSE
rate is ∝ 1

MN as long as N ≥ M. Otherwise, the term
ĉ2t ‖f ‖2∞
N2 becomes dominant and the resulting asymptotic

error bound turns out higher.

Remark 6 While the convergence results presented here
have been proved for the standard bootstrap filter, it is
straightforward to extend them to other classes of PFs for
which Lemmas 1 and 2 hold.

4.5 Comparison of parallelisation schemes via time–error
indices

The advantage of parallel computation is the drastic
reduction of the time needed to run the PF. Let the run-
ning time for a PF with K particles be of order T (K),
where T : N → (0,∞) is some strictly increasing function
of K. The quantity T (K) includes the time needed to gen-
erate new particles, weight them and perform resampling.
The latter step is the bottleneck for parallelisation, as it
requires the interaction of all K particles. Also, a ‘straight-
forward’ implementation of the resampling step leads to

an execution time T (K) = K log(K), although efficient
algorithms exist that achieve to a linear time complexity,
T (K) = K . We can combine the MSE rate and the time
complexity to propose a time–error performance metric.

Definition 2 We define the time–error index of a par-
ticle filtering algorithm with running time of order T and
asymptotic MSE rateR as C � T × R.

The smaller the index C for an algorithm, the more
(asymptotically) efficient its implementation. For the stan-
dard (centralised) bootstrap filter (see Algorithm 1) with
K particles, the running time is of order T (K) = K and
theMSE rate is of orderR(K) = 1

K ; hence, the time–error
index becomes

Cbf (K) = T (K) × R(K) = 1.

For the computation of the ensemble approximation
πM×N
t , we can run M independent PFs in parallel, with

N = K/M particles each and no interaction among them.
Hence, the execution time becomes of order T (M,N) =
N . Since the error rate for the ensemble approximation is
of order R(M,N) =

(
1

MN + 1
N2

)
, the time–error index

of the ensemble approximation is

Cens(M,N) = T (M,N) × R(M,N) = 1
M

+ 1
N

and hence it vanishes withM,N → ∞. In particular, since
we have to choose N ≥ M to ensure a rate of order 1

MN ,
then limM→∞ Cens = 0. In any case, whenever N > 1 it is
apparent that Cens < Cbf .
We have described alternative ensemble approximations

where M non-independent PFs are run with N particles
each in Section 3. The overall error rates for these meth-
ods are same as for the standard bootstrap filter; however,
the time complexity depends not only on the number of
particles N allocated to each of theM subsets, but also on
the subsequent interactions among subsets.
Let us consider, for example, the double bootstrap

algorithm with adaptive selection of [13] (namely, [13]
(Algorithm 4)). This is a scheme where

• M bootstrap filters (as Algorithm 1 in this paper) are
run in parallel and an aggregate weight is computed
for each one of them, denotedW (m)

t ;
• When the coefficient of variation (CV) of these

aggregate weights is greater than a given threshold,
the M bootstrap filters are resampled (some filters
are discarded and others are replicated using a
multinomial resampling procedure).

See [13] (Section 4.2) for details. Assuming that the
resampling procedure in the second step above (termed
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island-level resampling in [13]) is performed, in the aver-
age, once every L time steps, then the running time for this
algorithm is

T (M,N , L) = L − 1
L

N + 1
L
MN = N

L
(M + L − 1),

while the approximation error is R(M,N) = 1
MN (see

([13] Theorem 5)). Hence, the time–error index for this
double bootstrap algorithm is

Cdbf = T (M,N , L) × R(M,N) = M + L − 1
LM

.

When L << N , we readily obtain that Cens < Cdbf . For
example, for a configuration with M = 10 filters and
N = 100 particles each and assuming that island-level
resampling is performed every L = 20 time steps on aver-
age, then Cdpf = 0.145 and Cens = 0.110. On the con-
trary, if L is large enough (namely, if L > N(M − 1)/M),
the double bootstrap algorithm becomes more efficient,
meaning that Cdbf < Cens.
Computing the time–error index for practical algo-

rithms can be hard and highly dependent on the specific
implementation. Different implementations of the dou-
ble bootstrap algorithm, for example, may yield different
time–error indices depending on how the island-level
resampling step is carried out.

