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Abstract 

As a critical component of space-air-ground integrated IoT, the aerial network pro-
vides highly reliable, low-latency and ubiquitous information services to ground 
users by virtue of their high mobility, easy deployment and low cost. However, 
the current computation and resource management model of air-ground integrated 
networks are insufficient to meet the latency demanding of emerging intelligent 
services such as autonomous systems, extended reality and haptic feedback. To tackle 
these challenges, we propose a computation offloading and optimization method 
based on potential game. First, we construct an cloud-edge collaborative comput-
ing model. Secondly, we construct Offloading Decision Objective Functions (ODOF) 
with the objective of minimum task processing latency and energy consumption. 
ODOF is proved to be a Mixed Inferior Nonlinear Programming (MINLP) problem, 
which is hard to solve. ODOF is converted to be a full potential game, and the Nash 
equilibrium solution exists. Then, a computational resource allocation algorithm based 
on Karush–Kuhn–Tucker (KKT) conditions is proposed to solve resource allocation 
problem. On this basis, a distributed game-based computational offloading algorithm 
is proposed to minimize the offloading cost. Extensive simulation results demonstrate 
that the convergence performance of the proposed algorithm is reduced by 50%, 
the convergence time is reduced by 13.3% and the average task processing delay 
is reduced by 10%.

Keywords:  Space-air-ground integrated IoT, Cloud-edge collaborative computing, 
Resource allocation, Offloading decisions, Potential game

1  Introduction
The space-air-ground integrated IoT is the integration network of interconnected 
devices, sensors and systems that can communicate and share data seamlessly across dif-
ferent dimensions, including space, air and ground [1, 2]. Relying on the long-endur-
ance advantage of aerial platforms, drones, balloons and other air-based infrastructure, 
aerial network provides low-cost and wide-area coverage capability for 5 G and beyond 
(B5G/6 G) [3–5] with the massive deployment of high-performance computing devices 
in aerial platforms and the widespread application of air-to-ground communication 
(ATG) for B5G/6  G network and non-terrestrial networking (NTN) technology, and 
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gradually forms informative and intelligent air-ground integrated ubiquitous network 
system [6, 7]. Constructing an cloud-edge collaborative computing model of air-ground 
integrated networks, orchestrating and controlling computing-storage-communica-
tion-perception resources to provide ubiquitous real-time service support for explosive 
growth of emerging services, such as holographic communication, extended reality, hap-
tics, telemedicine and health monitoring.

However, with the booming development of B5G/6  G and the continuous influx of 
various emerging services, the heterogeneous ground terminals with limited capacity are 
finding it tough to meet the demand for high reliability and ultra-low latency services. 
The imbalance in the spatial and temporal distribution of computing, storage, communi-
cation and other system resources leads to inefficient task scheduling in the ground net-
work, which makes it cumbersome to adapt accurately to varying task requirements [8]. 
In addition, the computational decision is subject to multiple constraints such as device 
computational capacity, available communication resources and channel selection, mak-
ing it difficult to satisfy both latency and power requirements simultaneously [9].

To solve the above problems, the scholars in the field proposed to use aerial network-
assisted communication-computation to alleviate the pressure of ground terminals [10, 
11]. Heuristic and group intelligence methods achieve group offloading optimization by 
randomly or strategically changing individual behaviours, which have slow convergence 
speeds and are prone to falling into local optima [12]. Machine learning- and deep learn-
ing-based methods rely on a large amount of data for training and autonomous learn-
ing to obtain optimal offloading decisions [9, 13, 14]. These methods require the design 
of complex network models with high algorithmic complexity [15, 16]. Game-based 
methods [17, 18] simulate the offloading process by analysing the resource competition 
between devices to solve the optimal offloading decision. Its complexity is closely related 
to the amount of tasks.

Aiming at the problem of cloud-edge collaborative computing of air-ground integrated 
networks, this paper proposes a distributed computing offloading and resource alloca-
tion (DCORA) optimization scheme based on distributed gaming. The main contribu-
tions of this paper are as follows.

1.	 We construct an cloud-edge collaborative computing model. With the goal of mini-
mizing task processing latency and energy consumption, an offloading decision 
objective function (ODOF) is constructed. The ODOF is proved to be a mixed infe-
rior nonlinear programming problem (MINLP), it is hard to solve because of its non-
linear and non-convex nature. ODOF is converted to be a full potential game, and 
the Nash equilibrium solution exists.

2.	 The resource allocation subproblem is proven to be a convex optimization problem 
under specified available resources and task states. The resource allocation problem 
is converted into an unconstrained problem using Lagrange number multipliers. 
A Karush–Kuhn–Tucker (KKT) condition-based computational resource alloca-
tion (KCRA) algorithm is proposed to solve it. On this basis, DCORA algorithm is 
proposed to minimize the offloading cost by jointly optimizing the offloading mode 
selection, channel selection and offloading object selection.
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3.	 Numerous simulation results show that DCORA has a fast convergence speed and 
can effectively reduce the task offloading delay and energy consumption. DCORA 
obtains minimum offload costs with changes in the number of channels, bandwidth, 
amount of task data and number of tasks. Compared with the traditional schemes, 
the convergence performance of DCORA is reduced by about 50%, the convergence 
time is shortened by about 13.3% and the average task processing delay is reduced by 
10%.

The rest of the paper is organized as follows: In Sect.  2, related work is presented. In 
Sect.  3, the cloud-edge collaborative computing model and the objective problem are 
presented. In Sect. 4, the KCRA algorithm and the DCORA algorithm are described in 
detail. Finally, we conduct simulation experiments and results analysis in Sect.  5, and 
conclusions are drawn in Sect. 6.

2 � Related work
This subsection provides an introduction to mainstream computational offloading algo-
rithm research efforts, including heuristic and swarm intelligence methods, machine 
learning (ML) and deep learning (DL) approaches and game-based strategies.

Swarm intelligence algorithms are stochastic algorithms inspired by biological or 
physical phenomena, where individuals continuously modify their actions to achieve 
collective optimization of the population. These algorithms have been widely used to 
address multi-objective optimization problems, such as computation offloading and 
resource allocation. Lv et al. [19] proposed an approach based on heuristic algorithms 
to predict the impact of offloading decisions. Ali et  al. [20] introduced an optimiza-
tion model based on discrete non-dominated sorting genetic algorithm to handle dis-
crete multi-objective task scheduling problems. Dai et al. [21] proposed an optimization 
method based on particle swarm optimization by splitting tasks for offloading. Dong 
et al. [22] combined particle swarm optimization and quantum particle swarm optimi-
zation to propose a computation offloading task strategy and validated its effectiveness. 
Yuan et al. [23] established a fine-grained task offloading model, proposing a task pre-
diction algorithm based on the long short-term memory neural network model and an 
online offloading algorithm based on particle swarm optimization. When the number of 
offloading tasks is small, swarm intelligence algorithms exhibit higher complexity. How-
ever, with a larger number of tasks, swarm intelligence algorithm often encounters chal-
lenges such as prolonged convergence time and being trapped in local optima.

