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1 Introduction
Point matching plays an important role in computer vision, such as object matching [1, 
2], image registration [3, 4], autonomous navigation [5], 3D modeling [6] and so on. It 
aims to find the correspondences between two point sets and/or recover the transfor-
mation that map one point set to the other. Several methods achieve point matching by 
alternatively finding the correspondences and estimating the transformation. The itera-
tive closet point (ICP) [7, 8], one of the well-known heuristic approach, finds the corre-
spondences based on the nearest neighbor and converges to the nearest local minimum 
of mean square distance. Different to ICP, in which point matching probabilities jump 
around in the binary space, TPS-RPM [9] updates the point matching probabilities grad-
ually and continuously to improve the performance on point matching. Myronenko et al. 
proposed a coherent point drift (CPD) [10] while an iterated estimation framework is 
jointed. In CPD, the alignment of two point sets is formulated to be a probability density 
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estimation problem as the model points are fitted to the target points by maximizing 
the likelihood. Different to the above iterated estimation algorithms which are time con-
suming, several methods explore the correspondences based on invariant descriptors. 
Belongie et  al. [11] proposed a descriptor named shape context (SC) to represent the 
coarse distribution of the rest points with respect to a given point. SC is invariant to 
rotation while a relative frame is used. Restricted spatial order constraints (RSOC) [12] 
are developed to generate an affine invariant descriptor based on the preserved adjacent 
spatial order. Similarly, assuming the neighbors are preserved, Zheng et al. [13] proposed 
a robust point matching algorithm for nonrigid shapes. However, in practice, the neigh-
bors may be quite different due to the transformations, noise and outliers. Moments 
[14–16], which also have been widely used for point matching under affine transforma-
tions, share the similar limitation. These approaches devote to finding descriptors via 
using the algebraic methods on SPSs. The SPSs are assumed to be affine invariant [17]. 
Unfortunately, the assumption is not always valid as SPSs are generally composed of the 
neighbor points sampled by uniform spacing, arc length, affine length [18] and so on.

In this paper, to enforce the invariance of the moments, we developed an AICT. The 
algorithm is constructed by a recursive process: the point set is first divided into two 
subsets by the vector from the certain point to the centroid of the point set, and the 
centroids of subsets which are rigorous affine invariant are used to generate vectors for 
renewed partitions. In addition, the centroids are stored to form an AICT. Hence, a SPS 
which is constructed by the points in the AICT is affine invariant. A descriptor can be 
extracted from the SPS while a moment is adopted. The affine invariance of the SPS and 
the moment guarantees the invariance of the descriptor, and the issue of point matching 
under affine transformations can be formulated to descriptor matching.

The reminder of this paper is organized as follows: Sect. 2 introduces the AICT and 
its application in point matching. Section 3 compares the performance of our algorithm 
with three state-of-the-art algorithms, and followed by a conclusion in Sect. 4.

2  Method
2.1  Affine transformation and its properties

Before embarking on introducing the AICT, we briefly introduce the affine transforma-
tion, as well as its important properties based on which the AICT is proposed. A general 
2D affine transformation T = {A, b} transforms the point p in the model point set into its 
corresponding point q in the target point set by q = Ap+ b . b2×1 is the translation vec-
tor and A2×2 is the affine transformation matrix. A2×2 , which includes rotation, scaling, 
and shearing transformations, can be represented as the following matrices separately:

Affine transformation has many properties, and two remarkable of them are intro-
duced as follows.

1) Centroid invariance: centroid maps into centroid.
2) Relative position invariance: point keeps its relative position with respect to the 

vector v under affine transformations.

(1)AT scaling =
sx 0
0 sy

, AT rotation =
cos θ − sin θ
sin θ cos θ

, AT shearing =
1 k
0 1
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As shown in Fig. 1, the relative position rpv  of the point p with respect to the vector v is

In Eq. (2), ypv is the y-axis coordinate of the point p in the positively oriented orthogo-
nal frame (Ov , xv , yv) , in which the vector v is taken as the x-axis xv.