5 Numerical results and discussion
5.1 Example: Lorenz 63 model
5.1.1 The three-dimensional Lorenz system
Let us consider the problem of tracking the state of
a three-dimensional Lorenz system [31] with additive
dynamical noise and partial observations [32]. To be
specific, consider a three-dimensional stochastic process
{X(s)}s∈(0,∞) (s denotes continuous time) taking values
on R

3, which dynamics is described by the system of
stochastic differential equations

dX1 = −s(X1 − Y1) + dW1,
dX2 = rX1 − X2 − X1X3 + dW2,
dX3 = X1X2 − bX3 + dW3,

where {Wi(s)}s∈(0,∞), i = 1, 2, 3, are independent one-
dimensional Wiener processes and

(s, r,b) =
(
10, 28,

8
3

)

are static model parameters3 that yield chaotic dynamics.
A discrete-time version of the latter system using Euler’s
method with integration step Td = 10−3 is straightfor-
ward to obtain and yield the model

X1,n = X1,n−1 − Tds(X1,n−1 − X2,n−1)

+√
TdU1,n, (30)

X2,n = X2,n−1 + Td(rX1,n−1 − X2,n−1 − X1,n−1X3,n−1)

+√
TdU2,n, (31)

X3,n = X3,n−1 + Td(X1,n−1X2,n−1 − bX3,n−1)

+√
TdU3,n, (32)

where {Ui,n}n=0,1,..., i = 1, 2, 3, are independent
sequences of i.i.d. normal random variables with 0 mean
and variance 1. System (30)–(32) is partially observed
every 100 discrete-time steps. Specifically, we collect a
sequence of scalar observations {Yt}t=1,2,..., of the form

Yt = X1,100t + Vt , (33)

where {Vt}t=1,2,... is a sequence of i.i.d. normal random
variables with zero mean and variance σ 2 = 1

2 .
Let Xn = (X1,n,X2,n,X3,n) ∈ R

3 be the state vector
at discrete time n. The dynamic model given by Eqs.
(30)–(32) yields the family of kernels τn,θ (dx|xn−1), and
the observation model of Eq. (33) yields the likelihood
function

gytt,θ (x100t) ∝ exp
{
− 1
2σ 2

(
yt − x1,100t

)2
}
,

both in a straightforward manner. The goal is to track the
sequence of joint posterior probability measures πt , t = 1,
2, ..., for {X̂t}t=1,..., where X̂t = X100t . Note that one can
draw a sample X̂t = x̂t conditional on X̂t−1 = x̂t−1 by
successively simulating

x̃n ∼ τn,θ (dx|x̃n−1), n = 100(t − 1) + 1, ..., 100t,

where x̃100(t−1) = x̂t−1 and x̂t = x̃100t . The prior
measure for the state variables is normal, namely
X̂0 ∼ N

(
x∗, v20I3

)
, where x∗ = (− 10.2410;− 1.3984;

− 23.6752) is the mean4 and v20I3 is the covariancematrix,
with v20 = 10 and I3 the three-dimensional identity
matrix.

5.1.2 Simulation setup
We aim at illustrating the gain in relative performance,
taking into account both estimation errors and running
time, that can be attained using ensembles of independent
PFs. With this purpose, we have applied

• The standard bootstrap filter (Algorithm 1), termed
BF in the sequel, and

• The ensemble of non-interacting bootstrap filters
(NIBFs) that we have investigated in Section 4

to track the sequence of probability measures πt gener-
ated by the three-dimensional Lorenz model described in
Section 5.1.1. We have generated a sequence of 200 syn-
thetic observations, {yt ; t = 1, ..., 200}, spread over an
interval of 20 continuous time units, corresponding to
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2×104 discrete time steps in the Euler scheme (hence, one
observation every 100 steps).
The ensemble of NIBFs consists ofM filters with N par-

ticles each, while the standard BF runs with K particles,
where K = MN for a fair comparison.
We have coded the three algorithms in Matlab (version