Computation offloading methods based on ML or DL, with neural networks at their 
core, rely on extensive data for training and autonomous learning, can address various 
complex environments. Yang et al. [24] devised a collaborative offloading and resource 
allocation scheme based on energy prediction, optimizing transmission power, com-
puting resource allocation and task offloading ratios. Liu et al. [25] proposed a distrib-
uted optimization problem for offloading parameters and designed strategies for task 
offloading and energy conservation response. Gao et al. [26] presented a multi-tier fog 
computing system that predicts offloading and resource allocation, reducing average 
power consumption. Dai et al. [27, 28] employed Lyapunov optimization to transform 
stochastic problems into deterministic ones for each time slot, using an asynchronous 



Page 4 of 21Peng et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:54 

behaviour critic algorithm to find the optimal offloading strategy. Liu et  al. [29] con-
structed a mathematical optimization model for power consumption and time overhead, 
proposing intelligent task offloading solutions, enhancing system network performance 
through decision tree algorithms and double-depth algorithms. Qu et al. [30] combined 
multiple parallel deep neural networks with Q-learning to derive optimal offloading 
strategies from dynamic environments. However, methods based on ML or DL currently 
face challenges such as slow learning speed, weak adaptability to new environments and 
reliance on prior data for training.

Yu et al. [31] proposed a mixed-strategy Nash equilibrium (NE) based on virtual game 
theory, decomposing the offloading decision problem of the entire system into a hier-
archical game problem. Xu et  al. [32] designed a fuzzy task offloading and resource 
allocation scheme based on Takagi–Sugeno fuzzy neural networks and game theory to 
minimize user task processing latency. Wang et al. [33] introduced a resource allocation 
incentive mechanism based on Stackelberg game and devised an optimization strategy 
using the alternating direction method of multipliers. Pham et al. [34] utilized precise 
potential game theory to design a low-complexity distributed offloading scheme and 
determined the optimal offloading ratio and resource allocation using the subgradient 
method. Luo et al. [35] proposed a distributed offloading decision algorithm based on 
game theory models, achieving Nash equilibrium through self-learning to minimize off-
loading latency and cost. Huang et al. [36] addressed the latency optimization offloading 
problem using non-cooperative game theory and provided a solution. Teymoori et  al. 
[37] described the offloading decision process as a stochastic game model to minimize 
mutual interference during channel access, solving for Nash equilibrium based on multi-
agent reinforcement learning. Mensah et  al. [38] combined device-to-device (D2D) 
communication with vehicular networks, formulating the task offloading and resource 
allocation problem as a mixed-strategy game and solving for Nash equilibrium. Yang 
et al. [39] regarded the computation offloading process as a competitive game to mini-
mize the cost of executing a single task, proposing a lightweight algorithm to solve for 
Nash equilibrium. Fan et al. [40] presented an offloading scheme based on non-coopera-
tive game theory to alleviate node load, balance task delays and demonstrated the exist-
ence of Nash equilibrium using variational inequalities and regularization techniques. 
Pham et  al. [41], based on coalition game theory, studied a low-complexity algorithm 
that guarantees convergence, compared it with three baseline schemes and verified its 
effectiveness.

Compared to methods based on swarm intelligence, ML or DL, game-based 
approaches are more suitable for distributed computing due to their lower complexity 
and faster convergence. Therefore, this paper proposes a distributed game-based com-
putation offloading optimization method to address the problem more efficiently.

3 � System model
3.1 � Cloud‑edge collaborative computing model

The air-ground integrated IoT network model is shown in Fig.  1, and it includes a 
ground network, a low-altitude network and a high-altitude network. The ground 
network consists of emergency communication vehicles, IoT devices, base stations, 
intelligent robots and other devices. The low-altitude part of the network consists of 
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UAV swarms and fixed-wing UAV. The fixed-wing UAV with the strongest computa-
tional capacity is called distributed computing node (DCN). Since small UAVs have 
limited computing and communication capabilities, the fixed-wing UAV is provided 
to support the UAV swarm. The high-altitude network consists of floating airships 
with deployed mobile edge computing (MEC).

The cloud consists of floating airships with deployed mobile edge computing 
(MEC), and edge consists of UAVs and fixed-wing UAV. The UAV swarms in the low-
altitude network will assist the ground equipment with computing tasks. The UAVs 
are divided into two disjoint sets based on their current operational status. UAVs with 
computing tasks are referred to as active devices, denoted by set N = {1, 2, . . . ,N } . 
UAVs without computing tasks are referred to as auxiliary devices, denoted by set 
H = {1, 2, . . . ,H} . The DCN establishes a D2D link and jointly computes with the 
devices in H . It will help the UAV terminal to generate offload decisions and perform 
mission computation. If the UAV is not connected to the DCN, and the UAV is within 
the communication range of the aerial platform. The aerial platform in the high-alti-
tude segment will take over some of the computing tasks from the UAV according to 

Fig. 1  The cloud-edge collaborative computing model
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the offload strategy. The available bandwidth B is divided into Kd+e mutually orthogo-
nal subcarriers, including Kd for D2D communication and Ke for cellular communica-
tion, which can be represented as follows: K = 1, 2, . . . ,Kd ,Kd+1, . . . ,Kd+e .

The state information of computing task n ∈ N  can be described by set �n = {sn, cn} . sn 
is the data size of the task and measured in bits. cn is the required computing resource to 
compute one bit of the task and measured in CPU cycles per bit. We use a binary offload-
ing policy for offloading tasks that are offloaded completely without task segmentation. The 
offloading mode variate xn,m represents whether the task n is offloaded to the destination 
m, where xn,m ∈ {0, 1} , m ∈ H ∪ {0} represents the offloading destination of the device n, 0 
is the edge server identity. In the three different offloading modes, the practical significance 
of xn,m is expressed as follows: 

1.	 When xn,m = 1,m = n , it means that task n executes locally.
2.	 When xn,m = 1,m ∈ N  , it means that the task n is offloaded to DCNs for execution 

via the D2D link.
3.	 When xn,m = 1,m = 0 , it means that the task n is offloaded to MEC for execution 

via the cellular link.

3.2 � Delay and energy model

(1) Local computing model When the task n is executed locally, the task does not require 
transmission, so the offloading cost only includes the computation delay tloc,cmp

n  and energy 
consumption eloc,cmp

n .

Where fn is the number of CPU cycles per second of terminal n, which represents its 
computing power. κn denotes the effective switching capacity of terminal n, and its value 
is a constant term. In order to prolong the usage time of the terminal device and con-
sider the energy consumption and delay during the task completion process, we sets the 
local offloading cost function is vlocn .

Where βt ,βe ∈ [0, 1] and βt + βe = 1 are weight constants. βt denotes the weight of delay 
in the completion of task, and βe denotes weight of the energy consumption of device.

(2) D2D offloading When task n is offloaded to DCNs via D2D link, the uplink transmis-
sion rate rn,h can be found in Eq. 4.

