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A human-centered approach to image database organization is presented in this study. The management of a generic image
database is pursued using a standard psychophysical experimental procedure followed by a well-suited data analysis methodol-
ogy that is based on simple geometrical concepts. The end result is a cognitive discriminative biplot, which is a visualization of the
intrinsic organization of the image database best reflecting the user’s perception. The discriminating power of the introduced cog-
nitive biplot constitutes an appealing tool for image retrieval and a flexible interface for visual data mining tasks. These ideas were
evaluated in two ways. First, the separability of semantically distinct image classes was measured according to their reduced repre-
sentations on the biplot. Then, a nearest-neighbor retrieval scheme was run on the emerged low-dimensional terrain to measure
the suitability of the biplot for performing content-based image retrieval (CBIR). The achieved organization performance when
compared with the performance of a contemporary system was found superior. This promoted the further discussion of packing

these ideas into a realizable algorithmic procedure for an efficient and effective personalized CBIR system.
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1. INTRODUCTION

The notion of image similarity has been exhaustively stud-
ied through the last decades in the field of computer vision.
Its application includes recognition, classification, retrieval,
and database organization, while its formulation is usually
based on low-level attributes. Although such features (e.g.,
color, shape, texture, or combination of them) are consid-
ered to contribute to human judgment for image similarity,
the idiosyncrasies of human perception are not fully consid-
ered at the algorithmic stage of feature extraction. The only
exception is the recently developed research directions of rel-
evance feedback [1, 2] and active learning procedures [3],
in which the user is engaged to some iterative procedures
aiming to alter the relative importance among the bunch of
preselected features such that the modified machine-vision
procedure matches his/her perception. Although significant
progress has been reported since the early years [4], none of
the existing methodologies are able to entirely encapsulate
the semantic concepts necessary for expressing a high-level
(i.e., cognitive) similarity between images.

Information regarding visual perception is highly desir-
able and related knowledge can be acquired from diverse re-

search fields. In general, advanced perceptual systems cope
with the problem of providing, as much as possible, an op-
timal association between the outside world and the in-
ternal representation of human inspection. Evidence con-
cerning perceptual similarity is commonly provided through
psychophysical experimental paradigms followed by suitable
quantitative analysis [5, 6]. Such investigations on visual per-
ception attempt to bridge the gap between the high-level se-
mantics that people actually use to estimate image similar-
ity and the low-level visual attributes that are widely popu-
lar in computer-vision community (e.g., [6-8]). The princi-
pal information dimensions of the human visual system in-
clude shape, size, orientation, intensity, color, and texture.
In addition, several other variables, such as elevation, shad-
ows, projection, motion, and depth, play a subtler role [9]. In
order to interpret an image and/or extract properties before
representing its similarity, individuals combine the previous
set of features, known as semantic indicators or cues [8], in
a very complex and task-dependent manner. A number of
theories exist in the field of cognitive neuroscience about
how brain carries out so efficiently the task of perceptual
representations and comparisons [10-14]. For instance, the
philosophical foundation of shape representation is known
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to be isomorphism: structural or metric information stored
in the brain reflects corresponding properties of shapes in the
world, on one-to-one basis [15]. In consequence, the percep-
tion of shapes as instances of objects categories is considered
to emerge via the comparison of incoming visual stimuli (the
images of objects) with the stored representations in the hu-
man brain [11, 16].

The purpose of this work was to investigate the issue of
image similarity from the perspective of human observer, re-
garding the specific tasks of handling and querying visual
databases. Our objective was the structural organization of a
given database that would reflect the user’s intrinsic percep-
tual characteristics/strategies. In this enterprise, we meant to
surpass the stage of feature selection that required strong as-
sumptions about the character of perception. To achieve this,
we adopted a well-founded psychophysical tactic consisting
of an easy-to-run experimental procedure and accompanied
with a battery of data-learning techniques that provided an
ingenious representation of results in the form of a biplot
[17]. This was a 2D point diagram reflecting the perceptual
comparisons between all the pairs of database images. To val-
idate the emerged structure, we contrasted it with the one re-
flecting machine perception (i.e., a mathematically defined
similarity measure that compares features extracted from the
images). The surprising success of biplots, in the sense that
they not only provided a faithful representation of perceptual
differences, but also acted as an invaluable interface for visual
data mining, and motivated the further development of our
approach to an easy-to-implement algorithmic paradigm for
personalized organization and tracing of visual databases.