Note that, this property is premised on the assumption that the unit vector of v is aff-
ine invariant. For simplicity, in this paper, the assumption can be restricted to the affine 
invariance of the vector v . In other words, the start point and end point of the vector v 
keep invariant under affine transformations.

2.2  The construction of AICT

Relative position invariance implies that a point set P can be partitioned into three affine 
invariant subsets by an affine invariant vector. The three subsets are the positive subset 
P+
v =

{

p ∈ P|r
p
v = 1

}

 , the negative subset P−
v =

{

p ∈ P|r
p
v = −1

}

 and the zero subset 
P0
v =

{

p ∈ P|r
p
v = 0

}

 . The key problem of the partition is how to get affine invariant vec-
tors. Fortunately, due to the centroid invariance of the affine transformation, the vector 
from the centroid of one subset to another fits the bill. Consequently, AICT is built via 
a recursive operation: the point set is first partitioned by an affine invariant vector, then 
the centroids of the positive subset P+

v  and negative subset P−
v  are used to generate other 

vectors to induce new partitions on the point set, and so on. The centroids of P+
v  and P−

v  
obtained from each partition process are stored in order to construct the AICT.

Figure 2 illustrates the above operation on the point set P = {p1, p2, . . . , pN } . To build 
the AICT for pi , the key is how to find an affine invariant vector for the first iteration. 
Due to the affine invariance of the centroid, the centroid of P (i.e., c in Fig. 2) is adopted 
and the vector from pi to c is used to divide P into three subsets Pi0

1  , Pi+
11  and Pi−

12 . Appar-
ently, the centroids ci11 and ci12 of Pi+

11  and Pi−
12 are both affine invariant. They are extracted 

and stored as the left and right son of pi , respectively. In the AICT of pi , pi is the root 
node. ci11 and ci12 are at the second level while the level of the root node is defined to be 

(2)rpv =







1 y
p
v > 0

0 y
p
v = 0

−1 y
p
v < 0

.

Fig. 1 The relative position of p with respect to the vector xv
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one. The recursive partition process can go on while the vector from the node citj to its 
father ci

(t−1)ceil(j/2) is adopted to induce renewed partition, and the centroids ci(t+1)(2j−1) 
and ci(t+1)(2j) of the positive subset Pi+

(t+1)(2j−1) and negative subset Pi−
(t+1)(2j) are stored as 

the left and right son of citj , respectively. ceil(ξ) converts ξ to the nearest integers greater 
than it. The partition process needs to continue until the AICT achieves a given depth. 
Here, the depth is defined as the number of levels included by the AICT. For example, 
the depth of the AICT in Fig. 2c is 4.

Fig.2 The illustration of the recursive point set partition
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2.3  AICT for point matching

Our point matching algorithm can be divided into two stages: descriptor calculation and 
matching.

The first stage devotes to getting a descriptor for each point. Since the points in the 
AICT are affine invariant, we can get an affine invariant SPS when the points in AICT are 
arranged in order. Then, an affine invariant descriptor is gotten while a moment is com-
bined with the SPS. For example, for the point pi , if the points in its AICT are arranged 
from top to down and left to right, we can get a SPS {pi, ci11, c

i
12, c

i
21, c

i
22, . . . , c

i
n(2n)} . Once 

the SPS is obtained, the moment such as cross weighted (CW), affine invariant Fou-
rier moment (AIFM), or diagonals of orthogonal projection matrices (DOPM) could be 
acquired from the SPS as the descriptor of pi.