Where B̄ = B/kd+e is the sub-carrier bandwidth. k ∈ {1, 2, . . . ,Kd} represents the 
exclusive channel of D2D communication mode. A value of 1 for the binary variable 

(1)tloc,cmp
n =

sncn

fn

(2)eloc,cmp
n = κncnf

2
n

(3)vlocn = βt t
loc,cmp
n + βee

loc,cmp
n

(4)rn,h = B̄log2

(

1+
xn,hw

k
n,hpnh

k
n,h

N0 +
∑N

i=1 xi,hw
k
i,hpih

k
i,h

)
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wk
n,h = {0, 1} means that the channel k is selected when the task n is offloaded to the 

destination h, and h ∈ H . pn denotes the transmission power of the device. hkn,h repre-
sents the channel gain during D2D transmission, the value is related to the transmission 
distance and the maximum D2D transmission distance is dmax . N0 is the noise power 
within each sub-channel. For efficient use of spectrum resource, devices in the same 
transmission mode can be allowed to be reused in the sub-channels during communica-
tion, 

∑N
i=1 xi,hw

k
i,hpih

k
i,h denotes interference between D2D links due to spectral reuse.

Therefore, the computation delay td2d,cmp
n  in D2D offloading mode can be found in Eq. 5.

Where fn,h represents the computing resource that can be allocated when the task n is 
offloaded to the DCN m. The delay and energy consumption during transmission can be 
expressed as td2d,transn  and ed2d,transn  , respectively.

Considering that the offloading result response signal data size is much less than the 
task data size, the result backhaul delay is ignored. Therefore, the D2D offloading cost 
function vd2dn  is defined as the weighted sum of computing delay, transmission delay and 
transmission energy consumption.

(3) Edge offloading When task n is offloaded to MEC via cellular link, the uplink trans-
mission rate rn,0 can be defined as Eq. 9.

Where k ∈
{

kd+1, . . . ,Kd+e

}

 represents the exclusive channel of cellular communica-
tion mode. The binary variable wk

n,0 = {0, 1} value of 1 indicates that the channel k is 
selected when the task n is offloaded to MEC. hki,0 represents the channel gain during cel-
lular transmission. Devices in the same transmission mode are also allowed to be reused 
to sub-channels during communication, 

∑N
i=1 xi,0w

k
i,0pih

k
i,0 represents interference due 

to spectral reuse between cellular links.
From the previous discussion, the task computation delay tmec,cmp

n  can be found in Eq. 10.

Where fn,0 represents the computing resource allocated when the task n is offloaded 
to MEC. The delay of the task transmission process and energy consumption can be 
expressed as tmec,trans

n  and emec,trans
n  , respectively.

(5)td2d,cmp
n =

sncn

fn,h

(6)td2d,transn =
sn

rn,h

(7)ed2d,transn = pnt
d2d,trans
n

(8)vd2dn = βt(t
d2d,cmp
n + td2d,transn )+ βee

d2d,trans
n

(9)rn,0 = B̄log2

(

1+
xn,0w

k
n,0pnh

k
n,0

N0 +
∑N

i=1 xi,0w
k
i,0pih

k
i,0

)

(10)tmec,cmp
n =

sncn

fn,0
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In summary, the MEC offloading cost function can be expressed as vmec
n .

(4) Problem formulation Compared with the edge computing model, D2D offloading can 
ensure shorter communication delay to reduce the upstream network transmission pres-
sure. On the other hand, an edge server can provide a significant amount of computa-
tional resources. The aim of our work is to realize the target problem joint optimization 
and minimize the global task offloading cost through the offloading mode, offloading 
destination selection, channel selection and computing resource allocation. The current 
moment task n cost function and global target optimization function P1 can be found in 
Eqs. 14 and 15, respectively.

Where an =
{

xn,m,w
k
n,m, fn,0, fn,h

}

 is the set of variables to be optimized. C1 states that 
the offload mode decision is a binary value and each task must and can choose only 
one offload mode. C2 and C3 indicate that the computational resources allocated to the 
tasks when offloading to the MEC and DCN must be within the maximum constraint. 
C4 and C5 indicate that all tasks offloaded to the MEC and DCN together occupy the 
entire computational resources. C6 specifies the range of value for the weights of the 
cost function.

(5) Game theory analysis The objective optimization problem can be described as a 
multi-knapsack problem. The multi-knapsack problem refers to the task of skillfully 
selecting a subset of items from a finite set, each with specific weights or profits, and 
efficiently placing them into a limited capacity knapsack. The objective is to maximize 
or minimize the total weight or total profit of the items loaded into the knapsack [42]. 
Specifically, limited computing tasks n are equivalent to items, the offloading destination 

(11)tmec,trans
n =

sn

rn,0

(12)emec,trans
n = pnt

mec,trans
n

(13)vmec
n = βt(t

mec,cmp
n + tmec,trans

n )+ βee
mec,trans
n

(14)vn = xn,0v
mec
n + xn,hv

d2d
n + xn,nv

loc
n

(15)

P1 :min
an

N
∑

n=1

vn

s.t. C1 : xn,m ∈ {0, 1}

C2 : xn,0 + xn,h + xn,n = 1

C3 : 0 ≤ fn,0 ≤ f0

C4 : 0 ≤ fn,h ≤ fh

C5 : 0 ≤

N
∑

n=1

xn,0f0 = f0

C6 : 0 ≤

N
∑

n=1

xn,hfh = fh

C7 : βt ,βe ∈ [0, 1],βt + βe = 1
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m is the backpack, total profit is the weighted sum of delay and energy consumption. The 
target problem is the reasonable decision action an =

{

xn,m,w
k
n,m, fn,0, fn,h

}

 to minimize 
the total profit of the backpack. The multi-knapsack problem has been widely shown to 
be an NP-hard problem [43]. Since the decision variables 

{

xn,m,w
k
n,m

}

 are discrete vari-
ables, 

{

fn,0, fn,h
}

 are continuous values in a finite interval, and the objective function has 
its nonlinear properties. Thus, the problem P1 is a mixed integer nonlinear program-
ming (MINLP). In order to solve this problem, a distributed computation offloading and 
resource allocation scheme is formulated.

Game theory is a mathematical method for analysing decision problems. When 
there is a competition for a certain resource among multiple participants, the deci-
sions between participants often influence each other. Game theory studies the deci-
sion process of participants through the influence relationship [36].

During the game process, all devices share global resource and state information. 
The goal of the decision is to continuously minimize the offloading cost function, in 
order to obtain the optimal offloading experience. The game can be expressed as fol-
lows: G =< N ,A,U > . N  is a set of players as well as a set of tasks. A =

{

dn|n ∈ N
}

 
is the set of actions that the player n can select. dn =

{

xn,m,w
k
n,m

}

 represents the 
action decision made by player n regarding the selection of the offloading destination 
and channel. U =

{

un(dn, d−n)|n ∈ N
}

 represents the player’s utility function value 
under the current action. The utility function is set to Eq. 16, each player takes action 
targeting lowering the cost of global offloading.

Where d−n is the vector of the other player’s current actions. vi(di, d−i\n) repre-
sents the utility function value of player i when player n gives up switching action. 
∑

i  =n[vi(di, d−i)− vi(di, d−i\n) illustrates the sum of the value of the other player utility 
function that changes when the player n switches its action. Each player takes action d∗n 
based on the action combination d∗−n chosen by the other players. Game G reaches a 
Nash equilibrium when Eq. 17 is satisfied [33].

