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Abstract 

In this paper, fast algorithms for the extrapolation of band-limited signals are presented 
by the sampling theorem and Fourier series in the case of over sampling. Assume 
the band-limited signal is known in a finite interval. We update the signal out-
side the interval by the Shannon sampling theorem in the case of over sampling. Then 
we obtain a fast algorithm in the form of Fourier series instead of the Fourier transform 
in the Papoulis–Gerchberg algorithm. Gibbs phenomena is analyzed in the method. 
An algorithm is presented to control the Gibbs phenomena, and some examples are 
given in the experimental results.

Keywords: Band-limited signal, Extrapolation, Fourier series, Gibbs phenomena, 
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1 Introduction
The extrapolation of band-limited signals is widely applied in Engineering, Seismology, 
Industrial Electronics and other fields [1–19].

In [19], it is pointed out that the extrapolation for bandlimited signals is one of essen-
tial research objects in signal processing, wireless communication, and positioning sce-
narios where the transmitted signals are always bandlimited.

In [1] and [2], Papoulis and Gerchberg presented an iterative algorithm in which the 
iteration converges to the extrapolation of the band-limited signal. In [3], an improved 
version of Papoulis–Gerchberg algorithm is given. In [4], the application of the extrapo-
lation in spectral estimation is described. In [5–14], other extrapolation algorithms are 
presented. In [15, 16], applications of extrapolation and regularization method in image 
restoration are given. In [20], the discrete iteration of the Papoulis–Gerchberg algo-
rithm is studied. Fast iterative and noniterative methods are presented in [21]. In [22], 
the connections between two approaches to band-limited interpolation are clarified. In 
[19], a piece-wise extrapolation method is proposed to solve the problems according to 
the error variation and error accumulation within the iterations of Papoulis–Gerchberg 
algorithm. The extrapolation process is divided into several pieces and the minimum 
energy least squares error extrapolation result based on Papoulis–Gerchberg algorithm 
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is given to reduce the accumulated error. In [23], the Papoulis–Gerchberg algorithm 
is extended for extrapolation of signals in higher dimensions, and the regularization 
method is applied in the noisy case due to the instability. In [24] and [25], a fast conver-
gence algorithm is presented. This algorithm has been proved that it converges faster 
than the Papoulis–Gerchberg algorithm. In [26], the fast convergence algorithm is taken 
to be a generalization of the Papoulis–Gerchberg algorithm. In [27] it is cited in the non-
patent citations.

In the extrapolation algorithms described above, we need to compute the integrals in 
the Fourier transform. The novelty of this paper is to revise the fast convergence algo-
rithm in [24] and [25] by the Shannon Sampling Theorem. The formula of iteration can 
be simplified in the case of over sampling. We replaced the Fourier transform [1, 2, 24, 
25] by Fourier series in the new algorithm in this paper. In this way, we obtain a fast 
algorithm in the form of Fourier series instead of the Fourier transform in the Papou-
lis–Gerchberg algorithm. So the computation of the integrals in the previous algorithms 
[1, 2, 24, 25] is omitted. The amount of computation is reduced and the accuracy is even 
better. We even consider the truncation of the Fourier series in which the Gibbs phe-
nomena occurs, and a fast algorithm is presented to remove the Gibbs phenomena.

In this paper, we will improve the fast convergence algorithm in [24] by the Shannon 
Sampling Theorem in the case of over sampling [28]. By over sampling, we will present 
a fast algorithm which is more effective than the fast convergence algorithm in [24] and 
[25]. In Sect. 2, we will describe the band-limited extrapolation problem. In Sect. 3, we 
will describe how the sampling theorem is used to obtain a fast algorithm and explain 
why we can obtain more accurate solutions by the fast algorithm. In Sect. 4, the method 
and experiment for extrapolation are given. In Sect. 5, Gibbs phenomena is analyzed and 
shown by some examples. Also another algorithm is presented to control the Gibbs phe-
nomena. In Sect.  6, we will discuss the experimental results. Finally the conclusion is 
given in Sect. 7.

2  Extrapolation of band‑limited signals
In this section, we introduce the problem of extrapolation of band-limited signals.