In the matching stage, the correspondences between points are established by descrip-
tor matching, and target recognition is achieved based on point-to-point matching. 
Considering two points pi and qj from the model and target point set, respectively, the 
cost of matching two points, represented as c(pi, qj) , is measured via the χ2 test statistic 
between the descriptors, that is

where dpi and dqi denote the descriptors of pi and qj , respectively. Given the set of costs 
between all point pairs, we measure the cost of object matching by

Equation (4) is a weighted bipartite matching problem. It can be solved by the Hun-
garian method subjecting to the constraint that the matching is one-to-one, i.e., ρ is a 
permutation. In order to have robust handling of outliers, we add “dummy” points to 
each point set with a constant matching cost of εd . In the meantime, C is treated as the 
matching cost between two objects, and the smaller the C, the better the localization of 
the corresponding object pairs is.

3  Results and discussion
In this section, AICT is coupled with DOPM to get a descriptor, which is named AICT-
DOPM. We perform experiments both on synthetic data and real data to compare the 
performance of AICT-DOPM with state-of-the-art algorithms including SC, ICP, and 
TPS-PRM.

3.1  Fundamental experiments on synthetic data

In synthetic data experiments, we generate a point set, in which 100 points uniformly 
distribute in 2D space with mean distance between neighbor points is normalized to 1. 
The point set is treated as the model, and target point sets are obtained under different 
levels of affine transformations, noise and outliers, respectively. To get noisy target point 
sets, the model points are firstly transformed by a random affine transformation, and 

(3)c(pi, qj) =
1

2
×

N
∑

k=1

∣

∣dpi(k)− dqi(k)
∣

∣

2

dpi(k)+ dqi(k)
.

(4)C = min
ρ

∑

i

c(pi, qρ(i)).
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then, the coordinates of deformed points are shifted in the range of [−e, e] . The level of 
noise is defined as

where d is the minimum distance between the point to the others in the point set. The 
outlier measurement, denoted by ODR, is defined as the ratio of the number of outlier 
to the number of original points. Figure 3 shows the distortions between the model and 
target point sets. The model is from Chui database.

The matching accuracy of descriptors is evaluated by the number of correct matches 
with respect to the number of currently existing matches. In addition, the correspond-
ences between two point sets are used to estimate the affine transformation T ′ . The 
matching error is quantified as the average Euclidean distance between the points in the 
transformed model point set under T ′ and T  . All results given in this subsection are the 
average results based on 100 independent trials.

3.1.1  Effect of depth on the performance

As described in Sect. 2, an AICT with depth n contains 2n − 1 affine invariant points. 
Apparently, the deeper the AICT is, the stronger ability it has to capture the inherent 
structure of the point set. However, whether we can get better performance while the 
depth increases, and which depth is the best choice while the performance and compu-
tational complexity are both considered. To answer these questions, we test the effect 
of depth on the performance of AICT-DOPM when the points in AICT are all used to 
construct the SPS. The performance of AICT with various depth under affine transfor-
mations, outliers and noise are given in Fig.  4. Figure  4a1, a2, the matching accuracy 
and matching error of AICT-DOPM, denotes that the descriptor has excellent per-
formance when the depth of the AICT is larger than 3. In these circumstances, the 

(5)NSR = e/2d,

Fig. 3 Illustration of the effect of distortions, outliers and noise on a point set. a An original point set, and it 
is transformed by b rotation ( θ = 30

◦ ), c non-uniform scaling ( sx/sy = 2 ), d shearing ( k = 1 ) or contaminated 
by e outliers (ODR = 0.2) and f ) noise (NSR = 0.5)
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matching accuracy nearly all reach 100% while the matching error drop to 0. AICT with 
depth 3 has poor performance if the target point set is polluted by outliers (Fig. 4b1, b2). 
Though the performance is becoming bad as ODR increases, it is highly improved when 
the depth of the AICT is larger than 5. In addition, the performance just only fluctuates 
slightly if the depth continues to increase. The reason is that the AICT with depth 5 can 
represent the global structure of the point set well. Therefore, we prefer 5 to other larger 
value to be the depth of the AICT for point matching under outliers. Similarly, for point 
matching under noise (Fig.  4c1, c2), 5 is also an available option for the depth of the 
AICT.

