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1 Introduction
sEMG (surface electromyography) signal is a weak physiological electrical signal that 
accompanies muscle contraction [1]. It has an amplitude range of 0–10 mv and a fre-
quency range of 10–200  Hz [2]. Non-invasive and non-invasive sEMG acquisition 
technology is more convenient and safer while ensuring signal validity. As a result, it 
is extensively employed in fields such as sports science, smart manufacturing, bioengi-
neering, and rehabilitation medicine [3]. Acquiring the signal requires attaching elec-
trodes to the muscle surface. This process often introduces additive white Gaussian 
noise (AWGN) due to factors such as skin impedance and power supply interference. 
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Directly processing these noise-containing signals can lead to inaccurate results. It 
underscores the importance of filtering the AWGN and ensuring signal validity before 
further analysis.

Existing sEMG signal filtering methods, such as the Kalman filter, Chebyshev filter, 
and Butterworth filter, have yet to provide a flawless solution. While powerful, Kalman 
and Chebyshev filters can be intricate and sometimes less efficient [4]. They used the 
Butterworth filter demands specifying the signal frequency range to set up the filtering 
parameters. This setup impedes distinguishing between the signal’s time and frequency 
domains, making it challenging to assess the fidelity of the filtered signal [4]. To address 
this, researchers applied window functions to the signals and introduced a mathematical 
model of the short-time Fourier transform (STFT). While this approach has enhanced 
the signal quality to a degree [5], a limitation is that the STFT’s window size is typically 
fixed, offering limited flexibility for signals with a broad frequency distribution [6–8].

Alternative sEMG signal filtering techniques have garnered significant attention, with 
wavelet transform emerging as a promising solution. The wavelet transform is a time-
frequency analysis approach akin to the Fourier transform but focuses more on local 
time characteristics [9]. It allows for adjusting the wavelet basis parameters in alignment 
with the original signal’s time-frequency properties [10]. By conducting localized analy-
sis in the time-frequency domain and optimizing the wavelet basis function and thresh-
old function, the signal fidelity can be significantly enhanced [11]. Factors influencing 
the wavelet denoising efficiency encompass the choice of wavelet basis, threshold magni-
tude, the number of decomposition levels, etc. [12].

To extend the application scenarios and enhance the performance of wavelet theory, 
researchers have introduced the concept of fractal-wavelet analysis. This innovative 
approach synergizes the principles of fractal geometry with wavelet theory to examine 
intricate structures and signals across diverse disciplines. Notably, fractal-wavelet analy-
sis has proven potent in processing and analyzing data characterized by self-similarity 
and multi-scale complexity [13]. The wavelet decomposition phase aims to obtain a mul-
tiresolution representation of the original signal, ascertaining the optimal wavelet basis 
and the wavelet decomposition levels using a specific parameter selection technique. 
Furthermore, its significant potential in signal processing, image analysis, and pattern 
recognition is evident. In recent times, the fractal-wavelet analysis technique has been 
employed to investigate deterministic and stochastic scaling of functions, the self-sim-
ilarity in fractal dimensions and images [13], and the positive definite distributions and 
wavelets within the realm of engineering mathematics [14, 15]. Especially in remote 
sensing and signal processing sectors, the utility of fractal-wavelet analysis is undeniable 
given its prowess in capturing intricate details and efficiently handling vast datasets [16, 
17]. Moreover, it has shown profound impacts in image analysis, especially when dealing 
with complex geometric structures, expanding its application horizons [18, 19].

In conclusion, the threshold denoising method holds considerable sway over the filter-
ing performance of sEMG signals. Conventional threshold denoising techniques tend to 
introduce AWGN into the original signal for validation and then attempt to denoise it, 
substantiating the denoising theory [12]. The fidelity of such denoised signals is typically 
gauged by how closely they resemble the original signal. However, this methodology is 
not free from criticism. Some experts argue that by strictly adhering to resemblance as 
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the gold standard, one might overlook the inherent noise present within the original 
signal. Furthermore, achieving a denoised signal with an optimal signal-to-noise ratio 
does not necessarily alleviate issues related to under-denoising and distortion, especially 
when the noise signal’s energy level closely mirrors that of the effective signal. Conse-
quently, the adaptability of the threshold filtering approach remains constrained, prov-
ing effective only for a specific subset of sEMG signals [20].