The definition of band-limited functions is as following:

Definition For � = const. > 0 , a function f ∈ L2(R) is said to be �-band-limited if 
f̂ (ω) = 0 ∀ω ∈ R\[−�,�] . Here f̂  is the Fourier transform of f [29]:

where R is the set of all real numbers.

We then have the inversion formula:

(1)F(f )(ω) = f̂ (ω) :=
+∞

−∞

f (t)e−jωtdt, ω ∈ R,
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By the derivative

we can see that f(t) is an analytical function if we take t to be a complex variable. For ana-
lytical functions, we have the uniqueness theorem [30].

The Uniqueness Theorem. Let f(z) and g(z) be analytic in a region R . If the set of points z 
in R where f (z) = g(z) has a limit point in R , then f (z) = g(z) for all z ∈ R . In particular, 
if the set of zeros of f(z) in R has a limit point in R , then f(z) is identically zero in R.

In this paper we just consider t is in the set of real numbers.
By the uniqueness theorem for analytical functions, f(t) is uniquely determined by f(t) for 

t ∈ [−T , T ] where T = const. > 0 since any point in [−T , T ] is a limit point. So we pre-
sent the band-limited extrapolation problem:

Assume that f : R → R is a band-limited function and T is a positive constant,

Remark 1 The problem (3) is the problem of extrapolation in the time domain. In some 
papers, the problem of extrapolation in the frequency domain to obtain a higher resolu-
tion signal in the time domain is discussed [31, 32].

Here we give an example of band-limited signal.

Example Suppose

is the signal in Fig. 1.
Then construct

Here � = 1 . f(t) is a band-limited signal, and it is uniquely determined by f(t), t ∈ [−T ,T ].

The Papoulis–Gerchberg algorithm in [1, 2] is as follows:

For k = 0, 1, 2, ...,

(2)F
−1(f̂ )(t) = f (t) =

1

2π

∫ �

−�

f̂ (ω)ejωtdω, a.e. t ∈ R.

f ′(t) =
1

2π

∫ �

−�

(jω)f̂ (ω)ejωtdω

(3)given f(t) t ∈ [−T,T], find f(t) t ∈ R\[−T,T].

f (t) :=
1− cos t

π t2

f̂ (ω) =

{

1− |ω|, ω ∈ [−�,�]
0, ω ∈ R\[−�,�].

f0 := PT f .
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where I  is the identity operator,

and

The convergence ||fk − f ||L2 → 0 is proven in [1] by Papoulis.

3  A fast extrapolation algorithm
In this section we present a fast extrapolation algorithm in the case of over sampling by 
sampling theorem. We first describe the Shannon Sampling Theorem in [29].

Shannon Sampling Theorem. The �0-band-limited signal f (t) ∈ L2(R) can be exactly 
reconstructed from its samples f (nh0) , and

where h0 := π/�0.

fk+1 := PT f + (I − PT )F
−1

P�F fk ,

PT f (t) :=

{

f (t), t ∈ [−T ,T ]
0, t ∈ R\[−T ,T ]

P� f̂ (ω) :=

{

f̂ (ω), ω ∈ [−�,�]
0, ω ∈ R\[−�,�].

f (t) =

∞
∑

n=−∞

f (nh0)
sin�0(t − nh0)

�0(t − nh0)

Fig. 1 Example of band-limited signal
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Remark 2 Since �0-band-limited signals are also �-band-limited for � ≥ �0 , we have 
the formula for oversampling

where h := π/� and h ≤ h0.

In [24] and [25], a fast convergence algorithm is presented (Chen Fast Convergence 
Algorithm):

For k = 0, 1, 2, ...

where

in which gCk = F−1P� f̂
C
k .

For each ω , in

where ti = i�t and �t = T/M , we need 8M + 1 real multiplications and 6M − 1 real 
additions. Here M is a large positive integer.