3.1.2  Performance to affine transformations, outliers and noise

In this subsection, the performance of AICT with depth 5 is compared with SC, ICP and 
TPS-RPM.

3.1.2.1 Performance to affine transformations An affine transformation includes rota-
tion, scaling, and shearing transformations. The behavior of algorithms with respect to 
rotation is first tested. The target point sets are generated while the model point sets are 
rotated from 0° to 180° with 20° intervals. Experimental results in Fig. 5a1, a2 show that 
AICT-DOPM can nearly find all correspondences, whereas the matching accuracy and 
error of other algorithms fluctuate when the rotation angle changes. Especially for ICP 
and TPS-RPM, which highly depend on the initial correspondence, their performance get 
worse when the rotation angle is larger.

Then, the sensitivity of the descriptors with respect to scaling is evaluated. To obtain 
the target point sets, the model point sets are transformed while different non-uni-
form scaling values (i.e., sx/sy ) change from 1.2 to 3 in step of 0.2. The performance of 
algorithms on point matching is compared in Fig. 5b1, b2, and they denote that AICT-
DOPM is more robust to non-uniform scaling.

Fig. 4 Performance of AICT-DOPM with various depth. Point matching accuracy and matching error with 
respect to affine transformations, outliers and noise are shown in the first column (a1 and a2), second 
column (b1 and b2), and the last column (c1 and c2)
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To evaluate the behavior of the algorithms in relation to shearing, the target point sets 
are obtained when the model point sets are transformed according to different shearing 
factor k , which are − 3, − 2, − 1, 0, 1, 2, 3. The matching results summarized in Fig. 5c1, 
c2 verify the invariance of AICT-DOPM to shearing.

3.1.2.2 Performance to outliers The sensitivity of algorithms to outliers is tested when 
different numbers of outliers are added onto the random affine transformed model. Fig-
ure 5d1, d2 shows the matching accuracy and error against outliers, respectively. They 
depict that the accuracy of all algorithms decreases as the ODR increases, and AICT-
DOPM has the best performance against outliers.

3.1.2.3 Performance to noise Finally, the effect of noise on algorithms is observed. Fig-
ure 5e1, e2, the matching accuracy and error, denotes that AICT-DOPM is most robust 
to noise.

3.2  Extended experiments on real data

The proposed algorithm can be used for object recognition once the objects are repre-
sented by point sets. In this subsection, the template image (Fig.  6a) and input image 
(Fig. 6b) are adopted to test the performance of our proposed algorithm on water region 
recognition. The two images, the real data taken over areas of Taiwan, were acquired by 
different sensors. The 11 water regions in the input image all have correspondences in 
the template image which has 24 regions. The closed water regions, which are extracted 

Fig. 5 Performance of algorithms for point matching with respect to rotation (first column), scaling (second 
column), shearing (third column), outliers (fourth column) and noise (last column). The point matching 
accuracy and error are shown in the first row (a1–e1) and the bottom row (a2–e2), respectively

Fig. 6 Real data taken over areas of Taipei by different sensors
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automatically by a simply threshold segmentation, are numbered, and their contours are 
labeled by white color in Fig. 6. In the experiment, the water regions are treated as point 
sets while the contours are sampled with 100 points by uniform spacing. For each region 
pair, the correspondences between contour points are found by algorithms to estimate 
the transformations between the two images, and then, the input region is transformed 
to be close to the template region. Finally, the registration accuracy is measured via 
the ratio of the area of common domain between the template and transformed input 
regions to the area of the template region. The larger the registration accuracy, the simi-
lar the two regions are. Figure 7 shows the matching results between the No. 7 water 
region in the template image (blue plus sign) and the No. 2 water region in the input 
image (red cycle) using different algorithms. The point matching results are given in the 
top row, and in the bottom row, contours of transformed regions are plotted on the tem-
plates to show the performance of algorithms intuitively. Furthermore, the water region 
recognition results of algorithms are summarized in Table 1. It demonstrates that AICT-
DOPM is much better at point-based object recognition than SC, ICP and TPS-RPM.