Where d∗−n =
(

d∗1 , . . . , d
∗
n−1, d

∗
n+1, . . . , d

∗
N

)

 . Each player has already chosen their optimal 
action. Furthermore, it is important to note that no player will alter their decision. Spe-
cifically, any player who chooses an action other than d∗n will not be able to achieve a 
lower utility value.As a result, the current set of actions represents the global optimum.

Definition  If a game has a potential function Pn(dn, d−n) such that Eq. 18 holds for all 
∀n ∈ N , ∀dn ∈ A , then the game is referred to as a completely potential game [34].

Completely potential games are a specific type of game. What sets them apart from ordi-
nary games is that when a player unilaterally changes their own action, the potential 
function accurately reflects changes in the player’s utility function.

(16)un(dn, d−n) = vn(dn, d−n)+
∑

i �=n

[vi(di, d−i)− vi(di, d−i\n)]

(17)un(d
∗
n , d

∗
−n) ≤ un(dn, d

∗
−n) ∀n ∈ N , ∀dn ∈ A

(18)un(d̄n, d−n)− un(dn, d−n) = Pn(d̄n, d−n)− Pn(dn, d−n)
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1 � Proof  G =< N ,A,U > is a completely potential game.

The player’s switch action from dn to d̄n will cause a change in the utility value of 
other players. But when the player n gives up switching decision and other users 
maintain their decision, the other players’ function utility value remains the same 
vi(di, d−i\n) = vi(di, d−i\n) . Consequently, during each iteration, there is always a poten-

tial function Pn(dn, d−n) =
∑N

i=1 vi(di, d−i) regardless of how the player’s n action 
changes.

Theorem 1  All potential games with finite action spaces must have a Nash equilibrium.

It is easy to verify that action space A =
{

dn|n ∈ N
}

 is finitely closed set. In conclusion, 
the game G =< N ,A,U > is a completely potential game whose Nash equilibrium is 
always exist.

4 � Distributed computation offloading and resource allocation scheme
4.1 � Computing resource allocation problem analysis

In the context of computational offloading, UAVs, MEC and DCNs serve as auxiliary 
nodes. When computational resources are allocated to MEC, assuming that the set of 
I tasks unloaded to MEC for calculation is I0 , and the channel selection is fixed. The 
computing resource assigned to each computation task can be defined as 

{

fi|i ∈ I0
}

 . 

(19)

un(dn,d−n)− un(dn, d−n)

= vn(dn, d−n)+
∑

i �=n

[vi(di, d−i)− vi(di, d−i\n)]

− vn(dn, d−n)+
{

∑

i �=n

[vi(di, d−i)− vi(di, d−i\n)]
}

= vn(dn, d−n)− vn(dn, d−n)+
∑

i �=n

[vi(di, d−i)

− vi(di, d−i)] −
∑

i �=n

[vi(di, d−i\n)− vi(di, d−i\n)]

= vn(dn, d−n)− vn(dn, d−n)

+
∑

i �=n

[vi(di, d−i)− vi(di, d−i)]

=

N
∑

i=1

[vi(di, d−i)− vi(di, d−i)]

=

N
∑

i=1

vi(di, d−i)−

N
∑

i=1

vi(di, d−i)

= Pn(dn, d−n)− Pn(dn, d−n)
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Therefore, the subproblem function associated to computing resource allocation in 
problem P1 can be converted to P2.

Theorem 2  F(fi) is a strictly convex function.

The Hessian matrix of the target problem P2 can be calculated by Eq. 21.

The second-order derivatives and mixed partial derivatives of F(fi) are given as follows:

Thus, the eigenvalues of the Hessian matrix H are all greater than zero, which means 
that the Hessian matrix of the target problem P2 is positive definite. Moreover, the P2 
is a strictly convex function. KKT conditions can transform the optimization problem 
of equality and inequality mixed constraints into an unconstrained problem, which is a 
necessary and sufficient condition to judge that a certain point of convex programming 
is an extreme point. Consequently, P2 can be solved by the Lagrange multiplier method 
with the KKT condition. The Lagrangian is constructed as described in Eq. 24.

Where � and µ1, . . . ,µI are non-negative Lagrange multiplier whose value changes with 
the iteration. The KKT condition can be calculated as follows: 

(20)

P2 :min
fi

F(fi) = min
fi

∑

i∈I0

sici

fi

s.t. C1 : 0 ≤ fi ≤ f0

C2 :
∑

i∈I0

fi = f0

(21)H =











∂2 F(f1)

∂(f1)
2 · · ·

∂2 F(f1)
∂(f1)∂(fI)

.

.

.
. . .

.

.

.

∂2 F(fI)
∂(fI)∂(f1)

· · ·
∂2 F(fI)

∂(fI)
2











(22)
∂2F(fi)

∂(fi)2
=

2sici

f 3i
∀i ∈ I0

(23)
∂2F(fi)

∂(fi)∂(fj)
= 0 ∀i ∈ I0, i �= j

(24)
F(f1, . . ., fI , �,µ1, . . . ,µI )

=
∑

i∈I0

sici

fi
+ �(

∑

i∈I0

fi − f0)+
∑

i∈I0

µi(fi − f0)

(25a)−
sici

f 2i
+ �+ µi = 0
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During each iteration, the Lagrange multipliers can be updated according to a spe-
cific step-size formula to gradually approach the optimal solution. The Lagrange multi-
plier must greater than zero and cannot be zero when used as a denominator. Therefore, 
when the multipliers take negative values, we update them to an infinitesimal value ε1 . 
The update formula is as follows: 

The resource allocated for each computation task can be expressed as follows: 
{

fi|i ∈ Ih
}

 . The KKT conditions and the update formula for the Lagrange multipliers are 
as follows: 

We propose a KKT-based resource allocation algorithm as shown in Algorithm 1 
to solve the target problem P2 . Initially, the parameters are initialized, and then, 
the resource allocation decisions are computed based on the Lagrange multipliers. 
During the iterative process, we update the Lagrange multiplier values for the next 
iteration according to the step size. This process continues until the gap between 
the computed resources and node computing capacity is less than an infinitesimal 
value ε2.

(25b)
∑

i∈I0

fi − f0 = 0

(25c)µi(fi − f0) = 0

(26a)�(t + 1) = max{ε1, �(t)+ δ1(t)
∑

i∈I0

(fi − f0)}

(26b)µi(t + 1) = max{ε1,µi(t)+ δ1(t)(fi − f0)}

(27a)−
sici

f 2i
+ �+ µi = 0

(27b)
∑

i∈Ih

fi − fh = 0

(27c)µi(fi − fh) = 0

(28a)�(t + 1) = max
{

ε1, �(t)+ δ2(t)
∑

i∈Ih

(fi − fh)
}

(28b)µi(t + 1) = max
{

ε1,µi(t)+ δ2(t)(fi − fh)
}
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Algorithm 1  KCRA algorithm.

4.2 � DCORA algorithm

The computation offloading based on distributed game algorithm is used to solve 
problem P1 . Specifically, we utilize the finite improvement property of games to 
progressively eliminate dominated strategies, seeking a global optimum that satis-
fies Nash equilibrium. The UAV and MEC engage in collaborative decision-making 
through multiple rounds of information sharing. This information exchange encom-
passes task status, global channel conditions and computational resource status. The 
information exchange process for each round of iteration in this algorithm is detailed 
below. 