We assume we have 2NT + 1 terms in

then we need (2NT + 1)(8M + 1)+ 2NT + 1 real multiplications and (2NT + 1)

(6M + 1)+ 2NT real additions. We assume we have chosen 2N1 terms in

f (t) =

∞
∑

n=−∞

sin�(t − nh)

�(t − nh)
f (nh)

f C0 := PT f .

f Ck+1 := PT f + (I − PT )F
−1

P� f̂
C
k

(4)

f̂ Ck+1(ω) :=

∫ T

−T
f (t)e−jωtdt

+
∑

|nh|≤T

f (nh)

[

he−jnhω −

∫

|t|≤T

sin�(t − nh)

�(t − nh)
e−jωtdt

]

+
∑

|nh|>T

gCk (nh)

[

he−jnhω −

∫

|t|≤T

sin�(t − nh)

�(t − nh)
e−jωtdt

]

∫ T

−T
f (t)e−jωtdt ≈

M−1
∑

i=−M

f(ti)e
−jωti�t (4a)

∑

|nh|≤T

f (nh)

[

he−jnhω −

∫

|t|≤T

sin�(t − nh)

�(t − nh)
e−jωtdt

]

∑

|nh|>T

gCk (nh)

[

he−jnhω −

∫

|t|≤T

sin�(t − nh)

�(t − nh)
e−jωtdt

]

,



Page 6 of 21Chen  EURASIP Journal on Advances in Signal Processing        (2023) 2023:107 

then we need (2N1)(8M + 1)+ 2N1 real multiplications and (2N1)(6M + 1)+ 2N1 − 1 
real additions.

Now, we try to find a fast algorithm by the Shannon Sampling Theorem.
In (4), we need the computation of the integrals

for extrapolations. We can use the rectangular formula, trapezoidal formula or Simpson 
formula. In (4a) we use the rectangular formula.

If we replace f(t) in (4) by its approximation

and we choose � that is large enough such that �t = h = π/� , then we will 
obtain the same result in computation since the function values of f(t) at 
t = ti, i = −M,−M + 1, ...,M − 1,M are not changed.

In (5), we have taken

However, in the k-th step of the iteration, the signal out of [−T ,T ] has been updated by 
gCk  . We can add

into (5) and obtain another approximation of f(t)

We can replace f(t) in (4) by (7):

By canceling like terms, we obtain another expression of f̂ Ck+1(ω):

∫ T

−T
f (t)e−jωtdt

(5)f (t) ≈
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)

∑

|nh|>T

f (nh)
sin�(t − nh)

�(t − nh)
= 0.

(6)
∑

|nh|>T

gCk (nh)
sin�(t − nh)

�(t − nh)

(7)f (t) ≈
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)
+

∑

|nh|>T

gCk (nh)
sin�(t − nh)

�(t − nh)
.

f̂ Ck+1(ω) :=

� T

−T





�

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)
+

�

|nh|>T

gCk (nh)
sin�(t − nh)

�(t − nh)



e−jωtdt

+
�

|nh|≤T

f (nh)

�

he−jnhω −

�

|t|≤T

sin�(t − nh)

�(t − nh)
e−jωtdt

�

+
�

|nh|>T

gCk (nh)

�

he−jnhω −

�

|t|≤T

sin�(t − nh)

�(t − nh)
e−jωtdt

�

.
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This is a Fourier series in the case of over sampling and it is much simpler than (4).
Based on the formula (8), we present a fast algorithm:

For k = 0, 1, 2, ...,

where

This algorithm should have a more accurate approximation since we have added (6) into 
(5). This can be seen from the theorem below.

Theorem 1 The error energy of (5) is

The error energy of (7) is

where h = π
�

 , gCk  is the k-th approximation of of f for |t| > T .

Proof Assume s(t) is �-band-limited. By Parseval’s theorem for Fourier transform, we 
have

By Parseval’s theorem for Fourier series, we have

Then

(8)f̂ Ck+1(ω) :=
∑

|nh|≤T

f (nh)he−jnhω +
∑

|nh|>T

gCk (nh)he
−jnhω.

(9)f̂ C0 (ω) :=
∑

|nh|≤T

f (nh)he−jnhω.

(10)f̂ Ck+1(ω) := f̂ C0 (ω)+
∑

|nh|>T

gCk (nh)he
−jnhω

gCk = F
−1

P�0 f̂
C
k .

∥

∥

∥

∥

∥

∥

f (t)−
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)

∥

∥

∥

∥

∥

∥

2

= h
∑

|nh|>T

|f (nh)|2.

