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Abstract 

FBMC is a pivotal system in 5G, serving as a cornerstone for efficient use of available 
bandwidth while simultaneously meeting stringent requirements for high spectral 
efficiency. Notably, FBMC harnesses the power of multicarrier modulation (MC), a good 
alternative to orthogonal frequency division multiplexing (OFDM) technology that sup‑
ports fourth-generation (4G) systems. The wireless communications field is full of chal‑
lenges, the most important of which are channel estimation and interference cancel‑
lation, both of which deserve comprehensive study to increase the efficiency of data 
transmission. In this paper, our investigation takes a deliberate step towards the con‑
vergence of two prominent modulation models: OFDM and FBMC. We specifically 
contrast these modulation techniques with the intricate field of joint channel estima‑
tion and interference cancellation (JCEIC). In this research study, we take advantage 
of recurrent neural networks’ (RNNs’) efficiency as a vehicular channel to perform 
precise channel estimation and recovery of uncorrupted transmitted signals, thereby 
lowering the bit error rate (BER). Our channel estimation for a dual selective chan‑
nel is based on the thoughtful placement of pilots scattered over the temporal 
and frequency dimensions, and is further improved by the interference cancellation 
method of low complexity that was selected. Our JCEIC proposal aims to integrate 
RNNs carefully, using the output sequences of JCEIC algorithms as useful inputs to this 
neural architecture. By clearly demonstrating a decrease in BER as compared to tradi‑
tional approaches, it is evident that the performance of the novel approach is near to 
that of a perfect channel. Additionally, a comparison of the performance of FBMC 
and OFDM systems at various signal-to-noise ratios reveals a clear performance divide 
that favors the former in terms of system efficiency. The BER is restricted by FBMC 
to a commendable threshold of less than 0.1 at a modest 5 dB, continuing the higher 
trend started by its improved RNN-based channel estimate. The accuracy of channel 
estimation is clearly improved by this paradigm shift, and the computing complexity 
typical of 5G networks is also clearly reduced.
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1  Introduction
Future wireless systems should be able to handle a wide range of potential use cases, 
including low latency transmissions, machine-to-machine interactions, and high data 
rates. Due to its poor spectrum behavior, traditional OFDM is unable to assign the avail-
able time–frequency resources in a flexible manner needed for this. Due to its substan-
tially improved spectrum qualities, FBMC becomes an effective substitute for OFDM for 
such a wide range of applications. Channel estimation and interference cancellation are 
important steps to recover the original signals with low BER at Low SNR.

Within the architectural framework of the imminent wireless communication para-
digm known as the 5G technology, a ubiquitous transmission mechanism emerges in the 
form of FBMC. This mechanism assumes a role of paramount significance, particularly 
given the pressing demand within the 5G context to achieve a momentous 1000-fold 
enhancement in data transmission rates. Underpinning FBMC’s modulation scheme is 
the MC technique, a versatile modality that facilitates the realization of FBMC’s com-
munication objectives.

MC modulation, in essence, entails the utilization of a waveform composed of mul-
tiple carriers, closely spaced within a given block, to convey information. These carrier 
blocks congregate in a structure known as a filter bank, representing a pivotal architec-
tural element of the FBMC system. It is noteworthy that current research endeavors in 
the domain of mobile communication systems have orchestrated a pivot towards the 
exploration of exceedingly flexible 5G networks, thereby deviating from the paradigms 
characterizing third and fourth-generation counterparts [1].

Against the backdrop of 5G’s exacting requisites, MC modulation emerges as a formi-
dable enabler, poised to play a pivotal role in addressing the multifarious demands of this 
next-generation milieu. In this context, it is salient to draw a parallel to OFDM, a repre-
sentative modulation technology of the preceding fourth generation. OFDM, a precur-
sor to MC, introduces a cyclic prefix (CP) as a guard interval, effectively mitigating both 
intersymbol interference (ISI) and delay within wireless channels. Despite these merits, 
the OFDM methodology does bear certain limitations that detract from its efficacy in 
the realm of 5G challenges. Chief among these is its propensity to constrain Bandwidth 
(BW) efficiency, a constraint exacerbated by its susceptibility to elevated side-lobes, thus 
engendering a surge in spectral expansion [2].

In this scholarly discourse, we navigate the intricate terrain of modulation methodolo-
gies, casting a spotlight on the symbiotic relationship between FBMC and MC within 
the burgeoning 5G landscape. As we unravel the intricate tapestry of these modulation 
paradigms, the nuanced contours of their respective strengths and limitations become 
increasingly apparent, thereby paving the way for an enlightened trajectory towards the 
realization of seamless and efficient wireless communication in the 5G era.

The emergence of the Internet of Things (IoT) landscape has engendered a profound 
paradigm shift, imposing stringent imperatives of synchronization and coordination 
that entail the conveyance of substantial control information. Moreover, the diverse 
spectrum of IoT applications underscores the requisites for both low-latency and asyn-
chronous transmissions. This shifting landscape is mirrored in the exponential prolifera-
tion of connected devices, a corollary of which is the commensurate escalation in data 
volumes managed by the network. Consequently, the evolution from 5G networks to 
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the realm beyond demands an unprecedented degree of versatility and adaptability to 
accommodate this burgeoning complexity [3].

The nascent phase of 5G’s deployment witnessed a judicious recourse to an OFDM 
variant, chiefly motivated by the desire for compatibility with extant 4G infrastructures. 
However, as we extrapolate to the vistas of forthcoming communication networks, the 
imperatives of asynchronous and uncoordinated transmissions necessitate the ameliora-
tion of synchronization and orthogonality constraints intrinsic to OFDM waveforms. In 
this endeavor, alternative waveforms, such as FBMC, emerge as promising contenders, 
poised to alleviate the limitations associated with OFDM. Notably, FBMC, characterized 
by its intricate prototype filter, affords superior frequency localization compared to the 
rectangular pulse filters ubiquitous in OFDM. The expulsion of the cyclic prefix bolsters 
FBMC’s prowess in terms of spectrum efficiency, a domain where it outshines OFDM 
[4]. This enhancement is embodied in the FBMC scheme harnessing Offset Quadrature 
Amplitude Modulation (OQAM), a technique that bestows orthogonality upon sub-
carriers through the judicious alternation of quadrature and in-phase samples, enriched 
by a half-symbol period shift. The real-domain manifestation of FBMC-OQAM unveils 
orthogonality with the intrinsic interference within the imaginary signal component [5].

Eminently significant within this communicative milieu is the pivotal role of channel 
estimation and interference cancellation, each exerting their influence towards the even-
tual recovery of transmitted signals. Traditional paradigms, such as the Minimum Mean 
Squared Error (MMSE) scheme, have surfaced for channel estimation, albeit marred by 
elevated BER, particularly in conditions of diminished SNRs [6]. To mitigate these limi-
tations, we undertake a novel approach that amalgamates channel estimation and inter-
ference cancellation within the aegis of RNNs, a technique endowed with the capacity 
to revolutionize the landscape of signal recovery. The genesis of our proposed RNN is 
rooted in the MMSE channel estimation method’s outputs, synergistically accompanied 
by a low-complexity interference cancellation framework. The ultimate ambition under-
lying this architectural marriage is to realize a paradigm wherein high BER performance 
is achieved across divergent SNR profiles. This pioneering effort thus ensues to fathom 
the uncharted domain of synergistic RNN-empowered channel estimation and interfer-
ence cancellation for both OFDM and FBMC systems, entailing the confluence of meth-
odological sophistication and computational parsimony.