(1)	 The UAV transmits the task status information and initial offloading decisions to 
the MEC as pilot signals.

(2)	 MEC collects all task status information, decision information and resource status 
information as a feedback signal. Then, MEC broadcasts it to all UAV to support 
decision update.

(3)	 The UAV receives the feedback information and decides whether to update the cur-
rent decision according to Algorithm  2 and strive for renewal opportunities. To 
avoid redundant and ineffective computations, each device will exclude the deci-
sion made in the previous iteration from its available action space in each round of 
iteration.

(4)	 MEC collects update applications. To avoid local optimum, MEC randomly selects 
one device from the updated device set for decision update. And it broadcasts 
information as described in (2).

Repeat the above steps until no device applies for update, the specific algorithm is 
shown below.
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Algorithm 2  DCORA algorithm.

During the running of our distributed offloading algorithm, each device parallel runs 
the algorithm 7–20 lines. The calculation complexity of the two cycles within the devices 
is O(a ∗ b) . Where a is the length of available destination decision set, which value is 
1+H . Moreover, b is the length of available channel set, which value is Kd+e − 1 . Obvi-
ously, the computation complexity of DCORA is of O(n2) . If the centralized decision-
making is adopted, all devices offload the task information to the MEC. It makes the 
iterative decision, the corresponding computation complexity is O(a ∗ b ∗ n) , which is of 
O(n3).

5 � Simulation and result analysis
5.1 � Parameter setting

Consider a cellular network covering a range of 200× 200 meters with N = 20 com-
putation tasks and H = 8 MEC nodes. Each UAV can cover an area with a radius of 
50m by D2D communication. Figure 2 illustrates a schematic diagram of the network 
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topology. The channel number of cellular link and D2D link is Kd = 3 and Ke = 4 , 
respectively. The total channel bandwidth is 35 MHz. Meanwhile, the channel gain is 
128.1+ 37.6log10dn,m and 148.1+ 40log10dn,m , respectively. Where dn,m represents the 
distance between the UAV and the offloading destination. And the channel noise is 
N0 = 10−10 mw. The task data size follows randomly distributed within [0.2, 2] Mbits. 
Furthermore, the calculation required number follows randomly distributed within 
[1500, 2000] cycle/bit. Table 1 lists the specific parameter [44–46].

5.2 � Simulation and result analysis

The proposed scheme is discussed in comparison with the following four offloading 
schemes: 

(1)	 Full local computing scheme.

Fig. 2  Network topology simulation diagram

Table 1  Parameter setting

Parameter Value

Bandwidth of channels 35 MHz

Channel gain of D2D 128.1+ 37.6log10dn,m

Channel gain of MEC 148.1+ 40log10dn,m

Number of channel of D2D,MEC 3,4

Channel noise 10−10 mw

Weight value of time and energy 0.5

Effective switching capacity of the device 10−27

Device transmission power 500 mw

Data size [0.2, 2] Mbits

Required number of CPU cycles [15002000] cycles/bit

The computation capacity of device [0.52] ×109 cycles/s

The computation capacity of DCN [6 10]×109 cycles/s

The computation capacity of MEC 40×109 cycles/s
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(2)	 Full edge offloading scheme. In this case, all tasks will be offloaded to the edge 
server. The scheme includes channel allocation and the computing resource alloca-
tion process based on KCRA algorithm.

(3)	 Full random offloading scheme. In this scenario, the devices randomly select the 
offloading destination and channel, moreover allocate computing resource accord-
ing to KCRA algorithm.

(4)	 DMCTO scheme [42]. In this scheme, the tasks offloaded to the DCN will be allo-
cated computational resources evenly. We take the average of multiple runs as the 
final result.

Figure 3a illustrates the impact of the number of iterations on the global offloading cost. 
As the number of iterations increases, the global cost for different task quantities shows 
a decreasing trend and converges to a stable value. The stable value corresponds to the 
Nash equilibrium solution, which is the optimal offloading decision. It can be observed 
that as the number of tasks N increases, the global offloading cost also increases. The 
reason is that as the number of terminal devices increases, more tasks need to be com-
puted, resulting in higher total computation time and energy consumption. Therefore, 
the cost of offloading increases with the number of devices. Figure 3b depicts how the 
number of devices affects the number of iteration times. It can be seen that as the num-
ber of tasks increases, the iteration times for task convergence also increase. The reason 
for this is that the greater the number of devices, the greater the number of feasible solu-
tions. This means that DCORA needs to perform more iterations to find the optimal 
or suboptimal solution from a large number of feasible solutions. In summary, as the 
number of iterations increases, the DCORA algorithm gradually reduces the global cost 
and slows down the convergence speed. Compared to the DMCTO algorithm, the con-
vergence performance has improved by approximately 50% , and the convergence time 
has been reduced by approximately 13.3%.

Figure 4 illustrates the impact of weights on average delay and energy consumption. 
With β increases, the average delay gradually reduced, while the average energy con-
sumption gradually increases. As β varies from 0 to 1, the DCORA algorithm exhib-
its significantly lower average delay compared to the DMCTO algorithm. Thus, there 

Fig. 3  a Relationship between iteration times and offloading cost with different tasks in DCORA and b 
relationship between the number of devices and iteration times in DCORA



Page 17 of 21Peng et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:54 	

is little difference in average energy consumption compared to the DMCTO algorithm. 
In summary, compared to the DMCTO algorithm, DCORA demonstrates superior per-
formance in optimizing task processing delay. The reason for this phenomenon is that 
DCORA can achieve perfect matching between task volume and computing resources. 
However, when using DMCTO for task computing, there will be mismatch between task 
volume and computing resources, resulting in an increase in calculation delay. Since the 
total amount of computational tasks is the same, the energy consumption of DMCTO 
and DCORA is basically the same.

Figure 5 represents the impact of data size on offloading cost. The change of data size 
will directly affect the change of delay and energy consumption. In order to highlight the 
impact of data size on offloading cost, we set the data volume for each computing task 
to be the same, with data sizes increasing from 1 Mbits to 4 Mbits. And the comput-
ing resource required for each task cn is randomly distributed within the range set in 
Table 1. It can been seen that the DCORA scheme has the lowest offloading cost than 
other offloading schemes. This is because as the data volume increases, it allows UAV 
to choose appropriate strategies for data processing, effectively reducing task process-
ing and energy consumption. With the increase in data volume, the advantages of the 
DCORA algorithm become more pronounced. Under high data volume scenarios, the 
feasibility and superiority of the DCORA algorithm can be demonstrated.