In light of the above challenges, this paper introduces an advanced wavelet thresh-
old denoising approach tailored to cater to diverse signal types, with an emphasis on 
sEMG signals. Unlike conventional methods that rely solely on a fixed threshold, our 
approach dynamically adjusts the threshold based on the signal’s inherent characteris-
tics, ensuring optimal denoising with minimal signal distortion. This refined approach 
encompasses wavelet decomposition, threshold denoising, and reconstruction stages. 
The wavelet decomposition phase ascertains the optimal wavelet basis and the wavelet 
decomposition levels using a specific parameter selection technique. Following this, an 
enhanced threshold function is formulated based on the statistical properties of the sig-
nal and noise coefficients, drawing inspiration from the Garrote threshold function. This 
approach proposes two distinct algorithmic schemes. Scheme I incorporates two adjust-
ment factors to tweak the threshold dynamically as per the signal type. Preliminary 
tests using Doppler and Heavysine signals demonstrate that this method yields a recon-
structed signal with superior SNR and minimized MSE, a high-fidelity reconstruction of 
the original signal. On the other hand, Scheme II leverages a threshold preference func-
tion tailored to the idiosyncrasies of the sEMG signal, resulting in an optimal threshold 
filtering function model. The reconstructed signal’s quality is ascertained using signal 
peak level and baseline noise. Empirical evidence suggests that our enhanced thresh-
old filtering algorithm provides referential sEMG signal analysis results, highlighting its 
promise in biomedical engineering and physiotherapy domains.

This article is structured as follows: Sect.  2 delves into the noise model of wave-
let denoising and provides an overview of the generic wavelet threshold denoising 
approach, discussing the wavelet basis and decomposition layer selection technique. 
Sections 3 and 4 elaborate on the traditional and new threshold functions, elucidating 
the methodologies and algorithms in depth. Section 5 showcases the processing nuances 
of simulated and real-world signals, including a comprehensive error evaluation, thereby 
establishing the efficacy of the algorithm for sEMG signals. Finally, Sect.  6 provides a 
concise summary and conclusion of our findings.

2  Methodology
Wavelet threshold denoising approach, the noise model of wavelet denoising is [4]:

In the equation, f(t) represents the noisy signal, s(t) is the ideal signal, and σ(t) denotes 
the AWGN signal, following an N(0,2) distribution. According to the relevant literature, 
the wavelet coefficients of an ideal signal, after wavelet transformation, display strong 
correlations at various scales and either increase or remain constant as the transforma-
tion scale increases. In contrast, the wavelet coefficients of noise signals exhibit weak 
or no correlations at different scales and decrease with increasing scale during wavelet 

(1)f (t) = s(t)+ σ(t)
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decomposition. This trend occurs at various levels of wavelet decomposition. For more 
minor variation scales, the analyzed signal’s wavelet coefficients are predominantly influ-
enced by the noise signal, while for larger transformation scales, they are primarily con-
trolled by the ideal signal [9].

From the conclusions drawn, the general flow of wavelet threshold filtering is estab-
lished. Figure  1 illustrates that how thresholds are set at different scales to adjust the 
wavelet coefficients, leading to their subsequent reconstruction [20, 21]. The design 
of wavelet filters hinges on several criteria, including frequency and time localization, 
orthogonality or compact support, symmetry, smoothness, and high-order vanishing 
moments [22]. To tailor the design effectively, researchers and practitioners rigorously 
evaluate the program requirements, understand the trade-offs between time and fre-
quency localization, and ensure computational efficiency. This comprehensive assess-
ment assists in choosing the apt wavelet basis and designing the optimal wavelet filter 
for the specific application.

2.1  Wavelet basis selection

This study explores commonly used wavelet bases, including Haar wavelets, Daubechies 
(dbN) wavelets, Mexican Hat (mexh) wavelets, Morlet wavelets, Symlet wavelets, Coi-
flets wavelets, and Meyer wavelets. Due to its simplicity and widespread application, 
the Haar wavelet exhibits orthogonality, making it suitable for capturing abrupt signal 
changes. However, compared to other wavelets, its time and frequency resolution might 
be lower. In contrast, Daubechies wavelets and Symlets wavelets provide better smooth-
ing for high-frequency components, while Coiflets wavelets excel in frequency resolu-
tion. The Morlet wavelet is especially favored for continuous wavelet transformation in 
time-frequency analysis.

Furthermore, wavelets of different orders exhibit varying degrees of smoothness and 
resolution in the time and frequency domains. With an increase in wavelet order, there 
is an enhancement in smoothness and a corresponding decrease in frequency resolution. 

Fig. 1 Basic process of sEMG wavelet denoising
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This trade-off is inherent due to the time-frequency uncertainty principle. Higher-order 
wavelets are especially adept at processing smooth signals. In contrast, opting for lower-
order wavelets might be beneficial for capturing detailed variations in non-smooth sig-
nals. Recognizing that exceptionally high wavelet orders can result in an extended filter 
length, amplifying computational complexity, and potentially introducing boundary 
effects are crucial.