The present scholarly endeavor furnishes a compendium of notable contributions, the 
crux of which is outlined herewith:

1.	 Thorough Examination of OFDM and FBMC Systems: A comprehensive appraisal 
of both OFDM and FBMC systems stands as a cornerstone, elucidating the virtues 
and limitations intrinsic to each. Notably, a meticulous dissection is undertaken to 
expound upon how FBMC systematically mitigates the deficiencies endemic to the 
OFDM paradigm, thereby illuminating its potential as a viable alternative.

2.	 Scrutiny of Conventional Methods for Channel Estimation and Interference Cancella-
tion: The inquiry extends to encompass an exhaustive survey of conventional meth-
odologies germane to channel estimation and interference cancellation. This critical 
survey establishes a foundational understanding of existing paradigms, paving the 
way for the subsequent strides in methodology augmentation.
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3.	 Channel Response Estimation via MMSE Technique: A pivotal facet of this scholarly 
odyssey resides in the precise estimation of channel responses. This task is deftly 
executed through the application of the MMSE method, representing an intellectual 
conduit to unravel the intricacies of channel characteristics.

4.	 RNN-Enabled Channel Response Prediction: The narrative proceeds to unfold an 
innovative orchestration, wherein previously estimated channel responses are har-
nessed as input to a RNN. This pioneering initiative propels the prediction of current 
channel responses, thereby culminating in a paradigmatic convergence of traditional 
methodology and cutting-edge neural network architecture.

5.	 Empirical Validation of Optimized RNN Structure: Empirical validation serves as the 
crucible within which the trained and optimized RNN structure is subjected to rig-
orous testing. This validation unfolds against the backdrop of previously ascertained 
channel responses, thereby furnishing an empirical rubric to gauge the efficacy of the 
proposed augmentation.

6.	 RNN Empowerment for Enhanced Performance: The zenith of this academic expe-
dition culminates in the strategic application of the RNN paradigm, harnessed to 
elevate the performance thresholds of systems tethered to joint channel estimation 
and interference cancellation. The efficacy of this augmentation is rigorously assessed 
across both OFDM and FBMC systems, unfurling a vista of augmented efficiency 
and efficacy.

In summation, the multifaceted contributions proffered by this study engender a 
panorama of erudition, showcasing a symphony of inquiry, innovation, and validation, 
all orchestrated towards the overarching objective of amplifying the capacities of joint 
channel estimation and interference cancellation in the context of OFDM and FBMC 
systems.

The ensuing sections of this paper are meticulously organized to facilitate a coher-
ent exposition of the research contributions. The structure unfolds as follows. A com-
prehensive overview of the relevant academic landscape is encapsulated within Sect. 2. 
The summative essence of prior research endeavors serves as a foundational framework 
upon which our own investigative journey is meticulously built. Section 3 assumes the 
mantle of elucidating the underpinning system model. This pivotal segment serves as 
a fulcrum, affording an intricate portrayal of the modus operandi, with a specific focus 
on doubly selective channel estimation and the attendant intricacies of interference can-
cellation. The methodological prowess of RNNs takes center stage in Sect.  4. Herein, 
we expound upon the innovative channel estimation mechanism, meticulously detail-
ing the seamless integration of RNNs to realize a paradigm shift in channel estimation 
efficacy. The empirical crucible of Sect. 5 resonates with the embodiment of our inves-
tigative endeavors, manifesting as a substantive discussion that spans an array of simula-
tion results. In the crucible of empirical validation, our propositions stand illuminated 
against the backdrop of concrete evidence. The denouement of our scholarly journey 
unfolds within Sect.  6, wherein a comprehensive synthesis of our contributions coa-
lesces. This section encapsulates the culmination of our research expedition, epitomiz-
ing the insights garnered and the potential trajectories that lie ahead. In the subsequent 
sections, we embark upon a meticulous voyage that traverses the realms of theoretical 
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discourse, empirical validation, and methodological innovation. Each segment stands as 
a pivotal cornerstone, collectively culminating in a scholarly edifice that both enriches 
the academic milieu and propels the discourse within the realm of joint channel estima-
tion and interference cancellation to new horizons.

2 � Related works
The discourse on channel estimation within the context of FBMC-OQAM systems is 
enriched through the advent of a novel scattered pilot method, an innovation substan-
tiated in [7]. This method derives its essence from the strategic utilization of a sparse 
assemblage of auxiliary pilot symbols, judiciously harnessed to curtail the encroach-
ment of imaginary interference upon each scattered pilot. Augmenting this paradigmatic 
leap, a nuanced symphony of transmitter-side power multiplexing and receiver-side 
successive interference cancellation, as articulated in [4], engenders a transformative 
stratagem. This intricate orchestration culminates in an efficacious methodology, char-
acterized by the meticulous reduction of intrinsic interference sans the inadvertent 
omission of data symbols. This principled augmentation inexorably ushers forth height-
ened spectral efficiency, eclipsing the benchmarks set by antecedent methodologies. To 
illuminate the conceptual underpinnings, [4] conveys a predictive methodology tailored 
for doubly-selective channels, wherein temporal and frequency correlations are har-
nessed to empower the scatter pilot constellation.

In consonance with this trajectory, the treatise set forth in [5] proffers a paradigmati-
cally versatile iteration of interference cancellation, germane to a spectrum encom-
passing linear modulation techniques, inclusive of OFDM and FBMC. A further 
augmentation to channel estimation is proffered in [6], wherein an innovative preamble 
structure takes center stage. This symmetrical prelude, meticulously architected, seam-
lessly dovetails the consideration of interference weights, orchestrating a symmetrical 
schema that ingeniously quells the invasive influence of interference.

The mettle of multicarrier communication methodologies is notably underpinned 
in the scholarship evidenced by [6, 8], constituting a resounding endorsement of the 
efficacy of such techniques in the pursuit of high-data-rate transmission paradigms. 
Encompassing the realm of FBMC-QAM systems, the exploration of iterative interfer-
ence cancellation (IIC) assumes prominence. The tenets of [3] manifest in an IIC receiver 
architecture, a nexus wherein received signals are diligently bifurcated into odd and even 
numbered subcarrier components. A meticulously devised iterative process, under-
pinned by demodulated even subcarrier symbols, orchestrates the progressive attenua-
tion of interference impact, embodying a testament to the dynamic symbiosis between 
modulation, interference mitigation, and signal fidelity.

A corpus of contemporary scholarship unveils a mosaic of innovative strategies aimed 
at enhancing the efficacy of channel estimation within diverse communication para-
digms. One noteworthy avenue traverses the terrain of frequency-selective channels, 
where the challenge emerges from the non-fixed and non-a priori nature of the fre-
quency selectivity (FS). Pioneering research [9] harnesses a k-nearest neighbor-based 
machine learning technique to discern the FS and judiciously determine the optimal win-
dow length of Fractional Fourier Transform (FDA). Through panoply of extensive simu-
lations, the proposed channel estimation (CE) scheme stands vindicated, underscored by 
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a rigorous theoretical comparison of Mean Squared Error (MSE). Impressively, adaptive 
CE techniques manifest their prowess, resonating with the semblance of lower CE-MSE 
and superior bit error rates, all orchestrated sans the need for anterior knowledge of fre-
quency selectivity [9].

The intricacies intrinsic to FBMC/OQAM signals, augmented by the challenges aris-
ing from their non-orthogonal disposition in the imaginary realm, engender a vexing 
conundrum within the ambit of Multiple-Input Multiple-Output (MIMO) technology 
deployment. Herein, a redoubtable solution emerges in the form of a pioneering deep 
neural network (DNN)-based methodology [10], intricately tailored to quell the formi-
dable interference inculcated within the FBMC/OQAM milieu, thereby creating a fertile 
terrain conducive to the fruitful deployment of MIMO technology.