Regarding methodology, the concept of biplots is the
mathematical cornerstone of this paper. Biplots have been
introduced recently [17], as an extension to multidimen-
sional scaling (MDS) techniques, which is a well-developed
branch of multivariate statistics dealing with relational data
(i.e., data in the format of a distance matrix) [18]. A “biplot”
is defined as a low-dimensional (usually, but not necessar-
ily, 2D) plot that simultaneously represents, in a meaning-
ful way, the objects under study, the relationships between
these objects, and the variations in the data ensemble. The
basic rule for interpreting these point diagrams is that sim-
ilarity between objects is reflected by their closeness on this
diagram. Their main characteristic is that the explicit (i.e.,
using features) representation of the encountered objects is
not required. In our case, the ensemble of images in the vi-
sual database is the set of objects to be represented as a point
sample in the biplot. The structure emerging in this point di-
agram will reflect all the perceptual comparisons, and there-
fore portrays the human-centered organization of the given
database.

To ease the presentation, we avoided the standard divi-
sion of the presented material to methods and experimen-
tal results. We preferred instead to present all the individ-
ual steps employed in our analysis and to directly exem-
plify them by providing the corresponding outcomes simul-
taneously. At the end, we summarize what we have learned
from this exercise and conclude by suggesting easy-to-
implement algorithms for user-tailored content-based image

retrieval (CBIR) and friendly visual data mining from image
databases.

In our experimentations, Ny = 750 photographic im-
ages were selected, which have been formerly preassigned by
experts into C = 15 distinct classes. Each class contained
N = 50 perceptually similar images. Using user-defined (per-
ceptual) image similarities and vector median [19] estima-
tion, a representative image is originally selected from each
category and considered as class prototypical image. Then
the organization of the utilized database starts by compar-
ing the class prototypes and continues by feeding the results
of perceptual comparisons into an MDS technique. The re-
sulting biplot shows the 15 class prototypes organized in a
low-dimensional (reduced) space. This visualized result is
compared with the one corresponding to similarities esti-
mated using an algorithmic procedure from the recent com-
puter vision literature [20]. The entire image database is fi-
nally organized using the appending technique [21], an effi-
cient geometrical scheme that incorporates any given image
directly into the precomputed reduced space of prototypes
in a way that geometrical relationships reflect original per-
ceptual similarities. By measuring the similarity (based on
perceptual judgment) of each image to be appended with
only the class prototypes, robust and economical compar-
isons are achieved. The evaluation of the perceptually de-
fined biplot is carried out using two different data analy-
sis perspectives. First, the class-discrimination power of the
resulting mapping is assessed using the multivariate Wald-
Wolfowitz test (W W -test) [22]. Then, a nearest-neighbor re-
trieval scheme is built in order to estimate the precision per-
formance when the emerged cognitive terrain is used as inter-
face for database searches. For comparison purposes, results
are also provided regarding indexing and retrieval based on a
competitive machine-vision scheme that was recently devel-
oped by the authors [20, 23].

The rest of this paper is organized as follows. In Section 2,
some aspects of perceptual similarity in association with vi-
sual recognition and categorization are described. The per-
ceptual organization of the utilized image database is pro-
vided in Section 3. In Section 4, the induced database or-
ganization is evaluated. A simplified algorithm for user-
dependent CBIR is suggested and demonstrated in Section 5.
Finally, a concluding discussion is provided in Section 6.

2. PERCEPTUAL SIMILARITY AND CATEGORIZATION

Visual similarity of images is considered to be an explicit
metacognitive process that is directly related to psychophys-
ical and physiological mechanisms of information process-
ing, taking place in a distributed network of distinct brain
regions. Judging the amount of image similarity is not con-
sidered to be a primary function of our cognitive system.
Instead, some neuroscientists hypothesize that it arises as a
byproduct of image classification and categorization [11, 16].
Given the initial sets of visual features from a pair of incom-
ing stimuli (i.e., objects or images), their comparison might
include a series of pattern recognition processes. If the ap-
pearance of visual objects is not affected (or altered) by any
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extrinsic factors, the visual recognition module simply com-
pares the objects via template matching. Otherwise, the cor-
respondence problem has to be solved first [10, 16]. The out-
put of this similarity judgment depends on the accuracy of
all intermediate steps.