Given the broad frequency distribution and the inherent random non-smoothness 
of the original signal, we have zeroed in on Daubechies wavelets, Symlets wavelets, 
and Coiflets wavelets as potential wavelet bases [23]. We proceeded to model the filter 
design employing the aforementioned wavelet bases across different orders. By institut-
ing multiple threshold filtering models, we aimed to pinpoint the optimal wavelet basis 
for the filtered signal via a detailed error analysis [24]. After juxtaposing the errors, the 
sym4 wavelet from the Symlet wavelet family emerged as the preeminent choice for our 
research.

2.2  Determination of wavelet decomposition level

The wavelet decomposition level denotes the scale at which the signal undergoes wavelet 
decomposition, systematically breaking the signal down into its constituent parts across 
varying scales. The maximum permissible number of decomposition levels is often 
constrained by the length of the signal and computational considerations. This can be 
quantitatively expressed as j = log2(M) , where j represents the number of decomposi-
tion levels, and M corresponds to the overall length of the signal [25]. It is imperative to 
acknowledge that excessively increasing the decomposition levels can degrade the fidel-
ity of the original (or ideal) signal upon reconstruction and amplify computational com-
plexities [26].

Conversely, the lower limit for the number of decomposition levels is governed by 
the characteristics of the signal and the specific application’s requirements. Typically, 
a minimum of two levels of decomposition is required to capture both the approxima-
tion (coarse features) and detailed (fine features) information of the signal. The lower the 
decomposition levels, the more limited the denoising effect and reduced signal fidelity. 
For EMG signal processing, the decomposition level can be set between 3 and 10 lev-
els, contingent upon varying requirements for wavelet bases, thresholding criteria, and 
waveform intricacies [27]. In this study, we ascertain the optimal number of decomposi-
tion levels through quantitative error analysis of signals wavelet-decomposed across dif-
ferent levels, employing the method of control variables for level selection. Specifically, 
for Doppler and Heavysine signals, we opted for five levels, whereas for sEMG signals, 
we designated 10 levels. By meticulously considering these parameters, we aim to hone 
in on the most precise wavelet decomposition for our signal processing approach.

2.3  Selection of thresholding filtering function and wavelet reconstruction

The wavelet threshold is pivotal in determining which wavelet coefficients should con-
sider as noise. The threshold magnitude directly influences the quality of the recon-
structed signal. A disproportionately large threshold might inadvertently filter out 
both noise and the desired signals, while an undersized threshold could allow the noise 
to persist, resulting in suboptimal denoising [28]. In the MATLAB toolbox (2020b, 
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2020.09.17), there are four integrated threshold estimation methods: the unbiased likeli-
hood estimation (rigrsure) threshold, the fixed value (sqtwolog) threshold, the heuris-
tic (heursure) threshold, and the minimum–maximum variance (minimaxi) threshold 
[29]. We will rigorously investigate the filtering efficacy of these threshold estimation 
techniques. The thresholding operations primarily encompass hard thresholding, soft 
thresholding, and Garrote thresholding functions [30]. Our subsequent analysis will 
detail the nuances of these thresholding methods and their implications for the filtering 
process.

3  Selection of thresholding function

1. Hard threshold 

2. Soft threshold 

3. Garrote threshold 

fi(x) in the above three equations represents the estimated wavelet coefficients for the 
i-th level after threshold denoising processing, where x represents the input original 
wavelet coefficient, and � is the determined threshold. The graphs of the three types of 
functions are shown in Fig. 2.

(2)fi(x) =
x, |x| ≥ �

0, |x| ≤ �

(3)fi(x) =
{

x − �sgn(x), |x| ≥ �

0, |x| ≤ �

(4)fi(x) =
{

x − �
2

x , |x| ≥ �

0, |x| ≤ �

Fig. 2 Comparison of three types of threshold function images
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Among them, the soft and hard threshold functions are widely used in threshold 
denoising. From the graph of the functions, the hard threshold function is discontinu-
ous, exhibiting a sharp increase at the point x = � . While the soft threshold function 
displays good continuity, the segment with an absolute value greater than the threshold 
has a constant bias of � compared to the original coefficients. As a result, when using the 
hard threshold to process signals, the estimated wavelet coefficients of the smaller coef-
ficients around � after filtering will exhibit significant differences. This leads to the com-
plete removal of signals with lower frequencies while retaining the larger ones, even if 
their energies are comparable. Even though this method can preserve spike signals well, 
it is prone to the Gibbs-like phenomenon [31]—oscillations at the transition points of 
the reconstructed signal in the time-frequency plot. The signal reconstructed using the 
soft threshold function exhibits high smoothness. However, when reconstructing signals 
with widely distributed coefficients after wavelet decomposition, the fixed coefficient 
bias might introduce notable deviations between the original and reconstructed signals. 
This results in over-fitting, leading to signal distortion [32]. To address this challenge, 
Donoho introduced a threshold filtering approach [33]. Observing Fig. 2: 

(1) The function lies between the soft and hard thresholds.
(2) For larger original wavelet coefficients, the function approaches the hard threshold 

function.