∥

∥

∥

∥

∥

∥

f (t)−
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)
−

∑

|nh|>T

gCk (nh)
sin�(t − nh)

�(t − nh)

∥

∥

∥

∥

∥

∥

2

= h
∑

|nh|>T

|f (nh)− gCk (nh)|
2

∫ ∞

−∞

|s(t)|2dt =
1

2π

∫ �

−�

|Os(ω)|2d.

∫ �

−�

|ŝ(ω)|2d =
2π2

�

∞
∑

n=−∞

|s(nh)|2.
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Let

we have

Let

we have

 �

Theorem 2 The error energy

Proof By Parseval’s identity

∫ ∞

−∞

|s(t)|2dt = h

∞
∑

n=−∞

|s(nh)|2.

s(t) = f (t)−
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)
=

∑

|nh|>T

f (nh)
sin�(t − nh)

�(t − nh)

∥

∥

∥

∥

∥

∥

f (t)−
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)

∥

∥

∥

∥

∥

∥

2

= h
∑

|nh|>T

|f (nh)|2.

s(t) =f (t)−
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)
−

∑

|nh|>T

gCk (nh)
sin�(t − nh)

�(t − nh)

=
∑

|nh|>T

(f (nh)− gCk (nh))
sin�(t − nh)

�(t − nh)

∥

∥

∥

∥

∥

∥

f (t)−
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)
−

∑

|nh|>T

gCk (nh)
sin�(t − nh)

�(t − nh)

∥

∥

∥

∥

∥

∥

2

= h
∑

|nh|>T

|f (nh)− gCk (nh)|
2.

||f Ck (t)− f (t)||2 ≥ ||f Ck+1(t)− f (t)||2.

||f Ck (t)− f (t)||2 =
1

2π
||f̂ Ck (ω)− f̂ (ω)||2

=
1

2π

∫ ∞

−∞

|f̂ Ck (ω)− f̂ (ω)|2dω ≥
1

2π

∫ �0

−�0

|f̂ Ck (ω)− f̂ (ω)|2dω

=
1

2π

∫ �0

−�0

|ĝCk (ω)− f̂ (ω)|2dω = ||gCk (t)− f(t)||2.
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By the Shannon Sampling Theorem

By the inversion of the Fourier transform on (10)

By Parseval’s theorem

So

 �

Remark 3 This theorem shows that the error energy is decreasing in each step of itera-
tions. The “=” can be satisfied only if f Ck (t) = f (t) . So, before we have reached the exact 
extrapolation, we have

4  Method and experiment for extrapolation
In this section, we give the method for the algorithm. In computation we can only use 
finite terms in (10). We choose a large integer N > 0 to approximate (10):

We refer to it as Chen Fast Algorithm 1.

gCk (t) =

∞
∑

n=−∞

gCk (nh)
sin�(t − nh)

�(t − nh)
.

f Ck+1(t) =
∑

|nh|≤T

f (nh)
sin�(t − nh)

�(t − nh)

+
∑

|nh|>T

gCk (nh)
sin�(t − nh)

�(t − nh)
.

||gCk (t)− f (t)||2 = h

∞
∑

n=−∞

|gCk (nh)− f (nh)|2

||f Ck+1(t)− f (t)||2 = h
∑

|nh|>T

|gCk (nh)− f (nh)|2.

||gCk (t)− f (t)||2 ≥ ||f Ck+1(t)− f (t)||2.

||f Ck (t)− f (t)||2 > ||f Ck+1(t)− f (t)||2.

(11)f̂ Ck+1(ω) = f̂ C0 (ω)+
∑

|nh|>T and |n|≤N

gCk (nh)he
−jnhω.
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We have 2M + 1 terms in f̂ C0 (ωl) . For each ωl , in f̂ C0 (ωl) we need 8M real multi-
plications and 6M real additions. In gCk (tm) , for each tm , we need 8L multiplication 
and 6L addition, in f̂ Ck+1(ωl) for each ωl , we need 8(N −M) real multiplications and 
6(N −M) real additions.

Now we give an example of an application of Chen Fast Algorithm 1 and compare it 
with Chen Fast Convergence Algorithm and Papoulis–Gerchberg algorithm.