In parallel, the OFDM/OQAM domain confronts a distinct set of predicaments, 
emblematic of inter-symbol and inter-carrier interference inherent to dispersive chan-
nels. The scholarly discourse [11] presents an innovative channel estimation approach 
juxtaposed with a judicious pilot structure for the OFDM/OQAM paradigm. The crux of 
this methodology rests upon judiciously predetermined pilot positions, facilitating the 
robust reconstruction of transmitted symbols, which subsequently empowers the com-
putation and elimination of interference stemming from received signals.

The scholarly tapestry unfurls with the advent of DeepSIC [12], an iterative soft inter-
ference cancellation (SIC) technique, emblematic of a data-driven approach buttressed 
by deep learning principles. DeepSIC, characterized by its capacity to glean insights 
from a diminutive training dataset bereft of linear channel or predetermined parameter 
prerequisites, outshines its model-based counterparts, particularly when confronted 
with the enigma of Channel State Information (CSI) ambiguity.

Delving further, [13] embarks on an ambitious expedition wherein an ensemble of 
diverse deep neural networks is harnessed to augment interference cancellation perfor-
mance within the realm of non-orthogonal signals. The discerning findings from simu-
lations underscore the profound efficacy of meticulously engineered neural networks, 
substantiating their capacity to markedly attenuate interference in signals characterized 
by Subcarrier Index Modulation Enhanced Frequency Division Multiplexing (SEFDM). 
This empirical nexus unveils a profound interplay between signal waveforms and neu-
ral architectures, often necessitating comprehensive neural interconnections for optimal 
performance.

Collectively, these pioneering endeavors stand as a testament to the scholarly acumen 
dedicated towards the elucidation of formidable challenges pervading the spectrum of 
communication systems, illuminated by innovative methodologies underscored by the 
tenets of machine learning and deep neural networks.

Embedded within the continuum of innovative strategies for channel estimation, a 
multipronged approach emerges, encompassing facets of demodulation, interference 
mitigation, and neural network architectures. This confluence of methodologies unfolds 
as follows:

Enhanced demodulation strategy The purview of the proposed Interference Cancella-
tion (IC) strategy embraces the augmentation of the demodulation process, engendering 
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a substantial reduction in the error floor that besets the demodulated symbols integral 
to interference component calculations. Noteworthy is the empirical validation, wherein 
simulation data underscores the remarkable efficacy of the prescribed channel estima-
tion approach. Evidently, its superiority is distinctly pronounced when the specter of 
Inter-Symbol Interference (ISI) looms large, synergistically coupled with a SNR surpass-
ing the threshold of 15 dB. An augmentation, wherein the technique harmonizes with a 
Space–Time Block Code (STBC), culminates in a superlative Symbol Error Ratio (SER), 
a pivotal metric encapsulating the system’s performance [14].

Deep learning augmentation in LTE-A channel estimation [15] A distinctive fusion of 
deep learning and channel estimation manifests in [15], wherein an elaborate algorithm 
strives to refine the LTE-A uplink channel estimation algorithmic architecture. Through 
the dexterous development of SC-FDMA databases founded upon diverse channel 
propagation models, the training and testing paradigms are meticulously tailored. The 
apparatus of choice is an Artificial Neural Network, diligently engendered to fathom the 
labyrinthine terrain of SC-FDMA link channel estimation. The iterative evolution of the 
neural network, encapsulated within dynamic alterations of weight and bias parameters, 
culminates in a calibrated neural construct, thereafter effectively operationalized within 
the receiver.

Signal-interference nexus through neural networks [13] Embarks on a voyage wherein 
the catalytic potential of deep neural networks is harnessed to eviscerate the specter 
of interference within the ambit of non-orthogonal signals. Empirical insights gleaned 
through simulations corroborate the profound efficacy of meticulously designed neural 
networks, particularly in attenuating the invasive interference enveloping signals char-
acterized by SEFDM. The profound link between signal waveforms and neural network 
architectures emerges as a salient outcome, guiding the assertion that a maximal inter-
connection of neurons within each stratum is indispensable for optimal functionality.

FreqTimeNet and AttenFreqTimeNet for OFDM channel estimation enhancement [16] 
Charts a trajectory of advancement through the conceptualization of a frequency-time 
division network (FreqTimeNet) calibrated to augment DL-based OFDM channel esti-
mation. The underpinning architectural hypothesis predicates orthogonal concomitance 
between time and frequency domains, thereby nurturing parallel processing of input 
information. The ensuing innovation, christened as AttenFreqTimeNet, incorporates 
an attention mechanism alongside SNR awareness, further enriching the efficacy of the 
FreqTimeNet framework. Rigorous evaluation against the backdrop of 3GPP channel 
models elucidates the MSE dynamics across diverse operational scenarios, illuminating 
the manifold potentials of these structures.

Spatial-frequency and temporal CNNs in channel estimation [17] Unfurls a profound 
augmentation within the domain of channel estimation, anchored upon the synergy 
between spatial, frequency, and temporal correlations. A Deep Convolutional Neural 
Network (CNN) serves as the vanguard, culminating in the spatial-frequency CNN (SF-
CNN), an instrumentality that robustly incorporates neighboring subcarriers to enhance 
channel matrix feed. This augmentation is harmoniously complemented by a spatial-fre-
quency-temporal CNN (SFT-CNN), a construct that harnesses temporal correlation to 
fortify accuracy. Furthermore, the conceptualization of the spatial pilot-reduced CNN 
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(SPR-CNN) ushers forth a memory-driven channel estimation paradigm, orchestrating 
channel organization and estimation within successive coherence intervals.

In summation, this eclectic assortment of methodologies reverberates with the 
symphony of innovation, underscoring the profundity of inquiry and ingenuity that 
underpin contemporary research in channel estimation paradigms. These multi-
faceted endeavors not only enrich the theoretical landscape but also offer tangible 
empirical insights, fostering the continual advancement of communication systems.

In the annals of contemporary research, a spectrum of pioneering contributions 
endeavors to reshape the contours of channel estimation, permeating various com-
munication paradigms with the transformative potential of DL methodologies. These 
seminal contributions, elucidated below, collectively converge to usher forth a new 
epoch within the landscape of channel estimation and enhancement:

DL-infused channel estimation network ChanEstNet [18] In the seminal work 
expounded in [18], a DL-based channel estimation network, ChanEstNet, takes 
center stage, ingeniously marrying the potency of deep CNNs and RNNs. Within this 
architectural symphony, RNNs embark upon channel estimation, while CNNs, acting 
as virtuoso feature extractors, orchestrate the distillation of channel response feature 
vectors. An offline regime of substantial high-speed channel data bestows upon the 
learning network the profound insights requisite to discern the intricate tapestry of 
non-stationary channels, navigate through the labyrinthine terrains of fast time-var-
ying dynamics, and ultimately bolster the real-time adaptability essential for height-
ened performance within high-speed environments.

DL-CE for FBMC systems [19] Building upon the foundational edifice of DL, [19] 
ushers forth innovative DL-based channel estimation and equalization technique 
(DL-CE) tailored explicitly for FBMC systems. The crux of this architectural marvel 
resides in the erudite edifice of a DNN model, which progressively assimilates the 
constellation demapping technique and CSI. This alchemical amalgamation, a testa-
ment to the potency ofDL, engenders implicit equalization of malformed frequency-
domain sequences, effectuating the direct derivation of binary bits within the DL-CE 
framework.