The Garrote function synergizes the properties of both soft and hard thresholds, effec-
tively mitigating their drawbacks. The smoother reconstructed signal can diminish the 
Gibbs-like phenomenon at pronounced peaks. Moreover, it provides efficient filtering 
for signals with dispersed wavelet coefficients. Nonetheless, the Garrote function’s dis-
tinct expression might result in suboptimal restoration of the ideal signal when wavelet 
coefficients cluster around the threshold. Conversely, when the wavelet coefficients are 
spread out, there might be a need to strengthen the function’s approximation toward the 
hard threshold profile. This makes the Garrote function somewhat limited in its algo-
rithmic flexibility and application versatility for processing varying input signals [34].

The formula indicates that σ stands for the standard deviation of the noise, N represents 
the length of the original signal, and dij signifies the median of the wavelet coefficients. 
From this formula, it is evident that the wavelet coefficient’s threshold value remains 
consistent across various decomposition levels. However, utilizing the same threshold 
across these levels often overlooks the variability in the ideal threshold across different 
wavelet scales. Such oversight can result in pronounced errors, especially when reducing 
the magnitude of high-frequency detail coefficients [35].

In our study, we refine the threshold selection method rooted in the Garrote function, 
allowing the wavelet coefficients to adjust according to the decomposition level. This, 

(5)� = σ
√

2 ln(N )

(6)σ =

√

median
(

dij
)

0.6745



Page 8 of 24Ouyang et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:108 

in turn, augments the algorithm’s filtration precision for noise signals. We introduce an 
enhanced threshold function that relies on two adjustment factors. The first, represented 
by µ , dictates the proximity of the threshold function to the actual threshold. The sec-
ond, denoted by δ , controls its general behavior toward the hard threshold. Such a con-
figuration facilitates flexible tweaks in sync with the wavelet coefficient distribution for 
diverse signals, amplifying the restoration quality of the filtered signal to its ideal state.

4  Advancements in threshold denoising techniques
4.1  Strategy for adaptive layered threshold selection

Post-wavelet transformation, the wavelet coefficients of both the ideal and noise signals 
display unique statistical traits across different scales. Specifically, the coefficients of the 
ideal signal manifest a potent correlation across scales, either amplifying or maintain-
ing their magnitude with scale increments. In contrast, noise signal coefficients por-
tray weak or negligible correlations, dwindling as the scale heightens. Grounded on this 
observation, our paper leverages the thresholding algorithm detailed in reference [36].

In the equation above, j denotes the decomposition level, while other parameters align 
with those in Eq. (4). The threshold, � , as detailed in Eq. (7), is influenced not only by the 
overall length of the wavelet coefficients and the noise magnitude but also diminishes 
with the rise in decomposition level. Such a trend resonates with the earlier discussed 
dynamics of noise variation with decomposition level, theoretically fostering superior 
denoising outcomes.

4.2  Conception of the threshold filtering function

As highlighted in Sect. 3, the trio of threshold functions dissected earlier exhibits inher-
ent limitations upon being applied to unprocessed signals from diverse origins, attrib-
uted to their immutable function structures. Hence, the novel threshold function should 
draw inspiration from conventional threshold functions while imbibing the ensuing 
traits: 

(1) For the segments of the original wavelet coefficients with an absolute value falling 
below the threshold, they should be equated to zero.

(2) For original wavelet coefficients with absolute values exceeding the threshold, their 
function graph should lean toward the hard threshold.

However, contingent on the intrinsic properties of the original signal, the ensuing 
parameters mandate meticulous regulation: 

(1) A rapid approximation can proficiently rectify the persistent bias dilemma in soft 
threshold functions. Nevertheless, it might simultaneously elevate the alteration 
rate of post-filtered wavelet coefficients, mirroring the pronounced oscillation 
peaks predicament inherent in hard threshold functions.

(7)� =
σ
√
2 lnN

ln(j + 1)
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(2) A gradual approximation might inflict a pronounced input–output discrepancy, 
especially for wavelet coefficients hovering near the threshold. This might culmi-
nate in an overly smooth reconstruction function, culminating in the inadvertent 
omission of pivotal signals.