4  Conclusion
In this paper, a novel AICT is proposed to generate an affine invariant SPS to refine the 
performance of moments. For a given point, the point set is first partitioned into two 
subsets by the affine invariant vector from the point to the centroid of the point set, the 
centroid of subsets is stored as the sons of the point. The sons and their father can form 
vectors to induce renewed partitions. The process will go on until the AICT achieves a 
given depth. The points in the AICT are arranged in order to construct a rigorous affine 
invariant SPS. Then, a descriptor of the point can be captured while a moment is com-
bined. Finally, the similarity between two points is measured between the descriptors, 

Fig. 7 The matching results between the No. 7 water region in the template image (blue plus sign) and the 
No. 2 water region in the input image (red cycle) using a AICT-DOPM, b SC, c ICP and d TPS-RPM

Table 1 Comparisons of object recognition for real data

Input I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 Accuracy (%)
Matched T6 T7 T10 T9 T13 T12 T14 T15 T16 T17 T21

AICT-DOPM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100

SC ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 72.73

ICP ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ 54.55

TPS-RPM ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ 45.45
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and the point matching-based object recognition can be achieved. The comparative 
analysis has been performed against three state-of-the-art algorithms including SC, ICP, 
and TPS-RPM on synthetic and real data, and the results denote that our proposed algo-
rithm outperforms others in the presence of affine transformations, outliers and noise.

Appendix
1. Centroid invariance: centroid maps into centroid.

Proof Let (cx, cy) and (c′x, c′y) are the coordinates of centroids of the model and target 
point sets under an affine transformation T = {A, b} , then we have.

‘↔ ’ denotes the corresponding relationship.

2. Relative position invariance: point keeps its relative position with respect to the 
vector v under affine transformations.

Proof As shown in Fig.  8, to describe the relative position of pk with respect to the 
vector from pi to pj (i.e., vij ) clearly, we first establish a positively oriented orthonor-
mal frame (Oij, xij, yij) , in which vij is taken as xij . Then, the y− axis coordinate of pk in 
(Oij, xij, yij) can be computed by

(6)

c′x =

�N
i=1 x

′
i

N
=

�N
i=1 (Axi + b)

N
= A

�N
i=1 xi

N
+ b = Acx + b

c′y =

�N
i=1 y

′
i

N
=

�N
i=1 (Ayi + b)

N
= A

�N
i=1 yi

N
+ b = Acy + b















⇒ (c′x, c
′
y) ↔ (cx, cy).

(7)

ykij = (v̂ij×vik×v̂ij)·v̂ik =
(vij × vik × v̂ij) · v̂ik

�

�vij
�

�

∝ (vij×vik×v̂ij)·v̂ik = det













xi yi 1

xj yj 1

xk yk 1












.

(a) (b)
Fig. 8 The illustration of the relative position. a The relative position of pk with respect to the vector from pi 
to pj and b The relative position of p′k with respect to the vector from p′i to p′j
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where v̂ denotes the unit vector of v , ‘ × ’ denotes the vector multiplication cross, det(ξ) 
is the determinant of the matrix ξ , and |ξ | is the magnitude of the vector ξ . (xi, yi) is the 
coordinates of pi in (Oij, xij, yij).

Assuming the points pi , pj and pk are mapped into p′i , p
′
j and p′k under the affine 

transformation T = {A, b} , then the y-axis coordinate (i.e., yk
′

i′j′ ) of p′k in the positively 
oriented orthonormal frame in which vi′j′ is taken as the x-axis is

Correspondingly, the mathematical relationship between ykij and yk
′

i′j′ can be deduced 
as

According to det(AT ) > 0 , Eq. (9) implies that the relative position of p′k with respect 
to vi′j′ is proportional to the one of pk with respect to vij . Substituting Eq. (9) into Eq. (2) 
yields

Hence, the relative position invariance of the affine transformation is proved.
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