Fig. 4  The average processing delay and energy consumption change under different weights

Fig. 5  Offloading cost under different data size and offloading mode
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Figure 6 reflects the impact of the number of offloading tasks on offloading cost. As 
the number of tasks to be offloaded increases, both computational and transmission 
pressures also increase. Therefore, we compared the global offloading costs under dif-
ferent offloading modes as the number of tasks varied from 5 to 30. It can be observed 
that the global offloading cost increases with the number of tasks increasing. And the 
DCORA algorithm having the smallest increase. The DCORA algorithm gradually 
pulls ahead as the number of tasks increases compared to other offloading schemes. 
This is because, in a fixed number of channels, an increase in the number of tasks 
leads to a decrease in transmission rates for devices. Simultaneously, the increasing 
number of computational tasks results in increased task processing delays and energy 
consumption. Additionally, when the number of tasks exceeds 25, all-edge offload-
ing costs exceed the random decision mechanism. Due to the increase in the number 
of tasks, MEC computational resources cannot support all tasks. Random decision 
offloads some tasks to DCNs, alleviating the computational pressure on MEC. In sum-
mary, DCNs can effectively share the computational load of MEC, and the DCORA 
algorithm can minimize offloading costs by efficiently allocating communication and 
computational resources.

Fig. 6  Offloading cost under different number of tasks and offloading mode

Fig. 7  a The offloading cost when sub-channels bandwidth is fixed and the number of channels varies, and 
b the offloading cost of changing the number of channels when the total channel bandwidth is fixed
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Figure  7a and b depicts the impact of available channel count on offloading cost. 
The number of available channels and bandwidth is important component elements 
of communication resource. The change of channel resource will affect the transmis-
sion interference and then affect the transmission rate and delay. Figure 7a shows the 
variation trend of offloading cost under different numbers of channels, with the sub-
channel bandwidth is fixed at 5 MHz. With the increase in the number of channels 
available to the devices, except for the local computing scheme, the offloading cost of 
other schemes shows a downward trend. This is because when selecting the offloading 
scheme, the option with the least co-channel interference was chosen, reducing task 
transmission delay and energy consumption. Figure 7b shows the variation trend with 
the total channel bandwidth fixed. The offloading cost slightly increases under various 
offloading mechanisms. Although the number of channels increases, prudent channel 
decisions lead to reduced co-channel interference. The DCORA algorithm consist-
ently maintains the lowest offloading cost under varying channel conditions, demon-
strating the effectiveness of the approach.

6 � Conclusion
Aiming at the cloud-edge collaborative computing problem of air-ground integrated 
networks, we constructed an cloud-edge collaborative computing model. And we pro-
pose a computational offloading and resource allocation optimization scheme based on 
distributed game to minimize the offloading cost. Extensive simulation results show that 
the offloading cost increases when the number of tasks and the amount of data increase, 
and the changes of weight parameters and channel states affect the processing delay and 
energy consumption of the tasks. The DCORA scheme performs well in terms of con-
vergence performance and convergence speed. The proposed scheme is able to signifi-
cantly reduce the average task processing delay and always keep the minimum offloading 
cost compared the traditional schemes.
Acknowledgements
This work was supported in part by the Joint Fund of Equipment Pre-Research and Ministry of Education under Grant 
8091B032131, and the Aeronautical Science Foundation of China under Grant 2020Z066050001.

Author Contributions
YP worked in supervision, project administration, resources and funding acquisition; XG helped in data curation, writ-
ing—review and editing and formal analysis; XZ helped in conceptualization, methodology and writing—original draft; 
LL helped in validation and formal analysis; CW worked in investigation and software and LH helped in resources and 
visualization.

Funding
This work was supported in part by the Joint Fund of Equipment Pre-Research and Ministry of Education under Grant 
8091B032131, and the Aeronautical Science Foundation of China under Grant 2020Z066050001.

Availability of data and materials
Data will be made available on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 20 October 2023   Accepted: 30 January 2024



Page 20 of 21Peng et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:54 

References
	1.	 Y. Wu, C. Cai, X. Bi, J. Xia, C. Gao, Y. Tang, S. Lai, Intelligent resource allocation scheme for cloud-edge-end framework 

aided multi-source data stream. EURASIP J. Adv. Signal Process. (2023). https://​doi.​org/​10.​1186/​s13634-​023-​01018-x
	2.	 Z. Su, Y. Wang, T.H. Luan, N. Zhang, F. Li, T. Chen, H. Cao, Secure and efficient federated learning for smart grid with 

edge-cloud collaboration. IEEE Trans. Ind. Inform. 18(2), 1333–1344 (2022). https://​doi.​org/​10.​1109/​TII.​2021.​30955​06
	3.	 Z. Zhou, Z. Jia, H. Liao, W. Lu, S. Mumtaz, M. Guizani, M. Tariq, Secure and latency-aware digital twin assisted resource 

scheduling for 5G edge computing-empowered distribution grids. IEEE Trans. Ind. Inform. 18(7), 4933–4943 (2022). 
https://​doi.​org/​10.​1109/​TII.​2021.​31373​49

	4.	 M. Jiménez-Guarneros, C. Morales-Perez, J.D.J. Rangel-Magdaleno, Diagnostic of combined mechanical and electri-
cal faults in ASD-powered induction motor using MODWT and a lightweight 1-D CNN. IEEE Trans. Ind. Inform. 18(7), 
4688–4697 (2022). https://​doi.​org/​10.​1109/​TII.​2021.​31209​75

	5.	 X. Liu, Q. Sun, W. Lu, C. Wu, H. Ding, Big-data-based intelligent spectrum sensing for heterogeneous spectrum com-
munications in 5G. IEEE Wirel. Commun. 27(5), 67–73 (2020). https://​doi.​org/​10.​1109/​MWC.​001.​19004​93

	6.	 Z. Wang, H. Du, Q. Ye, HTR: a joint approach for task offloading and resource allocation in mobile edge computing, in 
ICC 2021—IEEE International Conference on Communications (2021), pp. 1–6. https://​doi.​org/​10.​1109/​ICC42​927.​2021.​
95005​95

	7.	 M. Chen, S. Guo, K. Liu, X. Liao, B. Xiao, Robust computation offloading and resource scheduling in cloudlet-based 
mobile cloud computing. IEEE Trans. Mob. Comput. 20(5), 2025–2040 (2021). https://​doi.​org/​10.​1109/​TMC.​2020.​
29739​93

	8.	 X. Liu, X.B. Zhai, W. Lu, C. Wu, QoS-guarantee resource allocation for multibeam satellite industrial internet of things 
with noma. IEEE Trans. Ind. Inf. 17(3), 2052–2061 (2021). https://​doi.​org/​10.​1109/​TII.​2019.​29517​28

	9.	 X. Liu, C. Sun, M. Zhou, C. Wu, B. Peng, P. Li, Reinforcement learning-based multislot double-threshold spectrum 
sensing with Bayesian fusion for industrial big spectrum data. IEEE Trans. Ind. Inf. 17(5), 3391–3400 (2021). https://​
doi.​org/​10.​1109/​TII.​2020.​29874​21

	10.	 O. Karatalay, I. Psaromiligkos, B. Champagne, Energy-efficient resource allocation for D2D-assisted fog computing. 
IEEE Trans. Green Commun. Netw. 6(4), 1990–2002 (2022). https://​doi.​org/​10.​1109/​TGCN.​2022.​31900​85

	11.	 M. Chen, H. Wang, D. Han, X. Chu, Signaling-based incentive mechanism for D2D computation offloading. IEEE 
Internet Things J. 9(6), 4639–4649 (2022). https://​doi.​org/​10.​1109/​JIOT.​2021.​31079​45