In light of the above attributes and the merits of the Garrote function’s design, we 
advocate an improved threshold function, delineated in Eq. (8) that follows.

In this equation, � represents the selected threshold, and δ and µ are the overall adjust-
ment coefficient and the adjustment coefficient near the threshold, respectively. When 
δ is preselected, and µ is increased, the function rapidly approaches the hard threshold 
function at a smaller distance from the threshold, as illustrated in Fig.  3. Conversely, 
when µ takes a larger value, the function rises over a smaller range and gradually slows 
down before approaching the hard threshold function.

Alternatively, when µ is present and δ is increased, the function globally approaches 
the hard threshold function, as demonstrated in Fig. 4. The improved threshold func-
tion maintains continuity. By tweaking the values of µ and δ , a more adaptive and 
effective modulation of the threshold function is possible, aiming to improve the 
reconstruction of the original signal. For noisy signals with a broad frequency domain 
distribution, opting for a higher δ value can diminish the constant disparity between 
the wavelet coefficients post-threshold filtering and the original wavelet coeffi-
cients, thus enhancing the signal’s reconstruction capability. Conversely, for noisy 
signals characterized by extensive variations, selecting a lower µ value can help in 

(8)fi(x) =























x −
�

eδ(�−x) · �
2√

x2−2xeµ(e�−x−1)

�

+
�

1− eδ(�−x)
�

· �
2

x·eδ(x−�) x > �

0 x <= �

x +
�

eδ(�+x) · �
2√

x2+2xeµ(e�+x−1)

�

−
�

1− eδ(�+x)
�

· �
2

−x·e−δ(x+�) x < �

Fig. 3 Changing µ value for four types of function image comparison
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smoothening the wavelet coefficients, thereby reducing the Gibbs-like phenomenon 
observed in the filtered signal.

4.3  Simulation experiment design and analysis

To validate the robustness of the improved threshold algorithm, the author will con-
duct experiments using standard test signals: Doppler, which exhibits broad frequency 
domain distributions, and Heavysine, characterized by strong discontinuities. Gaussian 
white noise will be added to these signals to simulate noisy conditions, after which they 
will be subjected to denoising using the proposed thresholding technique with a self-
selected adjustment factor.

In the evaluation process, two prominent metrics, signal-to-noise ratio (SNR) and 
mean square error (MSE), will be employed to gauge the denoising efficacy. Within this 
context, SNR denotes the ratio of the power of the ideal signal to that of the noise. A 
superior SNR value indicates enhanced filtering performance, reflecting a higher fidelity 
in the restoration of the original signal [37]. On the other hand, MSE serves as a measure 
of the average squared differences between the filtered and original signals. A dimin-
ished MSE implies that the denoised signal is in close alignment with the ideal signal, 
showcasing minimal deviation and, thus, lower distortion.

(9)SNR = 10 log

[

∑N
i=1(s(i))

2

∑N
i=1(s(i)− x(i))2

]

(10)MSE =
1

N

N
∑

i=1

10 log[s(i)− x(i)]2

Fig. 4 Changing σ value for four types of function image comparison
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For comparison, this paper applied hard thresholding, soft thresholding, Garrote thresh-
olding, and the improved thresholding approach to denoise the noisy signals. The wave-
let basis used was sym4, the decomposition level was 5, and the threshold was selected 
as sqtwolog (fixed threshold), with the threshold size estimated and adjusted based on 
the wavelet coefficients at each level. The simulation results for the Doppler signal are 
shown in Fig. 5.

From the comparison of denoising effects in Fig. 5 with the original signal, the follow-
ing observations can be made: 

(1) Hard thresholding performs well in data restoration for the first 0–50 samples. 
However, it exhibits spike artifacts in the waveform corresponding to data points of 
100–200 samples, with noticeable fluctuations around 250 data points, resulting in 
poor restoration of the original signal.

(2) Soft thresholding results in a relatively smooth denoised signal, with better restora-
tion of the signal in the low-frequency band. However, there is a noticeable fixed 
deviation between the amplitudes of data points in the range of 0–100 samples and 
the original signal, leading to signal distortion.

(3) Both Garrote and improved thresholding methods combine advantages from pre-
vious methods. Compared to Garrote thresholding, the improved thresholding 
approach exhibits better processing for waveform details and closely approximates 
the original signal waveform around 300–400 data points, resulting in a better 
denoising effect. In addition, the quantitative indicators of each model’s denoising 
effect on the Doppler noisy signal are shown in Table 1.