7.11.0.584 [R2010b] with the parallel computing toolbox)
and run the experiments using a pool of identical multi-
processor machines, each one having 8 cores at 3.16 GHz
and 32 GB of RAM memory. The standard (centralised)
BF is run with K = NM particles in a single core. For the
ensemble of NIBFs, we allow the parallel computing tool-
box to allocate all available cores per server in order to run
all BFs concurrently.
To assess the approximation errors, we have computed

empirical MSEs for the approximation of the posterior
mean, E[ X̂t|Y1:t] = (I,πt), where I(x) = x is the iden-
tity function, for the two algorithms at the last update step,
t = 200. Note, however, that the integral (I,πt) cannot
be computed in closed form for this system. Therefore, we
have used the ‘expensive’ estimate

(I,πt) ≈
(
I,π J

t

)
, with J = 105 particles,

computed via the standard BF, as a proxy of the true value.

5.1.3 Numerical results
Figure 1 displays the empirical MSE, averaged over 100
independent simulation runs, attained by the parallel
schemes when the number of filters is fixed, M = 20,
and the number of particles per filter (particle island)
ranges from N = 100 to N = 1000. The outcome of the

Fig. 1 Empirical mean of the MSE for the centralised BF, with
K = MN particles, and the ensemble of NIBFs, withM = 20
constant and N = 100, 200, 400, 800, 1000. All curves have been
obtained from a set of 100 independent simulation trials. Note that
the centralised BF is run with K = 20N particles, where N takes
values in the same way as for the parallel algorithm

centralised BF with K = MN particles, hence ranging
from K = 20 × 100 to K = 20 × 1000, is also shown
for comparison. We observe that proposed ensemble of
NIBFs achieves a poor performance when the number of
particles per filter, N, is relatively low (N = 100), while
for moderate values (N ≥ 400) it nearly matches theMSE
of the centralised BF.
Next, we look into the relationship between the MSE

and the running time for the two algorithms. With
the number of filters M = 20 fixed, we have run 100
independent simulation trials for each value N = 100,
200, 400, 800 and 1000 and computed the empirical MSE
and the average running time for the parallel scheme and
each combination of M and N. Correspondingly, we have
also run the centralised BFwithK = MN particles, hence
for K = 2 × 103, 4 × 103, 8 × 103, 16 × 103 and 20 × 103.
Figure 2 displays the resulting empirical MSE versus the

running time for the two methods. If we qualify an algo-
rithm as more efficient than another one when it is capa-
ble of attaining a lower MSE in the same amount of time,
then this set of simulations shows that the independent
ensemble scheme is more efficient than the centralised BF.
Indeed, a close look at Fig. 2 reveals that the ensemble of
M = 20 NIBFs with N = 1000 particles per filter achieves
an empirical MSE of ≈ 6 × 10−4 with a running time of
≈ 2.9 s, while the centralised BF attains the same perfor-
mance with K = 20 × 800 particles and a running time
of ≈ 27.2 s (as shown by the dashed horizontal line in the
plot).

Fig. 2 Empirical mean of the MSE versus the running time for the
centralised BF and the independent ensemble of BFs. The parallel
scheme is run withM = 20 constant and N = 100, 200, 400, 600,
800 and 1000. The centralised BF is run with K = 20N particles,
where N takes values in the same way as for the parallel algorithm.
The dashed horizontal lines indicate where the mean of the MSE
match for the independent ensemble and the centralised BF. The
running times for the two algorithms at that MSE level are shown as
labels on the horizontal axis
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5.2 Example: Lorenz 96 model
5.2.1 The J-dimensional Lorenz 96 system
The Lorenz 96 model is a deterministic system of non-
linear differential equations that displays chaotic dynam-
ics [33, 34]. The system dimension, i.e. the number of
dynamic variables, can be scaled arbitrarily. A stochastic
version of the model can be easily obtained by convert-
ing each differential equation into a stochastic differ-
ential equation driven by an independent and additive
Wiener process. In particular, a model with J variables, Zj,
j = 0, . . . , J − 1, can be written down as the system of
stochastic differential equations