According to reported psychological studies [15], simi-
larity relations could be approximated through a geometri-
cal modeling that considers the images as points in a coor-
dinate system, such that the observed dissimilarities between
images correspond to the metric distances between the re-
spective points. However, it was proven that visual similarity
does not appear to fully accord with predictions of a met-
ric model, since—at least—symmetry does not hold [24].
To include such a behavior, the original model was modi-
fied in such a way that a comparison between the intrinsic
visual information of the viewed image and some internally
stored representations of image categories was encountered
before the similarity estimation. That is, in order to estimate
the amount of similarity between two given images, the vi-
sual system is required to originally determine the category in
which each image belongs. For example, an image containing
a tiger walking across a river is automatically classified by an
individual into some “Tiger category.” The images having no
tiger-related pattern at all and which are to be compared with
the previous image are considered to be totally irrelevant to
that. Such a memory-based line of thinking can be directly
related with the process of categorization, a task that requires
the system to make sense of distinct visual primitives that are
reliable class identifiers (i.e., such as those used in shape rep-
resentation [15]).

A straightforward way to conceptualize the above ideas
is to associate the images with points in a properly parame-
terized feature space and define a distance function within,
so that each cluster of points corresponds to a distinct class
of images. The relative location of the corresponding im-
age point with respect to a specific cluster reflects the de-
gree of image similarity to some predefined class category.
Originally, the visual system carries out a huge number of
measurements in a high-dimensional and, probably, rich-
structured space. However, the estimation of pairwise image
similarity is channeled through the formal categorization of
the involved images into the stored representations in the hu-
man brain. In this sense, a similarity measure becomes equiv-
alent to determining location differences (of the images to be
compared) within a lower-dimensional space defined by the
class prototypes [16]. It was exactly this doctrine that moti-
vated the present study and guided the individual steps dis-
cussed in the following sections. In a nutshell, prototypical-
images were selected and the corresponding perceptual simi-
larities were defined and used in revealing the structure of the
space in which these prototypes resided. A low-dimensional
sketch of the prototypes’ space (i.e., biplot) was calculated
and further used to incorporate the whole set of database im-
ages.

3. PERCEPTUAL DATABASE ORGANIZATION

Image database organization is the procedure of classify-
ing semantically relevant images having (probably, but not

TasLE 1: Categories of the utilized experimental image database.

ID Categoryname ID Categoryname ID Category name

1 Airplanes 6 Fireworks 11 Mountains
2 Balloons 7  Flowerpots 12 Sea

3 Butterflies 8 Flowers 13 Sunrises
4 Cars 9 Grassland 14 Tigers

5 Eagles 10 Horses 15 Views

necessarily) similar visual attributes into discrete perceptual
groups. In classical CBIR, the systems need not understand
image semantics, but merely assign each image to a spe-
cific category using similarity measures based on low-level
characteristics [4]. It is only the last few years that research
is directed towards similarity measures realized based on
high-level visual attributes [6-8]. Ideally the organization of
an image database would align with human perception the
database structure reflecting all the perceptual similarity re-
lations among images. In what follows, we describe our at-
tempts to organize a given database in fully accordance with
human perception.

The ensemble of utilized images was a heterogeneous
subset of the Corel gallery, including Ny = 750 still color im-
ages of 24 bpp each, given in portable pixel map format of
size either [192 x 128] or [128 x 192] pixels. The dataset con-
tained a wide variety of images, from animals and plants, to
views and natural images. Originally, it was formed by pre-
assigning the images into C = 15 distinct classes (e.g., cars,
eagles, flowers, etc.) as introduced in the SCHEMA reference
system [25]. These are presented in Table 1. By incorporating
the coherent opinion of five individuals, N = 50 semantically
relevant images were kept for each category to form the en-
tire data collection. The specific database was created in a way
that is considered standard in CBIR-research community, in
the sense that could facilitate the subsequent estimation of
validation indices (see Section 4), which were necessary for
the quantitative evaluation and comparison of the obtained
results [4].