Fig. 5 Denoising effect of Doppler signal



Page 12 of 24Ouyang et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:108 

From Table 1, it can be observed that the Garrote thresholding approach improves the 
signal fidelity to some extent compared to the hard and soft thresholding methods, but 
the improvement effect is limited. As indicated in the table in bold, the improved thresh-
old approach exhibits highest SNR (24.4057), lowest  MSE (0.00031102), this indicates 
a higher fidelity of the reconstructed signal to the original signal,  and a more obvious 
denoising effect compared to the other three threshold processing methods. The sim-
ulation data demonstrate that the improved threshold filtering approach enhances the 
original signal’s restoration. Next, the four threshold filtering methods are applied to the 
noisy Heavysine signal. The sym4 wavelet is also used for five-level decomposition, and 
the threshold is selected as sqtwolog (fixed threshold), with the threshold size estimated 
and adjusted based on the wavelet coefficients at each level. The Heavysine signal con-
tains two discontinuities, the adjustment factor µ is set to 1, and δ is chosen as 0.01. The 
simulation results and quantitative indicators are shown below.

Similarly, the filtered signals from various filtering methods are compared with the 
original signals. 

(1) The filtering methods based on the hard thresholding approach perform better in 
restoring the signal at the discontinuities. However, an increased Gibbs-like phe-
nomenon appears, distorting the signal. On the other hand, the filtered signal based 
on the soft thresholding approach provides a smoother overall appearance. Still, it 
fails to accurately capture the two signal waveforms at the discontinuities, leading 
to a loss of critical information.

(2) The Garrote thresholding approach combines the strengths of the first two meth-
ods, but artifacts remain in the overall signal waveform. In contrast, the improved 
threshold filtering approach does not introduce unwanted spikes or oscillations 
across the entire waveform and offers the best restoration effect at the discontinui-
ties.

The quantitative indicators of the denoising effect of each model on the Heavysine noise 
signal are presented in Table 2.

From Table 2, it can be seen that for the Heavysine signal containing two discontinui-
ties, the denoising effect of the Garrote thresholding approach is better than various hard 
and soft thresholding methods, but the improvement is not significant. As indicated in 
the table in bold, the improved threshold denoising approach exhibits the highest SNR 
(25.4245) and the lowest MSE (0.0273), demonstrating its superior enhancement effect 
on signal quality. By plotting the reconstructed signal graphs based on various denois-
ing methods, as shown in Fig. 6. it can be observed that the reconstructed signal of the 
improved thresholding denoising method effectively mitigates spurious signals within 
the 0-20 sample points, while providing superior restoration around the abrupt changes 
near the 300th and 700th signal points. On the general chart, the improved thresholding 
denoising method yields a reconstructed signal with the highest fidelity to the original 
signal and minimal error.

The optimization algorithm design process involves using MATLAB simulation 
software to build upon the basic wavelet threshold denoising algorithm by continu-
ously updating the tuning factors within a loop sequence and extracting a quantitative 
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indicator of the error represented by “s.” By comparing the sizes of “s,” the optimal 
values for µ and δ can be determined, and the corresponding filtered signal can be 
outputted. The algorithm flowchart is shown in Fig. 7.

In this simulation experiment, the upper and lower limits of the adjustment fac-
tor µ are selected as [a, b), the range of δ is selected as [c, d), and �m and �n are the 
respective step increments. For this study, a and c are set to 0.01, b is set to 8, and d is 

Fig. 6 Denoising effect of Heavysine signal

Table 1 Denoising effect of thresholding algorithms on Doppler signals

Denoising function Quantitative metrics

SNR MSE

Hard threshold(sqtwolog) 22.7494 0.00045542

Soft threshold(sqtwolog) 19.4498 0.00097359

Hard threshold(rigrsure) 20.8401 0.00070689

Soft threshold(rigrsure) 23.6366 0.00037128

Hard threshold(heursure) 21.9295 0.00055005

Soft threshold(heursure) 23.4166 0.00039057

Hard threshold(minimaxi) 21.6546 0.000586

Soft threshold(minimaxi) 22.9841 0.00043146

Garrote threshold 22.9841 0.00043147

Improved threshold 24.4057 0.00031102
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set to 10. The values of �m and �n are chosen as 0.01, and the quantization error s is 
represented by the SNR and MSE.