dZj = −Zj−1
(
Zj−2 − Zj+1

)−Zj+F+σdWj, j = 1, . . . , J ,
(34)

where F = 8 is a constant forcing parameter5, theWiener
processes {Wj(s)}l,j≥0 are assumed independent and the
scale parameter σ is known.
A straightforward application of the Euler-Maruyama

integration method yields a discrete-time version of the
stochastic, two-scale Lorenz 96 model. If we let Td > 0
denote the discretisation period and n denotes discrete
time, then we readily obtain

Zj,n = Zj,n−1 − Td
[
Zj−1,n−1

(
Zj−2,n−1 − Zj+1,n−1

)− F

+Zj,n−1
]+√

TdσUj,n, (35)

where j = 0, . . . , J − 1 and {Uj,n}l,j,n≥0 are independent
and identically distributed (i.i.d.) standard Gaussian r.v.’s.
We assume that observations can only be collected from

this system once every n0 discrete time steps. Moreover,
only the variables with even indices (j = 0, 2, 4, . . . , J , for
even J) are measured. Therefore, the observation process
has the form

Yt = [
Z0,n0t ,Z2,n0t , . . . ,ZJ ,n0t

]� + Vt , (36)

where t = 1, 2, ... and {Vt}t≥1 is a sequence of i.i.d.
r.v.’s with common pdf N

(
vt ; 0, σ 2

y I J
2

)
, which denotes

a J
2 -dimensional Gaussian distribution with 0 mean and

covariance matrix σ 2
y I J

2
.

Equations 35 and (36) describe a state space model
that can be expressed in terms of the general nota-
tion in Section 2. The state process at time t is
X̃n = [

Z0,n, . . . ,ZJ−1,n
]� and the transition kernel from

time n − 1 to time n is

τ̃n
(
dx̃n|x̃n−1

) = N
(
x̃n;

(
x̃n−1

)
, σ 2

x IJ
)
dx̃n, (37)

where N (x;μ,�) is the Gaussian density with argument
x, mean μ and covariance matrix �, σ 2

x = Tdσ
2 and

 : R
J → R

J is the deterministic transformation that
accounts for all the terms on the right hand side of (35)

except the noise contribution
√
TdσUj,n. Since we only

collect observations every n0Td continuous-time units,
we need to put the dynamics of the states on the same time
scale as the observation process {Yt}t≥1 in Eq. (36). If we
define Xt = X̃n0t then the transition kernel from Xt−1 to
Xt follows readily from (37),

τt(dxt|xt−1) =
∫

· · ·
∫

τ̃n0t(dxt|x̃n0t−1)

n0−2∏

i=1
τ̃n0t−i(x̃n0t−i|x̃n0t−i−1)τ̃(t−1)n0+1

(dx̃(t−1)n0+1|xt−1).

(38)

While τt(xt|xt−1) cannot be evaluated in closed form, it
is straightforward to draw a sample fromXt|xt−1 by simply
running Eq. (35) n0 times, with starting point xt−1. The
likelihood function is

gytt (xt) ∝ exp

⎧
⎪⎨

⎪⎩
− 1
2σ 2

y

J
2∑

r=0
(yr,t − x2r,t)2

⎫
⎪⎬

⎪⎭
.

5.2.2 Simulation setup
We have run 100 independent simulations of the discre-
tised Lorenz 96 model described in Section 5.2.1 above
over 20 continuous-time units, with integration step Td =
2 × 10−4 (which amounts to 105 discrete-time steps) and,
for each simulation, we have obtained noisy observations,
with σ 2

y = 1
2 and n0 = 10, according to Eq. (36). The

noise-scale parameter σ in the state Eq. (35) is set as
σ = 1√

2 , so that the noise variance becomes σ 2
x = Td

2 .
The computer experiments are similar to Section 5.1.