Example 1 Suppose

Then

Here �0 = 1.
Suppose the signal is known on [−T ,T ] = [−π/5,π/5] . In Chen Fast Algorithm  1, 
we input: T = π/5 , � = 10 , L = 50 , N = 10 and NumofIterations = 6 . Since 
� = 10 >> �0 = 1 and the step size of sampling h = π/� , it is the case of over 
sampling.
The numerical results by Papoulis–Gerchberg algorithm, Chen Fast Convergence Algo-
rithm and Chen Fast Algorithm 1 for the iterations 1, 2, 3, 4 are in Figs. 2, 3, 4, 5, 6, 7, 8 
and 9.

f (t) :=
1− cos t

π t2
.

f̂ (ω) = P�0(1− |ω|).

Fig. 2 The results of the first iteration in the frequency domain
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The result of the Papoulis–Gerchberg algorithm is given by the dotted lines in the black 
color. The result of the Chen Fast Convergence Algorithm is given by the dash dot lines 
in the red color. The result of the Chen Fast Algorithm 1 is given by the dashed lines in 
the blue color.
The error energy

Fig. 3 The results of the first iteration in the time domain

Fig. 4 The results of the second iteration in the frequency domain



Page 13 of 21Chen  EURASIP Journal on Advances in Signal Processing        (2023) 2023:107  

of Papoulis–Gerchberg algorithm, Chen Fast Algorithm Convergence Algorithm and 
Chen Fast Algorithm 1 for the iterations 1–6 is in Table 1.

∫ �0

−�0

|f̂k(ω)− f̂ (ω)|2dω

Fig. 5 The results of the second iteration in the time domain

Fig. 6 The results of the third iteration in the frequency domain
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In the first iteration, the results of Papoulis–Gerchberg algorithm and Chen Fast Con-
vergence Algorithm are same. But the Chen Fast Algorithm 1 is better. In the iterations 
2–4, the Papoulis–Gerchberg algorithm is the worst, the Chen Fast Algorithm 1 is the 
best. This can also be seen in Table 1.

Fig. 7 The results of the third iteration in the time domain

Fig. 8 The results of the forth iteration in the frequency domain
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5  Method to remove Gibbs phenomena
In this section we give some examples to show the Gibbs phenomena. In Chen Fast 
Algorithm 1, we truncated the Fourier series. This gives rise to the Gibbs phenomena 
in the frequency domain if f̂ (ω) is not continuous at ω = � and ω = −� . This happens 
when f ∈ L2 but f /∈ L1

Example 2 Suppose

Then

f (t) =
sin(π t)

π t
.

f̂ (ω) :=

{

1, ω ∈ [−�0,�0]
0, ω ∈ R\[−�0,�0].

Fig. 9 The results of the forth iteration in the time domain

Table 1 Error energy in Example 1

Iteration 1 2 3 4 5 6

Err_PG_alg 0.3511 0.2318 0.1869 0.1701 0.1639 0.1616

Err_Chen_F_C 0.3511 0.1812 0.1049 0.0688 0.0508 0.0415

Err_Chen_F_1 0.2973 0.1561 0.0923 0.0622 0.0473 0.0394
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Here �0 = 1.
Suppose the signal is known on [−T ,T ] = [−π/5,π/5] . In Chen Fast Algorithm 1, we 
input T = π/5 , � = 10 , L = 50 , N = 200 and NumofIterations = 6 . The numerical 
results by the algorithm for the iterations 1, 2, 3, 4 are in Fig. 10. The results of Chen Fast 
Algorithm 1 are given by dashed lines.

Now, we present a fast algorithm without truncation errors in computation of infi-
nite terms of the Fourier series. We can change (10) to

So we present another new method and we refer to it as Chen Fast Algorithm 2:

(12)

f̂ Ck+1(ω) =f̂ C0 (ω)−
∑

|nh|≤T

gCk (nh)he
−jnhω +

∞
∑

n=−∞

gCk (nh)he
−jnhω

=f̂ C0 (ω)−
∑

|nh|≤T

gCk (nh)he
−jnhω + ĝCk (ω)

=f̂ C0 (ω)−
∑

|nh|≤T

gCk (nh)he
−jnhω + P�0

ˆf Ck (ω).