Theoretical underpinnings of DL in SIMO systems [20] Embarks upon a foundational 
expedition, elucidating the theoretical bedrock underlying DL-based channel estima-
tion, with a specific focus on single-input multiple-output (SIMO) systems. Within 
this scholarly realm, the spotlight cascades upon the rectified linear unit (ReLU) acti-
vation function, emblematic of a theoretical nexus that renders DNNs akin to piece-
wise linear functions. This theoretical tenet unlocks the capacity for DL estimators 
to achieve global approximation across an expansive spectrum of functions, artfully 
harnessing piecewise linearity to navigate multifaceted landscapes. Moreover, the 
theoretical architecture discerns asymptotically-linked echoes of MMSE estimation, 
spanning a gamut of scenarios without necessitating anterior knowledge of channel 
statistics.

DL-driven symbol detection in communication systems [21] Unfolds a discourse 
that seamlessly weaves DL prowess into the fabric of symbol detection, meticulously 
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tailored for scenarios where receivers grapple with the dearth of CSI. This strate-
gic alignment culminates in a DL-based detector (DLD), a computational marvel 
that, sans extraneous operations, adeptly unveils symbols for all users. This revela-
tion, orchestrated through the analysis of received data signals and pilot responses, 
underscores the potency of DL in decoding the intricate language of communica-
tion signals. A panoply of Monte Carlo simulations takes center stage, heralding the 
empirical appraisal of DLD performance vis-à-vis benchmark counterparts.

Augmented capacity through pilot-symbol-aided channel estimation [22] The seminal 
treatise espoused in [22] adroitly navigates the realm of imaginary interference cancel-
lation, seamlessly harmonizing the tenets of channel estimation with pilot symbols. 
Through a judicious matrix formulation, this pioneering endeavor imbues auxiliary 
pilot symbols with communal attributes, fostering an augmentation of peak-to-average 
power ratio and practical capacity. This strategic augmentation, meticulously calibrated 
through the prism of linear precoding, crystallizes into a transformative scheme, poised 
to unravel the elusive potential of interference cancellation and engender a dynamic aug-
mentation of system capacity.

Joint detection-channel estimation in OFDM systems [23] Two ML-based structures 
for joint detection-channel estimation in OFDM systems are presented and thoroughly 
defined. In order to improve data detection performance, two machine learning (ML) 
architectures—Deep Neural Network (DNN) and Extreme Learning Machine (ELM)—
were developed and put up against the conventional matched filter (MF)detector with 
MMSE and LS channel estimators [23].

Digital self-interference (SI)cancellation in a single RF chain [24] The digital self-inter-
ference (SI)cancellation in a single RF chain massive MIMO full-duplex (FD) OFDM sys-
tem with phase noise is examined in this study. A weighted linear SI channel estimator is 
constructed to reduce the residual SI power in each OFDM symbol in order to account 
for the phase noise, which causes SI channel estimate error and subsequently degrades 
the SI cancellation performance. Analysis is done on the suggested method’s ability to 
cancel out digital SI, which is measured as the difference between the SI power before 
and after the cancellation [24].

Minimize interference by giving up data symbol [4] Low spectrum leakage, lax syn-
chronization demands, and good spectral efficiency are all major benefits of FBMC as 
a viable choice for OFDM. While most approaches minimize interference by giving up 
data symbols, the loss of orthogonality in FBMC results in intrinsic interference, which 
has a non-negligible negative impact on spectral efficiency. By utilizing power multiplex-
ing in the transmitter and a successive interference cancellation scheme in the receiver, 
in comparison to earlier techniques, completely eliminates intrinsic interference without 
sacrificing any data symbols [4].

Double threshold (DT) channel estimation method [25] The double threshold (DT) 
channel estimation method based on adaptive frame statistics (AFS) is thus suggested 
in this study. In order to detect the channel structure, the method first adaptively calcu-
lates the number of statistical frames based on the temporal correlation of the received 
signals. Next, it examines the distribution properties of the multipath sampling 
points and noise sampling points during subsequent frames. The separation between 
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multipath and noise sampling sites is then further expanded using a multi-frame aver-
aging method [25].

Channel estimation is done using DL [26] In this study, pilot-based channel estimation 
in OFDM is done using DL approaches. Due to noise amplification during the estima-
tion process, intercarrier interference, a lack of primary channel data, and poor perfor-
mance with few pilots, conventional channel estimators in pilot-symbol-aided OFDM 
systems perform worse, especially in low SNR regions, despite having lower complexity 
and requiring implicit channel statistics knowledge. The use of DL with peephole long 
short-term memory (peephole LSTM) is a novel approach for channel estimation. After 
offline training with generated datasets, the proposed peephole LSTM-based channel 
state estimator is deployed online to track channel parameters, enabling reliable recov-
ery of transmitted data [26].

RLS-based channel estimation approach [27] This work suggests an RLS-based chan-
nel estimation approach to lower bit error rates and enhance anti-interference perfor-
mance. The final estimation data is modified using the RLS channel estimation method 
to produce the current estimation data. To acquire all estimated data, the forgetting fac-
tor and recursive formula are used to adjust the data in real-time once the initial data 
is estimated by LS. The outcomes demonstrate the RLS channel estimating algorithm’s 
ability to decrease computation, increase channel estimation accuracy, and suppress 
noise interference. The accuracy of the channel estimation will improve with more itera-
tions, hence lowering the bit error rate [27].

From the previous literature review, the channel estimation and the interference can-
cellation are important steps in the receiving process. We cannot recover the original 
signal without the true prediction of the channel and remove the interfere signals from 
the received signal. The previous methods that used for this challenge take more time 
and have a computational complexity, because it uses two different methods to do this. 
The performance of the previous method was low at low SNR. Exploiting RNNs to per-
form this task is solving these problems jointly.

Resonating harmoniously with this symphony of innovation, our present endeavor 
unfurls a novel chapter in the narrative of channel estimation and interference cancel-
lation. Within this scholarly discourse, we proffer a Joint Channel Estimation and Inter-
ference Cancellation (JCEIC) framework, meticulously calibrated to weave the tapestry 
of OFDM and FBMC systems. Anchored within the realm of doubly-selective channels, 
predicated upon the frequency and time correlation of scattered pilots, our endeavor 
is imbued with the finesse of low-complexity interference cancellation. A paradigmatic 
innovation unfurls through the architectural integration of RNNs, standing sentinel over 
the strategic confluence of channel estimation and interference mitigation. Figure 1 art-
fully encapsulates this innovative system, an emblematic representation of our schol-
arly pursuit that aspires to redefine the horizons of channel estimation and interference 
cancellation.

3 � System model
OFDM uses a rule that allows several messages to be broadcast simultaneously over a single 
radio channel. Each modulation station in FDM uses a different set of frequencies. Every 
frequency signal has enough space between them so that they don’t overlap with each other 
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or with other frequencies in the spectrum. Each frequency transmission is individually fil-
tered by a bandpass filter to obtain the opposite complete signal, excluding the signal that 
the base station needs to consider for the receiver. The initial signal is reversed to receive 
the acknowledged signal [28]. Multicarrier modulation, or OFDM, sends a small amount of 
bits over each channel while using two carrier signals with the same frequency. However, all 
of the sub-channels in the case of OFDM are reserved for a single records source.

A group of synthesis and analysis filters in FBMC are built with sufficient spectrum 
selectivity and bandwidth efficiency in mind. Although it is possible to build each filter 
separately, it is more effective to construct a single prototype low-pass filter and modu-
late it to a number of predetermined center frequencies in order to produce the synthe-
sis and analysis filters. The filters are typically even- or odd-stacked, extremely spectrally 
selective to reduce crosstalk with neighboring subcarriers, and consistently spaced [29].