For each simulation, we have run M = 10 iNIBFs with
N particles each versus a centralised BF with K = 10N
particles and used them to compute one-step-ahead pre-
dictions of the observations. In particular, at discrete-time
t, we have computed predictions of the observation vector
yt , using the measures

ξKt = 1
K

K∑

k=1
δx̄(k)

t
and ξM×N

t = 1
M

M∑

m=1
ξ
m,N
t

= 1
MN

M∑

m=1

N∑

n=1
δx̄(m,n)

t
,

for the centralised BF and the NIBFs, respectively. To be
specific, if yt =

(
y0,t , y1,t , . . . , y J

2 ,t

)
, we have computed

estimates

yKr,t = 1
K

K∑

k=1
x̄(k)
2r,t , yM×N

r,t = 1
MN

M∑

m=1

N∑

n=1
x̄(m,n)
2r,t ;

and then we have averaged the quadratic errors
(
yr,t − yKr,t

)2 and
(
yr,t − yM×N

r,t

)2
over r, t and 100 inde-

pendent simulation runs. Finally, we have normalised the
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resulting empirical MSE with respect to the observation
power 2

J
∑ J

2
r=0 E

[
y2r,t

]
. Note that, in this case, we have

used the actual observations generated in the simula-
tions to obtain the errors, instead of the proxy values in
Section 5.1.
The experiments have been carried out for a Lorenz 96

model with J = 20 variables first and then for the same
model with J = 50 variables.
The simulations have been coded using Matlab ver-

sion R2016b (64 bits), with the parallel computing toolbox
enabled, on an 8-core Intel(R) Xeon(R) CPU E5-2680 v2
server, with clock frequency 2.80 GHz and 64 GB of RAM.
All the results reported are averaged over 100 indepen-
dent simulation runs as described above.

5.2.3 Numerical results
Figure 3 plots the normalised MSE attained by the cen-
tralised BF and the ensemble of M = 10 NIBFs versus N.
The centralised BF is run with K = 10N particles, while
each one of theM = 10 NIBFs is run withN particles. The
figure shows results for two different state-space dimen-
sions. The solid lines correspond to a stochastic Lorenz
96 model with J = 20 variables. In this case, the out-
come of the simulations is similar to the experiments with
the Lorenz 63 system: for K = MN , the centralised BF
attains a smallerMSE than the NIBFs, with the gap closing
as N increases. The result of the experiment is different
when the state space dimension is incremented to J = 50.
In this case, the normalised MSE of the NIBFs is slightly
smaller than the error of the centralised BF for N < 1600,

Fig. 3 Empirical mean of the normalised MSE for the centralised BF,
with K = 10N particles, and the average ofM = 10 NIBFs with
N = 20, 40, 80, 160, 320, 1600. Results are shown for a Lorenz 96
system with J = 20 variables (solid lines) and a Lorenz 96 model with
J = 50 variables (dashed lines). All curves have been obtained from a
set of 100 independent simulation trials

with both estimators attaining the same performance for
N = 1600. Hence, for this example, the averaging of the
NIBFs has a beneficial effect on the accuracy of the esti-
mators, at least for certain combinations of the number
of particles N and the dimension J. We have verified that
the bias of the centralised estimator yKt is lesser than the
bias of the estimator yM×N

t , as predicted by the theoretical
analysis, while yM×N

t attains a smaller empirical variance
than yKt (at least for N < 1600 and 40 ≤ J ≤ 100).
Figure 4 displays the results of the same computer

experiment as in Fig. 3, except that instead of averaging
the MSE over the 100 independent simulation ruins, we
display the maximum MSE, both for the centralised BF
and the ensembles of NIBFs, out of the 100 simulations for
each one of the values of N. We observe that the ensem-
ble of NIBFs is more robust than the centralised BF. While
for dimension J = 20 the centralised BF attains a clearly
lower average MSE than the NIBFs, the maximum MSE
turns out to be similar for both algorithms. For dimension
J = 50, the average MSE of the NIBFs is already lower (as
shown in Fig. 3) than the average MSE of the BF, and the
advantage of the parallelised algorithm increases when we
look at the maximumMSE.
Figure 5 plots the same normalised MSE values of Fig. 3