	12.	 A.-E.M. Taha, N. Abu Ali, H.R. Chi, A. Radwan, MEC resource offloading for QoE-aware has video streaming, in ICC 
2021—IEEE International Conference on Communications (2021), pp. 1–5. https://​doi.​org/​10.​1109/​ICC42​927.​2021.​
95006​96

	13.	 W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, H. Duan, Mobility-aware multi-user offloading optimization for mobile 
edge computing. IEEE Trans. Veh. Technol. 69(3), 3341–3356 (2020). https://​doi.​org/​10.​1109/​TVT.​2020.​29665​00

	14.	 L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan, M. Xiao, Asynchronous deep reinforcement learning for collaborative task 
computing and on-demand resource allocation in vehicular edge computing. IEEE Trans. Intell. Transp. Syst. (2023). 
https://​doi.​org/​10.​1109/​TITS.​2023.​32497​45

	15.	 L. Wang, G. Zhang, Deep reinforcement learning based joint partial computation offloading and resource allocation 
in mobility-aware MEC system. China Commun. 19(8), 85–99 (2022). https://​doi.​org/​10.​23919/​JCC.​2022.​08.​007

	16.	 X. Deng, J. Yin, P. Guan, N.N. Xiong, L. Zhang, S. Mumtaz, Intelligent delay-aware partial computing task offloading 
for multiuser industrial internet of things through edge computing. IEEE Internet Things J. 10(4), 2954–2966 (2023). 
https://​doi.​org/​10.​1109/​JIOT.​2021.​31234​06

	17.	 B. Zhang, L. Wang, Z. Han, Contracts for joint downlink and uplink traffic offloading with asymmetric information. 
IEEE J. Sel. Areas Commun. 38(4), 723–735 (2020). https://​doi.​org/​10.​1109/​JSAC.​2020.​29718​07

	18.	 W. Lu, X. Zhang, Computation offloading for partitionable applications in dense networks: An evolutionary game 
approach. IEEE Internet Things J. 9(21), 20985–20996 (2022). https://​doi.​org/​10.​1109/​JIOT.​2022.​31757​29

	19.	 X. Lv, H. Du, Q. Ye, TBTOA: A DAG-based task offloading scheme for mobile edge computing, in ICC 2022—IEEE 
International Conference on Communications (2022), pp. 4607–4612. https://​doi.​org/​10.​1109/​ICC45​855.​2022.​98389​87

	20.	 I.M. Ali, K.M. Sallam, N. Moustafa, R. Chakraborty, M. Ryan, K.-K.R. Choo, An automated task scheduling model using 
non-dominated sorting genetic algorithm II for fog-cloud systems. IEEE Trans. Cloud Comput. 10(4), 2294–2308 
(2020)

	21.	 S. Dai, M. Li Wang, Z. Gao, L. Huang, X. Du, M. Guizani, An adaptive computation offloading mechanism for mobile 
health applications. IEEE Trans. Veh. Technol. 69(1), 998–1007 (2020). https://​doi.​org/​10.​1109/​TVT.​2019.​29548​87

	22.	 S. Dong, Y. Xia, J. Kamruzzaman, Quantum particle swarm optimization for task offloading in mobile edge comput-
ing. IEEE Trans. Ind. Inform. (2022). https://​doi.​org/​10.​1109/​TII.​2022.​32253​13

	23.	 J. Yuan, Y. Xiang, Y. Deng, Y. Zhou, G. Min, Upoa: a user preference based latency and energy aware intelligent 
offloading approach for cloud-edge systems. IEEE Trans. Cloud Comput. (2022). https://​doi.​org/​10.​1109/​TCC.​2022.​
31937​09

	24.	 C. Yang, X. Chen, Y. Liu, W. Zhong, S. Xie, Efficient task offloading and resource allocation for edge computing-based 
smart grid networks, in ICC 2019—2019 IEEE International Conference on Communications (ICC) (2019), pp. 1–6. 
https://​doi.​org/​10.​1109/​ICC.​2019.​87615​35

	25.	 Y. Liu, S. Xie, Q. Yang, Y. Zhang, Joint computation offloading and demand response management in mobile edge 
network with renewable energy sources. IEEE Trans. Veh. Technol. 69(12), 15720–15730 (2020). https://​doi.​org/​10.​
1109/​TVT.​2020.​30331​60

	26.	 X. Gao, X. Huang, S. Bian, Z. Shao, Y. Yang, PORA: predictive offloading and resource allocation in dynamic fog com-
puting systems. IEEE Internet Things J. 7(1), 72–87 (2020). https://​doi.​org/​10.​1109/​JIOT.​2019.​29450​66

	27.	 Y. Dai, K. Zhang, S. Maharjan, Y. Zhang, Deep reinforcement learning for stochastic computation offloading in digital 
twin networks. IEEE Trans. Ind. Inform. 17(7), 4968–4977 (2021). https://​doi.​org/​10.​1109/​TII.​2020.​30163​20

	28.	 W. Sun, H. Zhang, R. Wang, Y. Zhang, Reducing offloading latency for digital twin edge networks in 6G. IEEE Trans. 
Veh. Technol. 69(10), 12240–12251 (2020). https://​doi.​org/​10.​1109/​TVT.​2020.​30188​17

	29.	 T. Liu, L. Tang, W. Wang, Q. Chen, X. Zeng, Digital-twin-assisted task offloading based on edge collaboration in the 
digital twin edge network. IEEE Internet Things J. 9(2), 1427–1444 (2022). https://​doi.​org/​10.​1109/​JIOT.​2021.​30869​61

https://doi.org/10.1186/s13634-023-01018-x
https://doi.org/10.1109/TII.2021.3095506
https://doi.org/10.1109/TII.2021.3137349
https://doi.org/10.1109/TII.2021.3120975
https://doi.org/10.1109/MWC.001.1900493
https://doi.org/10.1109/ICC42927.2021.9500595
https://doi.org/10.1109/ICC42927.2021.9500595
https://doi.org/10.1109/TMC.2020.2973993
https://doi.org/10.1109/TMC.2020.2973993
https://doi.org/10.1109/TII.2019.2951728
https://doi.org/10.1109/TII.2020.2987421
https://doi.org/10.1109/TII.2020.2987421
https://doi.org/10.1109/TGCN.2022.3190085
https://doi.org/10.1109/JIOT.2021.3107945
https://doi.org/10.1109/ICC42927.2021.9500696
https://doi.org/10.1109/ICC42927.2021.9500696
https://doi.org/10.1109/TVT.2020.2966500
https://doi.org/10.1109/TITS.2023.3249745
https://doi.org/10.23919/JCC.2022.08.007
https://doi.org/10.1109/JIOT.2021.3123406
https://doi.org/10.1109/JSAC.2020.2971807
https://doi.org/10.1109/JIOT.2022.3175729
https://doi.org/10.1109/ICC45855.2022.9838987
https://doi.org/10.1109/TVT.2019.2954887
https://doi.org/10.1109/TII.2022.3225313
https://doi.org/10.1109/TCC.2022.3193709
https://doi.org/10.1109/TCC.2022.3193709
https://doi.org/10.1109/ICC.2019.8761535
https://doi.org/10.1109/TVT.2020.3033160
https://doi.org/10.1109/TVT.2020.3033160
https://doi.org/10.1109/JIOT.2019.2945066
https://doi.org/10.1109/TII.2020.3016320
https://doi.org/10.1109/TVT.2020.3018817
https://doi.org/10.1109/JIOT.2021.3086961