In the multi-carrier systems, k is the time position, l is the subcarrier position, and the 
transmitted symbols xl,k is modulated by the base pulses gl,k(t) , so that the transmitted 
signal s(t) is in the time domain [5]:
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with

basis pulse gl,k(t) is a shifted version frequency and time of prototype filter pTX(t) . The 
receiver uses different prototype filters, so the received base pulse ql,k(t) is expressed in 
the following form.can be expressed as,

In CP-OFDM pRX(t ) a slightly shorter rectangular pulse and pTX(t) is a rectangu-
lar pulse, and the basis pulses are orthogonal, that is,�gl1,k1(t), ql2,k2(t)� = δ(l1−l2),(k−k2) 
and the time–frequency spacing is TF = 1+ TCPF . In FBMC, based on a Hermite 
prototype filter for example,p(t) = pTX(t) = pRX(t) is a smoother function, and com-
plex for  time-frequency spacing of TF = 2. The time–frequency spacing is mini-
mized to TF = 0.5 in FBMC, to enhance the spectral efficiency, only real-valued 
data symbols xl,kǫR are  transmitted. Orthogonally, and it holds in the real domain, 
R �gl1,k1(t), ql2,k2(t)� = δ(l1−l2),(k−k2).

A discrete time system model will be considered, simplifying the analytical descrip-
tion, and the transmitted base pulses sampled with rate fs = 1

�t = FNFFT and all sam-
ples are stacked in a large vector gl,k(t)ǫCN×1 . And all basis pulse vectors are stacked in 
matrix G = [g0,0 . . . gL−1,K−1]ǫC

N×LK . The samples of the receive basis pulse are stacked 
in matrix Q = [q0,0 . . . qL−1,K−1]ǫC

N×LK . Only the true orthogonally condition is valid, 
that is, R

{
QHG

}
= ILK . The transmission across a doubly-selective channel is defined 

as y by the following connection [5],

where vector x = [x0,0 . . . xL−1,K−1]ǫC
LK×1 illustrates the transmitted data sym-

bols.y = C
LK×1 are the symbols that received, and DǫCLK×LK the transmission matrix, 

defined as,

where n ∼ CN (PnQ
HQ) is the Gaussian noise.

4 � Channel estimation
We take into account the pilot symbol-aided channel estimate, which is a total of |P| 
symbols xPǫC|P|×1, the pilots that are identified firstly at the receiver. For the one-tap 
channel, Least Squares (LS) estimation is allowed at the pilot positions ĥLSp ǫC|p|×1 , 
depending on,

(1)s(t) =

K−1∑

k=0

L−1∑

l=0

gl,k(t)xl,k

(2)gl,k(t) = pTX(t − kT )ej2π lF(t−kT )ejθl,k

(3)ql,k(t) = pRX (t − kT )ej2π lF(t−kT )ejθl,k

(4)y = Dx + n

(5)D = QHHG
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Simple LS estimate of the one-tap channel is not possible due to the imaginary inter-
ference in FBMC. Preprocessing must be done further. In particular, we use precoding 
by, where ̃x defined by,

where the data symbols are x̃ and at the pilot positions,C neglects the imaginary inter-
ference, that is,

Data spreading approach or auxiliary symbol method may be represented by can-
cellation matrix C , it should be noted. For the latter, at the receiver, extra despreading 
is needed [5].

•	 Doubly selective channel estimation

Numerous articles attempt to estimate the channel impulse response Ĥ , in the situ-
ation of a doubly-selective channel. The active subcarriers number in real systems is 
less than the size of the Fast Fourier Transform (FFT)L < NFFT  . This suggests that, at 
the zero subcarriers, it is impossible to estimate the channel transfer function accu-
rately, precluding an accurate impulse response assessment. To the channel transfer 
function, one can only get a pseudo impulse response by performing an inverse Fou-
rier transform of the active subcarriers L active subcarriers, implicitly presuming a 
rectangular filter. Even though the genuine impulse response could be time-limited, 
the pseudo impulse response delay taps are not. For estimate techniques at the edge 
subcarriers that depend on the presumption that the lateness taps are time-limited, 
this is brought on by the cutout of the channel transfer function. The complexity of 
computation is another factor. Even if the impulse response can be precisely esti-
mated, assessing the matrix multiplication in (5) is still necessary, which adds a sig-
nificant, computing overhead. By directly predicting the transmission matrix D̂ , all of 
these limitations can be avoided. Due to the fact that the one-tap channel is typically 
approximated using interpolation, this is happening to some extent already in practi-
cal systems. By one-tap channel coefficients, the diagonal elements of D̂ are repre-
sented [5].

The time-variant transfer function is interpolated by an approximation of the whole 
time-variant transfer function is produced. A strong link between frequency and time 
makes this possible. As previously indicated, without using the channel transfer func-
tion’s diversion, it is more effective computationally to directly estimate D̂ which pre-
serves the underlying correlation. At rowposition l1k1 = l1 + Lk1 and column position 
l2k2 = l2 + Lk2 , one element of the transmission matrix D̂ can be estimated by:

(6)ĥLSp = diag
{
Xp

}−1
yp

(7)x = Cx̃

(8)I

{
qHp G

}
Cx̃ = 0

(9)
[
D̂

]
l1k1

= w̃H
l1,k1,l2,k2

ĥLSp
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where a weighting vector can be represented by w̃H
l1,k1,l2,k2

ǫC|p|×1 and at the pilot posi-
tions,ǫC|p|×1 is the LS channel estimates. The weighting vector significantly influences 
the accuracy of channel estimate. We take into account a weighting vector for MMSE, 
which is the better ĥLSp  channel estimate technique feasible in terms of MSE. We use the 
theorem of the orthogonal projection.

The weighting vector for MMSE in (9) can be derived by the following equation, 
which says that the estimator’s error must be orthogonal to the estimator.

With correlation matrix of the LS channel is defined by R−1

ĥLSp
= E

{
ĥLSp (ĥLSp )

H
}
ǫC|p|×|p| 

that estimates at the pilot positions and r
ĥLSp ,[D] l1k1 l2k2

 the correlation vector between one 

element of transmission matrix D and  the LS channel estimates at the pilot positions. 
The largest difficulty is locating the necessary correlation matrices. The ithandjth LS 
channel estimates are, respectively,R

ĥLSpi
,ĥLSpj

= E

{
ĥLSpi (ĥ

LS
pj
)
H
}
ǫC1×1.The interference is 

uncorrelated, as well as the noise, assuming i  = j , so that R
ĥLSpi

,ĥLSpj
= Rhpi.hpj . By utilizing 

the Kronecker product, hpi = qHpiHgpi =
(
gTPi ⊗ q

)
vec{H}, at the pilot positions, the cor-

relation between the LS channel estimates at the pilot positions, when i  = j , according 
to,

At the pilot positions, we must take interference gTpi⊗q
H
pi

 into consideration for the 
power since it causes:

The overall correlation matrix is R
ĥLSpi

 , Eqs. (12) and (13) are used and based on the cor-

relation matrix of the channel,Rvec{H} = E
{
vec{H}vec{H}H

}
 . Since the time-variant 

impulse response correlation E
{
hconv.[n1,m1]h

∗
conv.[n2,m2]

}
 is considered to be known, 

the elements of this correlation matrix are simple to calculate. Due to the vectorized 
nature, only the mapping of this connection to the appropriate place in Rvec{H} poses cer-
tain difficulties. At the ith pilot position, the correlation between the channel estimation 
LS and one transmission matrix D element can be determined similarly as in (12) by,

(10)E

{(
[D]

l1k1 l2k2
−

[
D̂

]
l1k1 l2k2

)[
D̂

]
H

l1k1 l2k2

}
= 0

(11)W̃l1,k1,l2,k2 = R
−1

ĥLSp
r
ĥLSp ,[D] l1k1 l2k2

(12)R
ĥLSpi

,ĥLSpj
=
(
gTpi⊗

qHpi

)
Rvec{H}

(
gTpi⊗

qHpi

)H

(13)
R
ĥLSpi

=

tr

{(
CTGT ⊗ qHpi

)
Rvec{H}

(
CTGT ⊗ qHpi

)H}
+ Pnq

H
pi
qpi

Pp

(14)rR
ĥLSpi

,[D]
l1k1 l2k2

=
(
gTpi⊗q

H
pi

)
R
vec{H}

(
gTl2,k2⊗q

H
l2,k2

)H



Page 15 of 32Al‑Makhlasawy et al. EURASIP Journal on Advances in Signal Processing  (2023) 2023:120	

In (11) to calculate the MMSE weighting vector, with (12)-(13) we have all the neces-
sary tools, that is r

ĥLSp ,[D] l1k1 l2k2

ǫC|p|×1 . The fact that the correlation matrices are imper-

fectly known in real-world systems may lead one to believe that channel estimate 
method is impractical. The true correlation matrices are difficult to find, in most cases, a 
rough estimate may be found and is sufficient [5].