Table 2 Denoising effect of thresholding algorithms on Heavysine signals

Denoising function Quantitative metrics

SNR MSE

Hard threshold(sqtwolog) 24.1347 0.0368

Soft threshold(sqtwolog) 23.9735 0.0381

Hard threshold(rigrsure) 18.3669 0.1368

Soft threshold(rigrsure) 23.2683 0.0449

Hard threshold(heursure) 23.0693 0.047

Soft threshold(heursure) 24.5043 0.0338

Hard threshold(minimaxi) 19.3135 0.1115

Soft threshold(minimaxi) 24.4135 0.0344

Garrote threshold 24.6503 0.0326

Improved threshold 25.4245 0.0273

Fig. 7 Flowchart of improved wavelet thresholding method
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5  Generation of simulated signals
5.1  Instance verification and analysis

In the previous section, the effectiveness of the filtering algorithm was verified using 
simulated signals. To further validate the improved threshold algorithm for denoising 
sEMG signals, this study employs original sEMG signals simulated from the Python 
physiological signal database Neurokit2. Gaussian white noise is subsequently added to 
these signals to produce the noisy signals.

5.2  Error quantification

The noisy signal is input into the filtering algorithm, as previously described. The quan-
titative indicators for each model based on different threshold filtering algorithms are 
established and visualized in Fig. 8. Here, µ and δ represent the adjustment factors, and 
the z-axis corresponds to the magnitude of the quantitative indicators. The extreme 
value points µ = 0.91 and δ = 0.01 are selected, corresponding to the highest qual-
ity filtered signal with the highest SNR and lowest MSE. The post-filter graphs of other 
threshold filtering algorithms are also plotted in Fig. 9. The corresponding quantitative 
indicators are then calculated and listed in Table 3. Consistent with the preceding text, 
as indicated in the table in bold, the improved threshold denoising approach exhibits the 
highest SNR (13.9215) and the lowest MSE (0.0029),  the reconstructed signal remains 
highly faithful.

From Table 3, the quantification indicators reveal the performance of various denois-
ing functions. When using the sqtwolog threshold, the Garrote thresholding method 

Fig. 8 Comparison between the example signal and the signal after improved threshold filtering
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slightly surpasses both soft and hard thresholding methods in terms of signal fidelity. 
However, the new improved threshold function outshines others, exhibiting the high-
est SNR and lowest MSE. This suggests that its filtered signal closely approximates the 
original.

Furthermore, the time-frequency distribution maps of the soft and hard threshold 
functions based on the rigrsure threshold and the improved threshold function are 
drawn (Fig. 10). From these maps, it can be seen that the improved wavelet threshold 
function better reflects the amplitude-frequency characteristics of the original signal, as 
the amplitudes corresponding to the three groups of muscle cycle movement waveforms 

Fig. 9 Comparison between the example signal and the signal after improved threshold filtering

Table 3 Effect of different denoising functions on the quality of the simulated signal

Denoising function Quantitative metrics

SNR MSE

Hard threshold(sqtwolog) 9.5734 0.0079

Soft threshold(sqtwolog) 5.9241 0.0183

Hard threshold(rigrsure) 13.2785 0.0034

Soft threshold(rigrsure) 12.4951 0.004

Hard threshold(heursure) 13.3426 0.0033

Soft threshold(heursure) 12.3653 0.0041

Hard threshold(minimaxi) 12.0376 0.0045

Soft threshold(minimaxi) 8.463 0.0102

Garrote threshold 9.6412 0.0078

Improved threshold 13.9215 0.0029
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Fig. 10 Individual example of the extraction of muscle synergies. a Original signal amplitude-frequency 
graph, b signal amplitude-frequency graph after adding noise, c signal amplitude-frequency graph after soft 
function filtering based on rigrsure threshold, d signal amplitude-frequency graph after soft function filtering 
based on rigrsure threshold, and e signal amplitude-frequency graph after improved threshold function 
filtering
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appearing around 2 s, 5 s, and 8 s are more similar for the improved threshold function. 
Comparing the amplitude-frequency plots a and b, it is evident that introducing white 
noise significantly amplifies the baseline noise during the resting intervals of the elec-
tromyographic signal. Additionally, the peak amplitude during the active phases of the 
exercise is slightly increased due to the addition of white noise. When contrasting b with 
c, it is clear that the soft thresholding approach effectively filters out the noise during 
these resting intervals. However, it considerably attenuates the signal peaks during the 
active phases, which can compromise the signal fidelity and impact subsequent analysis. 
In contrast, comparing b with d shows that while hard thresholding effectively retains 
the signal peaks, it does not handle the baseline noise during the resting phase as effec-
tively. Overall, the improved thresholding method demonstrates the best overall filter-
ing performance across the entire time series, enhancing the signal’s fidelity and utility. 
The chosen adjustment parameters, µ = 0.91 and δ = 0.01 , will be applied for processing 
subsequent field-recorded signals.