versus the running times of the algorithms, given in sec-
onds, for a complete simulation with 105 discrete time
steps. As in the experiments of Section 5.1.3, the NIBFs
can attain the same MSE as the centralised BF in just a
fraction of the running time. While the improvement can
be, ideally, of a factor M (with M = 10 in this case),
in practice it depends on the efficiency of the computing
software. With the version of Matlab (R2016b, with the

Fig. 4 Empirical maximum (out of 100 independent simulations runs)
of the normalised MSE for the centralised BF, with K = 10N particles,
and the average ofM = 10 NIBFs with N = 20, 40, 80, 160, 320, 1600.
Results are shown for a Lorenz 96 system with J = 20 variables (solid
lines) and a Lorenz 96 model with J = 50 variables (dashed lines)
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Fig. 5 Empirical mean of the normalised MSE versus the running time
for the centralised BF with K = 10N particles and the ensemble of
M = 10 NIBFs with N = 20, 40, 80, 160, 320, 1600 particles each.
Results are shown for a Lorenz 96 system with J = 20 variables (solid
lines) and a Lorenz 96 model with J = 50 variables (dashed lines). All
curves have been obtained from a set of 100 independent simulation
trials

parallelisation toolbox) and the 8-core Intel Xeon proces-
sor used in these experiments, the running time of the
centralised BF with K = 10N particles was reduced by
a modest factor of 2.6 for J = 20 when using M = 10
parallel NIBFs with N particles each. For J = 50, how-
ever, the running time was reduced by a factor of 6.6. The
difference is due to the ability of the Matlab software to
parallelise more efficiently when handling larger vectors.
From this figure, we observe that, for J = 50, the NIBFs
attain the same minimum error as the centralised BF
(a normalised MSE of ≈ 0.0138) with a running time that
is 6.6 times smaller (464 versus 3,082 s).

6 Conclusions
We have presented a survey of methods for the parallelisa-
tion of particle filters. Specifically, we have described the
basic parallelisation scheme based on ensembles of sta-
tistically independent PFs and then discussed three alter-
natives which introduce different degrees of interaction
among the concurrently running filters. We have placed
emphasis on the theoretical guarantees of the algorithms,
and, hence, we have stated conditions for the convergence
of all the techniques, including the DRNA-based PF of [2],
the particle island model of [13] and the α-SMC method
of [12].
In the second half of the paper, we have focused on the

theoretical properties of the ensemble of non-interacting
PFs. For this method, we have shown, both numerically
and through the definition of time–error indices, that

the averaging of statistically independent PFs should be
preferred when N, the number of particles per inde-
pendent filter, can be made sufficiently large to reduce
the bias. This is often the case when using many-core
computers (or computing clusters). When parallelisation
is implemented using many low-power devices (such as
GPUs), parallelisation with interaction is more efficient.
Our numerical experiments for the stochastic Lorenz 96
model also show that the averaging of independent esti-
mators can lead to lower estimation errors, compared to
a centralised bootstrap filter with the same number of
particles, as the dimension of the state space is increased.

Endnotes
1Note that GN

t is an estimate of the normalising con-
stant for πt (namely, the integral (1, ρt)) which can be
shown to be unbiased under mild assumptions [4]. In
Bayesian model selection, this constant is termed ‘model
evidence’, while in parameter estimation problems, it is
often referred to as the likelihood (of the unknown param-
eters) [27].

2Other particle filtering algorithms can be applied in a
straightforward way; however, we assume bootstrap filters
(i.e. the procedure of Algorithm 1) for the sake of clarity
and notational simplicity.

3Note the difference in notation between the continu-
ous time s and the parameter s.