•	 Interference cancellation

We discuss a low-complexity interference cancellation strategy for channel equaliza-
tion in addition to the difficulty of doubly-selective channel estimation. Because interfer-
ence taints the LS channel estimates at the pilot points, for the channel estimation 
process, interference cancellation is also crucial. The accuracy of the channel estimation 
can be increased by canceling this interference. The ith iteration step is indicated by the 
superscript (.)(i) in the following description of how interference cancellation technique 
and iterative channel estimation operates. MMSE channel estimation of the transmis-
sion matrix D̂(0) . One-tap equalization and quantization, x̂(0)l,k = Q

{
y
(0)
l,k /ĥ

(0)
l,k

}
 with 

ĥ(0) = diag
{
D̂

(0)
}

 . Interference cancellation,yi+1 = y− (̂D
(i)

− dig
{
diag

{
D̂

(i)
}}

x̂(i) 

enhanced estimation of the transmission matrix D̂(i+1) , enhances one-tap equalization 
and quantization, and is enabled by decreased interference at the pilot positions 
x̂
(i+1)
l,k = Q

{
y
(i+1)
l,k /ĥ

(i+1)
l,k

}
 [5].

Due to nonlinearities that make the analytical computation difficult, the underlying 
correlation at the pilot points does not account for interference cancellation as in (13). 
Therefore, we utilize a little mismatched MMSE calculation to get around this issue.

5 � Proposed JCEIC based on RNN
In this section, we embark upon an exploration of a well-established channel estima-
tion methodology, one that stands as a vanguard for the integration of DL frameworks 
in the relentless pursuit of minimizing channel estimate errors. Rooted in a meticulous 
confluence of theoretical and practical foundations, this methodology endeavors to 
surmount the limitations attendant to Least Squares (LS) and Linear Minimum Mean 
Square Error (LMMSE) estimations, engendering a Channel Estimation based on RNN 

Table 1  The main differences between CNNs and RNNs

CNN RNN

Uses CNNs are commonly used to solve prob‑
lems involving spatial data, such as images

RNNs are better suited to analyzing temporal 
and sequential data, such as text or videos

Architectures CNNs are feedforward neural networks that 
use filters and pooling layers

RNNs feed results back into the network

size of the input and 
the resulting output

In CNNs, the size of the input and the 
resulting output are fixed. A CNN receives 
images of fixed size and outputs a pre‑
dicted class label for each image along 
with a confidence level

In RNNs, the size of the input and the result‑
ing output can vary

Common use cases Common use cases for CNNs include facial 
recognition, medical analysis and image 
classification

Common use cases for RNNs include 
machine translation, natural language 
processing, sentiment analysis and speech 
analysis
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that accentuates the potency of MMSE between channel estimates. Table 1 shows the 
main differences between CNNs and RNNs.

The proposed architecture of the RNN stands resplendent as a testament to its 
structural sophistication, akin to an architectural marvel adorned with meticulously 
organized strata. As depicted in Fig. 2, this RNN edifice encompasses a triad of piv-
otal layers: the input layer, the hidden layer, and the output layer. Albeit the intrin-
sic potential for numerous hidden layers within an RNN, our conceptual schema 
adroitly navigates this design space. The architecture optimally balances complexity 
and functionality, embedding within its hidden layers an assembly of neurons metic-
ulously calibrated to harmonize with the unique demands posed by both OFDM and 
FBMC systems.

Central to this architectural symphony, neurons manifest as the quint  essen-
tial computational entities, diligently orchestrated to execute an intricate array 
of computations. These computations, as delineated in [17], transcend the realm 
of mere algorithmic operation, encapsulating the nuanced essence of information 
processing, transformation, and optimization within the OFDM and FBMC system 
context.

In the ensuing discourse, we embark upon an odyssey that seamlessly blends theo-
retical prowess and empirical validation, diligently navigating the realms of computa-
tion, modulation, and channel estimation. This research endeavor, a fusion of theory 
and application, endeavors to unravel the enigma of channel estimation errors, har-
moniously weaving the tapestry of DL and neural architectures into the very fabric 
of channel estimation enhancement. As illustrated through Fig.  2, the architectural 
expanse of the RNN emerges as a testament to this meticulous pursuit, poised to 
recalibrate the trajectories of channel estimation and minimize errors within OFDM 
and FBMC systems.

where the number of inputs is M to this neuron for which wi is the ith weight corre-
sponding to the ith input;xi is the ith input(i = 1, ...,M) ; o is the output of this neuron, 

(15)o = f (z) = f

(
M∑

i=1

wixi + b

)

Fig. 2  The structure of RNN
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and b is a bias. In (14), the activation function f(.) is employed to describe the data’s non-
linearity. In the proposed framework, the tanh function serves as the activation function 
in the proposed architecture, which is defined as:

By LS estimation as input, given the channel estimates provided. The Channel esti-
mation based on RNN learns the actual channel information in order to reduce the 
MMSE. The training process for a realization of the input is specifically defined as

where n denotes the nth realization; Re{·} and Im{·} are the real part and imaginary part 
of a complex number. The output of the neural network is,

where at the nth realization ĥ
n
 is the neural network output. To tackle the complex num-

bers for the neural network, we separate the channel estimate in (16) and (17) into real 
part and imaginary parts. The one-by-one mapping is handled by the learning process:

The neural network’s output should match the actual channels exactly as required. As 
an alternative, the goal of channel estimation based on RNN is to, on average, reduce the 
MMSE between the prediction and real channels; as a result, during training, the loss 
function that used is specified as,

for training, the number of realizations N  is used, and the actual channel hn(t) is cor-
responding to ĥ

n
(t).B and W biases and weights, respectively. By minimizing the loss 

function (20),the weights and biases are updated from a group of initial values with for-
ward and backward propagation [22].

5.1 � Long short‑term memory‑based channel estimation

The present study introduces a suite of channel estimation methodologies rooted in the 
application of RNNs. In response to the challenges inherent to channel estimation, a 
pragmatic avenue emerges through the integration of neural network paradigms, notably 
the potent framework of Recurrent Neural Networks. The RNN architecture embodies 
a temporal cognition, wherein the input for the current time step seamlessly transforms 
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into the output of the preceding time step. This intricate dynamic endows the RNN with 
the remarkable capacity to recollect prior input information, thereby facilitating a coher-
ent assimilation of temporal dependencies. The computational core of the elementary 
RNN cell assumes a pivotal role, orchestrating a multifaceted spectrum of calculations 
that engender an integrated operational milieu, thereby steering the channel estimation 
endeavor towards a judicious fulfillment of its intended objectives.

where  f (·) is the activation function; at the time step t, xt and Yt are the input and the 
output at the time step t andt − 1 , ; ht and ht−1 are the hidden states respectively;bih, bhh , 
and bho are the corresponding biases andWih,Whh , and Who are the weights for the input 
layer to the hidden layer, the hidden layer to the next hidden layer, and the hidden layer 
to the output layer, respectively [28].