Page 21 of 21Peng et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:54 	

	30.	 G. Qu, H. Wu, R. Li, P. Jiao, DMRO: a deep meta reinforcement learning-based task offloading framework for edge-
cloud computing. IEEE Trans. Netw. Serv. Manag. 18(3), 3448–3459 (2021). https://​doi.​org/​10.​1109/​TNSM.​2021.​30872​
58

	31.	 M. Yu, A. Liu, N.N. Xiong, T. Wang, An intelligent game-based offloading scheme for maximizing benefits of IoT-
edge-cloud ecosystems. IEEE Internet Things J. 9(8), 5600–5616 (2020)

	32.	 X. Xu, Q. Jiang, P. Zhang, X. Cao, M.R. Khosravi, L.T. Alex, L. Qi, W. Dou, Game theory for distributed IoV task offloading 
with fuzzy neural network in edge computing. IEEE Trans. Fuzzy Syst. 30(11), 4593–4604 (2022)

	33.	 P. Wang, N. Xu, W. Sun, G. Wang, Y. Zhang, Distributed incentives and digital twin for resource allocation in air-
assisted internet of vehicles, in 2021 IEEE Wireless Communications and Networking Conference (WCNC) (2021), pp. 
1–6. https://​doi.​org/​10.​1109/​WCNC4​9053.​2021.​94175​21

	34.	 X.-Q. Pham, T. Huynh-The, E.-N. Huh, D.-S. Kim, Partial computation offloading in parked vehicle-assisted multi-
access edge computing: a game-theoretic approach. IEEE Trans. Veh. Technol. 71(9), 10220–10225 (2022). https://​
doi.​org/​10.​1109/​TVT.​2022.​31823​78

	35.	 Q. Luo, C. Li, T.H. Luan, W. Shi, W. Wu, Self-learning based computation offloading for internet of vehicles: model and 
algorithm. IEEE Trans. Wirel. Commun. 20(9), 5913–5925 (2021). https://​doi.​org/​10.​1109/​TWC.​2021.​30712​48

	36.	 J. Huang, M. Wang, Y. Wu, Y. Chen, X. Shen, Distributed offloading in overlapping areas of mobile-edge computing 
for internet of things. IEEE Internet Things J. 9(15), 13837–13847 (2022). https://​doi.​org/​10.​1109/​JIOT.​2022.​31435​39

	37.	 P. Teymoori, A. Boukerche, Dynamic multi-user computation offloading for mobile edge computing using game 
theory and deep reinforcement learning, in ICC 2022—IEEE International Conference on Communications (2022), pp. 
1930–1935. https://​doi.​org/​10.​1109/​ICC45​855.​2022.​98386​91

	38.	 R.N.K. Mensah, L. Zhiyuan, A.A. Okine, J.M. Adeke, A game-theoretic approach to computation offloading in 
software-defined D2D-enabled vehicular networks, in 2021 2nd Information Communication Technologies Conference 
(ICTC) (2021), pp. 34–38. https://​doi.​org/​10.​1109/​ICTC5​1749.​2021.​94416​52

	39.	 Y. Yang, C. Long, J. Wu, S. Peng, B. Li, D2D-enabled mobile-edge computation offloading for multiuser IoT network. 
IEEE Internet Things J. 8(16), 12490–12504 (2021). https://​doi.​org/​10.​1109/​JIOT.​2021.​30687​22

	40.	 W. Fan, L. Yao, J. Han, F. Wu, Y. Liu, Game-based multitype task offloading among mobile-edge-computing-enabled 
base stations. IEEE Internet Things J. 8(24), 17691–17704 (2021). https://​doi.​org/​10.​1109/​JIOT.​2021.​30822​91

	41.	 Q.-V. Pham, H.T. Nguyen, Z. Han, W.-J. Hwang, Coalitional games for computation offloading in NOMA-enabled 
multi-access edge computing. IEEE Trans. Veh. Technol. 69(2), 1982–1993 (2020). https://​doi.​org/​10.​1109/​TVT.​2019.​
29562​24

	42.	 H. Ko, H. Lee, T. Kim, S. Pack, LPGA: location privacy-guaranteed offloading algorithm in cache-enabled edge clouds. 
IEEE Trans. Cloud Comput. 10(4), 2729–2738 (2022). https://​doi.​org/​10.​1109/​TCC.​2020.​30308​17

	43.	 X. Wu, B.S. Sharif, O.R. Hinton, An improved resource allocation scheme for plane cover multiple access using 
genetic algorithm. IEEE Trans. Evol. Comput. 9(1), 74–81 (2005)

	44.	 T. Fang, F. Yuan, L. Ao, J. Chen, Joint task offloading, D2D pairing, and resource allocation in device-enhanced MEC: a 
potential game approach. IEEE Internet Things J. 9(5), 3226–3237 (2022). https://​doi.​org/​10.​1109/​JIOT.​2021.​30977​54

	45.	 Y. He, J. Ren, G. Yu, Y. Cai, D2D communications meet mobile edge computing for enhanced computation capacity 
in cellular networks. IEEE Trans. Wirel. Commun. 18(3), 1750–1763 (2019). https://​doi.​org/​10.​1109/​TWC.​2019.​28969​
99

	46.	 F. Binucci, P. Banelli, P. Di Lorenzo, S. Barbarossa, Adaptive resource optimization for edge inference with goal-
oriented communications. EURASIP J. Adv. Signal Process. (2022). https://​doi.​org/​10.​1186/​s13634-​022-​00958-0

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1109/WCNC49053.2021.9417521
https://doi.org/10.1109/TVT.2022.3182378
https://doi.org/10.1109/TVT.2022.3182378
https://doi.org/10.1109/TWC.2021.3071248
https://doi.org/10.1109/JIOT.2022.3143539
https://doi.org/10.1109/ICC45855.2022.9838691
https://doi.org/10.1109/ICTC51749.2021.9441652
https://doi.org/10.1109/JIOT.2021.3068722
https://doi.org/10.1109/JIOT.2021.3082291
https://doi.org/10.1109/TVT.2019.2956224
https://doi.org/10.1109/TVT.2019.2956224
https://doi.org/10.1109/TCC.2020.3030817
https://doi.org/10.1109/JIOT.2021.3097754
https://doi.org/10.1109/TWC.2019.2896999
https://doi.org/10.1109/TWC.2019.2896999
https://doi.org/10.1186/s13634-022-00958-0

	A cloud-edge collaborative computing framework using potential games for space-air-ground integrated IoT
	Abstract 
	1 Introduction
	2 Related work
	3 System model
	3.1 Cloud-edge collaborative computing model
	3.2 Delay and energy model

	4 Distributed computation offloading and resource allocation scheme
	4.1 Computing resource allocation problem analysis
	4.2 DCORA algorithm

	5 Simulation and result analysis
	5.1 Parameter setting
	5.2 Simulation and result analysis

	6 Conclusion
	Acknowledgements
	References