4 Chosen from a typical trajectory of the deterministic
Lorenz 63 model.

5 The deterministic Lorenz 96 system is chaotic for
F > 6, with increasing turbulence of the chaotic flow as
F is made larger.

Appendix 1
Proof of Lemma 2
We proceed by induction in the time index t. For t = 0,
ρ0 = τ0 = π0 and, since x(i)

0 , i = 1, ...,N , are drawn from
π0, the equality E

[(
f , ρN

0
)] = (

f , ρ0
)
is straightforward.

Let us assume that

E
[(
f , ρN

t−1
)] = (

f , ρt−1
)

(39)

for some t > 0 and any f ∈ B(X ). If we use F̄t to denote
the σ -algebra generated by the set of random variables{
x(i)
0:t−1, x̄

(i)
1:t : 1 ≤ i ≤ N

}
then we readily find that

E
[(
f , ρN

t
) |F̄t

] = E
[
GN
t
(
f ,πN

t
) |F̄t

] = GN
t
(
f , π̄N

t
)
, (40)

since GN
t is measurable w.r.t. F̄t and E

[(
f ,πN

t
) |F̄t

] =(
f , π̄N

t
)
. Moreover, if we recall that
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(
f , π̄N

t
) =

N∑

i=1
w(i)
t f

(
x̄(i)
t

)
=

N∑

i=1

gytt
(
x̄(i)
t

)
f
(
x̄(i)
t

)

∑N
j=1 g

yt
t

(
x̄(j)
t

)

=
(
fgytt , ξNt

)

(
gytt , ξNt

)

then it is apparent from the definition of GN
t in (9) that

GN
t
(
f , π̄N

t
) = GN

t−1
(
fgytt , ξNt

)
. (41)

Taking together (40) and (41), we have

E
[(
f , ρN

t
) |F̄t

] = GN
t−1

(
fgytt , ξNt

)
. (42)

Let Ft−1 be the σ -algebra generated by the set of
variables

{
x(i)
0:t−1, x̄

(i)
0:t−1 : 1 ≤ i ≤ N

}
. Since Ft−1 ⊆ F̄t ,

Eq. (42) yields

E
[(
f , ρN

t
) |Ft−1

] = E
[
GN
t−1

(
fgytt , ξNt

) |Ft−1
]

= GN
t−1E

[(
fgytt , ξNt

) |Ft−1
]
, (43)

sinceGN
t−1 is measurable w.r.t.Ft−1. Moreover, for any h ∈

B(X ), it is straightforward to show that

E
[(
h, ξNt

) |Ft−1
] = (

h, τtπN
t−1

) = (
(h, τt),πN

t−1
)
,

hence, as fgytt ∈ B(X ), we readily obtain

E
[(
fgytt , ξNt

) |Ft−1
] = ((

fgytt , τt
)
,πN

t−1
)
. (44)

Substituting (44) into (43), we arrive at

E
[(
f , ρN

t
) |Ft−1

] = GN
t−1

((
fgytt , τt

)
,πN

t−1
)

= ((
fgytt , τt

)
, ρN

t−1
)
, (45)

where (45) follows from the definition of the estimate of
ρt−1, namely ρN

t−1 = GN
t−1π

N
t−1. If we take unconditional

expectations on both sides of Eq. (45), we obtain

E
[(
f , ρN

t
)] = E

[((
fgytt , τt

)
, ρN

t−1
)]

= ((
fgytt , τt

)
, ρt−1

)
(46)

= (
f , gytt · τtρt−1

)
(47)

= (
f , ρt

)
, (48)

where equality (46) follows from the induction hypothe-
sis (39), (47) is obtained by simply re-ordering (46) and
Eq. (48) follows from the recursive definition of ρt in (5).