The fundamental Simple RNN cell, while conceptually elegant, harbors intrinsic lim-
itations that warrant careful consideration. One notable limitation resides in its inca-
pacity to harness future data points for decision-making, despite the temporal interplay 
between the channel’s past, present, and future states at a given time step ’t’. To address 
this temporal asymmetry and propel the network towards heightened performance, a 
contextual deployment of the network is imperative. Secondly, the succinct RNN struc-
ture falters in capturing long-term dependencies intrinsic to complex data patterns. In 
response, the integration of Long Short-Term Memory (LSTM) networks emerges as a 
judicious panacea. In recognition of these exigencies, the present research advocates the 
strategic adoption of LSTM networks as an efficacious conduit for channel estimation in 
the realm of 4G and 5G communication systems [28].

The schematic manifestation of our proposed channel estimation and interference 
cancellation framework, imbued with the Adam optimizer, finds eloquent expression in 
Fig.  2. This intricate orchestration, depicted in Fig.  3, commences with a comprehen-
sive training phase, wherein input signals are deftly maneuvered to unfurl the channel 
response through the prism of the MMSE estimation. These resultant channel responses 
then assume the mantle of input parameters for the LSTM model, which is meticulously 
calibrated through an iterative training regimen. The true mettle of this model unfurls 
during the testing phase, where the estimated channel responses of signals, derived from 
real-world scenarios, assume the role of inputs for the trained LSTM model. The conflu-
ence of these inputs, meticulously shepherded by the intrinsic dynamics of the LSTM 
structure, culminates in the estimation of the current channel response. This estimation, 
a manifestation of the interplay between input parameters and loss function minimiza-
tion, underscores the potency of the LSTM paradigm as a conduit for channel response 
prediction and interference cancellation.

In summation, the architecture depicted in Figs.  2 and 3 not only embodies the 
intricate dance between theoretical underpinnings and empirical validation but also 

(21)ht = f (Wihxt + bih +Whhht−1 + bhh),

(22)Yt = f (Whoht + bho)
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epitomizes the paradigmatic shift towards LSTM-driven sophistication in the landscape 
of channel estimation. As researchers and scholars, our collective endeavor is poised to 
unravel the latent complexities inherent to communication systems, illuminating hith-
erto uncharted realms through the fusion of theoretical ingenuity and computational 
acumen.

6 � Simulation results
Within the purview of this scholarly exposition, we delve into an extensive array of sim-
ulation results, meticulously navigating the landscapes of OFDM and FBMC systems, 
each wielding profound significance within the ambit of fourth and fifth-generation net-
works. The experimental framework envelops a paradigm wherein the Number of Sub-
carriers is set at 24, accompanied by a robust embrace of 256 Quadrature Amplitude 
Modulation (QAM) modulation. Central to our analytical voyage is the strategic integra-
tion of a RNN, imbued with a tiered architecture comprising five distinctive layers: the 
sequence input layer, LSTM layer housing 1440 hidden units, a fully connected layer, the 
SoftMax layer, and the classification output layer.

Within this intricate orchestration, a pivotal cornerstone assumes the form of a dia-
mond-shaped pilot pattern, comprising 32 pilots artfully distributed across the tempo-
ral and frequency domains with resourceful precision. This tapestry of pilots spans a 

Input 
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Input 
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Fig. 3  The proposed RNN for JCEIC
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temporal domain characterized by LF = 360 kHz and KT = 2 ms, emblematic of a dyadic 
fusion encompassing two subframes traversing eight resource blocks. In the realm of 
OFDM, a meticulous calibration of overhead, accounting for pilot symbols and the cyclic 
prefix (CP), yields an overhead magnitude of LFTCPK+|P|

KTLF = 11%.

In the context of FBMC, a judicious recourse to the auxiliary symbol channel esti-
mation methodology is discerned. This strategic choice materializes through the 
deployment of four auxiliary symbols per pilot, meticulously orchestrated to mitigate 
interference effects and optimize channel performance. The RNN, a beacon of predictive 
power, derives its efficacy through an optimization process steered by the Adam opti-
mizer—a potent amalgam of RMSprop and Stochastic Gradient Descent with momen-
tum. The learning rate is calibrated at 0.01 for the RNN, intricately tailored to strike a 
harmonious balance between convergence and efficiency. The intricate dance of training 
is orchestrated within a contextual enclave delineated by a batch size of 30, evolving over 
a maximum of 1000 epochs.

Within this panoramic vista, the network’s input channels unfurl as sequences of 
MMSE channel estimation and interference cancellation, enshrining a complex data 
milieu. This intricate interplay necessitates a judicious partitioning into real and imagi-
nary components, adeptly calibrated to suit the network’s computational requisites. The 
mantle of training and testing is borne by a robust ensemble of 1000 sequences per SNR 
for training and 100 sequences per SNR for testing, a corpus engineered to encompass 
the intricacies of estimated channel interference amidst the symphony of interference 
cancellation. This monumental training endeavor transcends SNR domains spanning 
from -10 dB to 40 dB, thus embracing a comprehensive panorama reflective of a diverse 
spectrum of signal strengths.

Figures  4, 5, 6, 7, 8, 9, 10, 11 present a comprehensive exposition of BER analyses 
across varying SNRs for diverse scenarios within the domain of OFDM systems. Within 
this tableau of figures, we embark upon a nuanced journey through distinct scenarios, 
each shedding light on the intricate interplay between RNN-driven interference cancel-
lation and the backdrop of distinct channel conditions.

Figure 4 unfurls an insightful panorama, wherein interference cancellation through RNN 
engenders commendable BER performance across diverse SNRs. The intricacies of the "no 
edge" scenario, as illustrated in Fig. 5, illuminate the prowess of the MMSE methodology, 
outshining RNN. Figure 6 emerges as a testament to the adeptness of RNN in the context 
of one-tap equalization, particularly in higher SNR environments. A juxtaposition of one-
tap equalization and the "no edge" milieu, as depicted in Fig. 7, accentuates RNN’s prowess 
in mitigating BER. Figure 8 resonates with the resonance of RNN’s capabilities within the 
precincts of perfect CSI and one-tap equalization. Figure 9 sheds light on the dichotomy 
between RNN and MMSE, with the former asserting its supremacy in the realm of one-
tap equalization, devoid of edge conditions. Figure 10 introduces the prism of perfect CSI 
and interference cancellation, elucidating the BER disparities between RNN and MMSE. 
In Fig. 11, the interplay of perfect CSI, interference cancellation, and the absence of edge 
conditions unravels RNN’s strength in SNR-constrained environments.

Figures 12, 13, 14, 15, 16, 17, 18 pivot towards the arena of FBMC systems, wherein 
the symbiotic dance of RNN and MMSE unfolds. Figure 12 paints a picture of MMSE’s 
potency in low SNR domains, while RNN ascends the pedestal at higher SNRs. One-tap 
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equalization coupled with auxiliary symbols, as portrayed in Fig.  13, witnesses RNN’s 
prowess surmounting MMSE. In the realm of auxiliary symbols with one-tap equaliza-
tion and the "no edge" configuration, as presented in Fig. 14, RNN ushers in near-zero 
BER at elevated SNRs. Figure 15 unveils the harmony between auxiliary symbols, one-
tap equalization, and perfect CSI sans edge conditions, underscoring RNN’s ascendancy 

Fig. 4  OFDM interference cancellation using MMSE and RNN

Fig. 5  OFDM interference cancellation no edge using MMSE and RNN
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over MMSE. Figure  16 sketches a scenario wherein code symbols blend with one-tap 
equalization, signaling RNN’s proximity to MMSE in BER. The synergy between code 
symbols, one-tap equalization, and "no edge" conditions, elucidated in Fig.  17, under-
scores RNN’s supremacy. Figure 18 unveils the zenith of RNN’s performance with code 
symbols, one-tap equalization, and perfect CSI.