Fig. 10 The results of Chen Fast Algorithm 1 in Example 2 for � = 10
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We have 2M + 1 terms in f̂ C0 (ωl) . For each ωl , in f̂ C0 (ωl) we need 8M real multiplica-
tions and 6M real additions. In gCk (tm) , for each tm , we need 8L multiplication and 6L 
addition, in f̂ Ck+1(ωl) for each ωl , we need 8M real multiplications and 6M real additions.

To compare the complexity of Chen Fast Algorithm 1 and Chen Fast Algorithm 2, if 
the number of terms in 

∑

|nh|≤T gCk (nh)he
jnhω is less than N, the Chen Fast Algorithm 2 

is of less complexity.

Theorem 3 For each integer k ≥ 0 , the limits

exist.

Proof By mathematical induction, first k = 0,

we can see the limits exist. Assume the limits exist for f̂ Ck (ω) , by (12)

we can see the limits exist for f̂ Ck+1(ω) . �

Remark 4 By this theorem we can see that the limits exist and are indepedent of the N 
in (11), so the Gibbs phenomena is disappeared.

Example 3 We choose the function in example 2.
Suppose the signal is known on [−T ,T ] = [−π/5,π/5].
In Chen Fast Algorithm 2, we input T = π/5 , � = 10 , L = 50 and NumofIterations = 6.
Since � = 10 >> �0 = 1 and the step size of sampling h = π/� , it is the case of over 
sampling.
The numerical results by Chen Fast Algorithm 2 for the iterations 1, 2, 3, 4 are in Fig. 11.
The error energy

of Chen Fast Algorithm 1 and 2 for the iterations 1–6 is in Table 2. We give the results of 
Chen Fast Algorithm 1 for the case T = 10 in Fig. 12.

6  Results and discussion
In (11) and (12), the computation of the integrals in (4) is omitted. Therefore the amount 
of computation is greatly reduced. In the computation of (11) FFT can be used. The 
amount of computation is of the order O(N logN ).

lim
ω→�−

f̂ Ck (ω) and lim
ω→−�+

OfCk (ω)

f̂ C0 (ω) =
∑

|nh|≤T

f (nh)he−jnhω,

f̂ Ck+1(ω) = f̂ C0 (ω)−
∑

|nh|≤T

gCk (nh)he
−jnhω + P�0

ˆf Ck (ω),

∫ �0

−�0

|f̂k(ω)− f̂ (ω)|2dω
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Fig. 11 The results of Chen Fast Alg 2 in Example 3

Table 2 Error energy in Examples 2 and 3

Iteration 1 2 3 4 5 6

Err_Chen_F_1 0.5716 0.1716 0.0621 0.0346 0.0298 0.0311

Err_Chen_F_2 0.5716 0.1628 0.0474 0.0147 0.0055 0.0028

Fig. 12 The results of Chen Fast Algorithm 1 in Example 3 for T=10
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In example 1, we can see the numerical result of Chen Fast Algorithm 1 is more accu-
rate than the numerical result of the Papoulis–Gerchberg algorithm and Chen Fast Con-
vergence Algorithm. The amount of computation is less in Chen Fast Algorithm 1 since 
there is no computation of integrals in it.

In example 2, the Gibbs phenomena occurs. The Gibbs phenomena can be in control 
in Chen Fast Algorithm 2.

In example 3, we can see that the Gibbs phenomena affects the accuracy of the numer-
ical results severely even we choose a large enough T. This is not due to the error energy 
in the residual sequence beyond |t| = T  . This is due to the truncation error in the Fou-
rier series. And this occurs when f̂ (−�+ 0) �= 0 or f̂ (�− 0) �= 0.

7  Conclusion
Fast extrapolation algorithms for band-limited signals are introduced by the Shannon 
Sampling Theorem in this paper. By adding the updated term into the Shannon Sam-
pling Theorem in the procedure of iteration we can obtain more accurate extrapolations 
signal and reduce the amount of computation. This can be seen in the experimental 
results. The Gibbs phenomena can be in control if the computation of infinite Fourier 
series is not required.
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