5.3  Case study

After optimizing the simulated signals, two specific adjustment factors were derived. 
These factors were then utilized to construct a filtering algorithm model for the actual 
instance. Given that both the frequency and sampling duration of the simulated signal 
mirrored those of the actual signal, the obtained factors are of significant reference value 
for processing the actual instance.

The laboratory utilized a 16-channel wireless sEMG instrument (delsys Trigno IM) 
with an electrode spacing of 10 mm and a bandwidth ranging from 10 to 850 Hz. A total 
of 10 sEMG signals were captured from various muscles of the pilot subjects, sampled at 
a rate of 1260 Hz, as illustrated in Fig. 11. The average sample duration was 110 s, with 
the experimental signal being sent to the main computer in real-time, enabling real-time 
observation of the muscle motion, as depicted in Fig. 12.

The experimental protocol required participants to hold the operating handle in the 
left and right directions under varying torques: high, medium, and low. The two degrees 
of freedom operating device, regulated by a PLC, simulated the X/Y plane movement 
of an aviation control stick, as shown in Fig. 13. Both the photoelectric encoder of the 
motor and the torque sensor relayed real-time positional and force data to the host 
computer via the PLC. The sequence involved starting with a leftward hold under high 
torque, transitioning through medium and low torques, and then switching the torque 
direction for rightward holds from low to high torques. Each hold lasted 10 s. Between 
experiments with different torques, an 8-s break was introduced to mitigate the impact 
of muscle fatigue on signal quality. Figure  14 shows the real electromyogram (sEMG) 
collected in the experiment, with the black part representing the raw data. As a compari-
son, the red part displays the signal processed by the improved threshold algorithm for 
denoising. To better describe the filtering effect, the amplitude-frequency graph of the 
signal is plotted.

The simulation findings confirm that the improved threshold function effectively fil-
ters out noise, especially the undesired baseline noise observed during muscle rest 
periods, from the sEMG signals. Simultaneously, it preserves the essential muscle 
activity signals during motion. As evident in the amplitude comparisons in Figs. 15 
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and 16, the energy of the noise signal around timestamps 20 s, 40 s, and 55 s is nota-
bly reduced after filtering. Simultaneously, the peak activity signals during the mus-
cle maintenance phase at approximately 10 s and 30 s are well-preserved. Our results 
highlight the enhanced signal fidelity achieved with the modified threshold function. 

Fig. 11 sEMG signal acquisition experiment

Fig. 12 Two degrees of freedom joystick
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Our evaluations focus on the fidelity with which the processed signal replicates its 
unaltered state, regardless of whether we adopt standard values or leverage adjust-
ment coefficients derived from simulations. A promising avenue for future research 
is integrating paraconsistent logic into wavelet filter design. Given its capability to 
systematically address contradictions within stipulated contexts, paraconsistent logic 
may offer innovative strategies to strengthen filter robustness. The primary goal is to 
utilize this synthesis to refine the relationship between adjustment coefficients and 
motion recognition accuracy, thereby enhancing the algorithm’s resilience in uncer-
tain scenarios and augmenting the efficacy of wavelet-based signal processing meth-
odologies [38].

Fig. 13 Real-time signal reception interface

Fig. 14 Comparison between the example signal and the signal after improved threshold filtering
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6  Conclusion
In this study, we introduce an advanced wavelet threshold denoising methodology by 
extending the Garrote threshold function. We meticulously design a threshold func-
tion fortified with dual adjustment factors, enabling the derivation of an array of fil-
tering algorithms that adeptly adapt to varying noise intensities. Noteworthily, our 
methodology transcends the boundaries of myoelectric signals and showcases com-
patibility with a diverse set of signals, paving the way for tailored applications as per 
experimental mandates.

Our innovative strategy confers distinct advantages: 

(1) By holistically appraising the signal’s temporal attributes and its spectral distribu-
tion in the frequency domain, we achieve superior denoising by prudently selecting 
pertinent adjustment factors.

(2) Drawing upon inherent signal characteristics, we craft a simulated waveform and 
deploy a specialized preference algorithm. This algorithm facilitates the extraction 
of optimal adjustment coefficients through iterative cycles of noise infusion and 
subsequent denoising. These deduced coefficients are subsequently interfaced with 
the foundational threshold function, catalyzing enhanced denoising.

Fig. 15 Original signal amplitude and frequency diagram
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The essential advantage of this method is the ability to select the filtered signal with 
the most significant reduction in noise from a large number of function models, 
resulting in the optimal threshold function that effectively suppresses noise. In realms 
like biomedical engineering and physiotherapy, our strategy promises to give some 
inspirations, especially for intricate tasks such as eigenvalue extraction and post-
denoising signal appraisal.
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