Fig. 6  OFDM one tap equalizer using MMSE and RNN

Fig. 7  OFDM with one tap equalizer no edge using MMSE and RNN
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From this extensive trajectory of analyses, a cardinal observation emerges—RNN 
exemplifies a potent catalyst for channel estimation and interference cancella-
tion. Figure  19 interjects with a broader vista, accentuating RNN’s efficacy within 
the echelons of 5G systems, outperforming the traditional OFDM paradigm. Fig-
ure 20 accentuates RNN’s efficacy across FBMC and OFDM, marking its ascendancy 

Fig. 8  OFDM with one tap equalizer perfect CSI using MMSE and RNN

Fig. 9  OFDM with one tap equalizer perfect CSI no edge using MMSE and RNN
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at elevated SNRs. This discourse concludes with an incipient horizon, as RNN’s 
transformative potential extends beyond this realm, poised to permeate diverse 
transmission systems, encompassing the realms of MIMO and Non-Orthogonal 
Multiple Access (NOMA). Through these figures, we navigate a rich tapestry of 
simulation results, unraveling the multifaceted impact of RNN across a spectrum of 

Fig. 10  OFDM with perfect CSI interference cancellation using MMSE and RNN

Fig. 11  OFDM with perfect CSI interference cancellation no edge using MMSE and RNN
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transmission landscapes. The drawback for RNN is the time that taken for the train-
ing process and the huge data needed for training. The advantage of this method 
is the high accuracy of the testing process which reach to 97% and low loss. Accu-
racy of the RNN is an evaluation indicators and achieve a high accuracy for both 
OFDM and FBMC systems. The BER for the recovered signal is affected by the high-
precision CSI estimation problem. One of the most serious problems is the high 

Fig. 12  BER for FBMC with the auxiliary symbols using one tap equalizer

Fig. 13  BER for FBMC with the auxiliary symbols using one tap equalizer no edge
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Peak-to-Average Power Ratio (PAPR) of the transmitted OFDM signal since these 
large peaks introduce a serious degradation in performance. The original OFDM sig-
nal, which suffers from a high peak-to-average power ratio (PAPR), is introduced 
with pilot tones using these estimate methods. The signal frequency offset caused by 

Fig. 14  BER for FBMC with the auxiliary symbols using one tap equalizer perfect CSI no edge

Fig. 15  BER for FBMC with the code symbols using one tap equalizer
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the time variability of wireless signals during transmission does not affect the accu-
racy of channel estimation and interference cancellation.

Fig. 16  BER for FBMC with the code symbols using one tap equalizer no edge

Fig. 17  BER for FBMC with the code symbols using one tap equalizer perfect CSI
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7 � Conclusions and future work
In this scholarly pursuit, we present an innovative application of Recurrent Neural 
Networks (RNN) to the realm of Joint Channel Estimation and Interference Cancella-
tion (JCEIC) within Orthogonal Frequency Division Multiplexing (OFDM) and Filter 
Bank Multicarrier (FBMC) systems. Our approach entails channel estimation within 

Fig. 18  BER for FBMC with the code symbols using one tap equalizer perfect CSI no edge

Fig. 19  JCEIC using RNN
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the intricate domain of doubly-selective channels, harnessing the synergy of scattered 
pilots’ temporal and frequency correlation. Concurrently, a judiciously tailored low-
complexity interference cancellation framework complements the channel estima-
tion endeavor. The cornerstone of our JCEIC architecture resides in Long Short-Term 
Memory (LSTM), a variant of RNN esteemed for its aptitude in temporal modeling.

The essence of our methodology encapsulates the orchestration of channel estima-
tion and interference cancellation. These dynamic processes converge to generate 
output sequences that unfurl as inputs to the LSTM framework, fostering an insight-
ful interplay between these pivotal components. Empirical validation is realized 
through an array of simulation results, wherein our proposed technique asserts its 
mettle, manifesting superior Bit Error Rate (BER) performance relative to antecedent 
methodologies. Of paramount import is the revelation that Filter Bank Multicarrier 
(FBMC) systems eclipse their Orthogonal Frequency Division Multiplexing (OFDM) 
counterparts in terms of performance.

The implications of our findings reverberate across diverse echelons of wire-
less communication, spanning the realms of Fourth and Fifth Generation (4G and 
5G) networks, particularly in the domain of low Signal-to-Noise Ratios (SNRs) and 
wireless sensor networks. A trajectory of future exploration is delineated, wherein 
our proposed methodology serves as the nucleus for future endeavors encompass-
ing Non-Orthogonal Multiple Access (NOMA) systems. Moreover, the overarching 
framework holds the promise of cascading into joint signal detection, channel estima-
tion, and interference cancellation arenas, attesting to its transformative potential.

However, it is imperative to acknowledge the nuanced limitations inherent within 
our work. First and foremost, the efficacy of our approach may hinge upon the avail-
ability of substantial training data, potentially rendering data collection and labeling 

Fig. 20  BER for OFDM and FBMC with MMSE and RNN
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a resource-intensive endeavor. The intricate architecture of our proposed RNN may 
exact a computational toll, demanding considerable resources for real-time deploy-
ment. The system’s interference cancellation efficacy may also be contextually con-
tingent, potentially displaying performance disparities in the face of dynamically 
unpredictable interference scenarios.

In light of these considerations, our future trajectory unfurls with vigor. We aspire 
to engineer streamlined and resource-efficient RNN architectures, tailored for real-
time operation on power-constrained devices. The pursuit of generalization guides our 
exploration into adapting our approach to a panorama of communication standards and 
diverse contextual scenarios. The integration of unsupervised learning methodologies 
beckons to augment our reliance on labeled data. Rigorous empirical validation in real-
world environments and under divergent interference conditions stands as a cardinal 
waypoint of our future exploration.

Concurrently, the potential of synergistic enhancements beckons, invoking the pros-
pect of amalgamating our approach with other interference mitigation techniques to 
distill unprecedented heights of performance. Through these collective endeavors, we 
aspire to lay the groundwork for an augmented paradigm, culminating in a holistic 
advancement of channel estimation and interference cancellation frameworks within 
modern wireless communication landscapes.

Limitations of the proposed work may include:

•	 Data availability: The approach may require a large amount of training data to accu-
rately estimate the channel and cancel interference. However, collecting and labelling 
such data can be expensive and time-consuming.

•	 Complexity: The proposed RNN architecture may be computationally expensive and 
require significant resources for real-time implementation.

•	 Interference cancellation performance: The interference cancellation performance of 
the proposed approach may depend on the type and level of interference present in 
the communication system, and it may not perform optimally in highly dynamic and 
unpredictable interference environments.

Future work on this work could include:

•	 Developing more efficient and lightweight RNN architectures that can be imple-
mented in real-time on low-power devices.

•	 Investigating the generalization of the proposed approach to other communication 
standards and scenarios.

•	 Exploring the use of unsupervised learning techniques to reduce the reliance on 
labelled data.

•	 Evaluating the performance of the proposed approach in real-world scenarios and 
under different interference conditions.

•	 Studying the potential benefits of combining the proposed approach with other 
interference mitigation techniques to further enhance the system’s performance.
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