Appendix 2
Proof of Lemma 3
For t = 0, ρN

0 = πN
0 , hence the result follows from

Lemma 1. At any time t > 0, since ρN
t = GN

t πN
t , we

readily have

E
[∣
∣(f , ρN

t
)−(f , ρt)

∣
∣p
]

= E

⎡

⎣

∣
∣
∣
∣∣
1
N

N∑

i=1
GN
t f

(
x(i)
t

)
−(f , ρt)

∣
∣
∣
∣∣

p⎤

⎦

= E

⎡

⎣

∣
∣
∣
∣
∣
1
N

N∑

i=1
Z(i)
t

∣
∣
∣
∣
∣

p⎤

⎦ , (49)

whereZ(i)
t = GN

t f
(
x(i)
t

)
−(f , ρt), i = 1, ...,N . It is apparent

that the random variables Z(i)
t , i = 1, ...,N , are condi-

tionally independent given the σ -algebra F̄t generated by
the set

{
x(j)
0:t−1, x̄

(j)
0:t : 1 ≤ j ≤ N

}
. It can also be proved that

every Z(i)
t is centred and bounded, as explicitly shown in

the sequel.
To see that Z(i)

t has zero mean, let us note first that

E
[
GN
t f

(
x(i)
t

)
|F̄t

]
= GN

t
(
f , π̄N

t
)
,

since GN
t is measurable w.r.t. F̄t . Moreover, by the same

argument as in the proof of Lemma 2, one can show that
GN
t
(
f , π̄N

t
) = GN

t−1
(
fgytt , ξNt

)
and, therefore,

E
[
GN
t f

(
x(i)
t

)
|Ft−1

]
= E

[
GN
t−1

(
fgytt , ξNt

) |Ft−1
]

= GN
t−1

((
fgytt , τt

)
,πN

t−1
)
, (50)

where we have used the fact that, for any h ∈
B(X ), E

[(
h, ξNt

) |Ft−1
] = (

(h, τt),πN
t−1

)
. However, since

ρN
t−1 = GN

t−1π
N
t−1, Eq. (50) amounts to

E
[
GN
t f

(
x(i)
t

)
|Ft−1

]
= ((

fgytt , τt
)
, ρN

t−1
)

and taking (unconditional) expectations on both sides of
the equation above yields

E
[
GN
t f

(
x(i)
t

)]
= E

[((
fgytt , τt

)
, ρN

t−1
)]

= ((
fgytt , τt

)
, ρt−1

)
(51)

= (f , ρt), (52)

where (51) follows from Lemma 2 (i.e. ρN
t−1 is unbi-

ased) and (52) is a straightforward consequence of the
definition of ρt in (5). Eq. 52 states that E

[
Z(i)
t

]
=

E
[
GN
t f

(
x(i)
t

)
− (

f , ρt
)] = 0.

To see that (every) Z(i)
t is bounded, note that

GN
t ≤

t∏

k=1
‖gykk ‖∞ < ∞, for any t < ∞, (53)

whereas
(
f , ρt

) = ((
fgytt , τt

)
, ρt−1

)

= ((((
fgytt , τt

)
gyt−1
t−1 , τt−1

)
gyt−2
t−2 , ..., τ1

)
,π0

)

≤ ‖f ‖∞
t∏

k=1
‖gykk ‖∞ < ∞. (54)

Taking (53) and (54) together, we arrive at

|Z(i)
t | ≤ 2‖f ‖∞

t∏

k=1
‖gykk ‖∞ (55)

which is finite for any finite t (indeed, for every t ≤ T).
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Since the variablesZ(i)
t , i = 1, ...,N , in (49) are bounded,

with zero mean and conditionally independent given F̄t ,
it is not difficult to show (see, e.g. [23] (Lemma A.1)) that

E
[∣
∣(f , ρN

t
)− (f , ρt)

∣
∣p
]

≤ 2pc̆pt ‖f ‖p∞
∏t

k=1 ‖gykk ‖p∞
N

p
2

, (56)

where the constant c̆t is finite and independent ofN. From
(56), we easily obtain the inequality (16) in the statement
of Lemma 3, with c̃t = 2c̆t‖f ‖∞

∏t
k=1 ‖gykk ‖∞ < ∞ for

any t ≤ T < ∞.
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