3.1. Representative images: the space
of class prototypes

Prototyping was the first stage of our experimental procedure.
It was dictated by the theoretical considerations described
in the previous sections and aimed at the definition of an-
chor points in the perceptual space. Apart from this theo-
retical motivation, practical reasons (related with the extent
of the subsequent psychophysical stage) made the extrac-
tion of representative images necessary. To make this selec-
tion as accurate as possible, we adopted the following scheme
with the scope of selecting a single prototypical image from
each distinct class based on perceptual similarity judgment.
The display configuration for the selection process is shown
schematically in Figure 1. Each time, a pair of images from
a specific class was presented in randomized order on the
screen, denoted as C; and Cj, with i, j = 1,2,...,N and j +i.
The users could insert the degree of similarity for each pair of
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Ficure I: The display configuration used in our experiments for
judging image similarity between images belonging to the same cat-
egory, using perceptual attributes.

displayed images, via the four buttons shown at the bottom
of the screen. The extreme-left button indicated the mini-
mum degree of similarity (i.e., zero (0)), while the rightmost
button the maximum (i.e., three (3)). Using paired compar-
isons to measure image similarity, all couples of stimuli were
finally compared. Thus, for each pair of images, the users as-
signed a number proportional to perceived similarity in the
4-point scale of Figure 1.

To reinforce the experimental procedure, five subjects
participated in the similarity estimation process and the re-
ported results were obtained by averaging the computed
measurements. By calculating all the pairwise similarity in-
dices, C = 15 similarity matrices of sizes N X N (N = 50 in
our case) were obtained, Sk(4, j), with i,j = 1,2,...,N and
k = 1 : C. In order to estimate the prototypical image Pi
from each distinct category, we followed a procedure that is
reminiscent of the vector median algorithm [19]. We iden-
tified the image (among the N belonging to that category)
that could be considered as the class centroid. Algorithmi-
cally, this was accomplished readily by first taking the sum
across all rows of each proximity matrix S and then iden-
tifying the entry of maximum in the produced vector. The
image corresponding to this maximal sum of similarities was
selected as our class prototype:

N
Py — j,ie1 = {argmax (ZS;J:’,J’))},

i=1

j=1,2...,N, k=12,...,C

(1)

Figure 2 presents the 15 representatives extracted from all
C = 15 image categories. This set of images, despite the fact
of being a very sparse sampling from the multidimensional
perceptual space, can be considered as a meaningful coarse
outline. It is denoted hereafter as the set of class prototypes.
In short, the selected prototypes (using the previously de-
scribed metacognitive process) appear to be those members
that most reflect the redundancy structure in their own cat-
egories. Taking into consideration that the preassignment of
database images into semantic classes was implemented so
as to maximize the common visual information, the repre-
sentative images of Figure 2 can be thought of as the refer-
ence points (semantic landmarks) of the perceptual space.
Perceptual similarities between any pair of database images
could therefore be approximated after investigating the per-
ceptual similarities between these prototypes. The problem is
now transformed to that of learning the structure in the set
of class prototypes.

3.2. Asketch ofimage-perception space: the
cognitive biplot of prototypes

According to Edelman’s theory of representation [11, 15], to
make sense of a stimulus means to locate it in a low-dimen-
sional psychological space. Psychophysical experiments are
employed in order to learn and parameterize this space. Very
often subjects are asked to register their estimation about
stimuli similarities during paired presentation of different
stimuli spanning the space to be explored. MDS techniques
are then applied to the collected data as a means of approxi-
mating the inaccessible space. In our case, the different pro-
totypical images played the role of the indicative set of stim-
uli, the subjects denoted the amount of perceptual similar-
ity between any pair of prototypes, and MDS provided the
sketch of perceptual space. MDS is defined as any procedure
that, given a dissimilarity matrix corresponding to a set of
objects (here the perceived stimuli), configures points in a
low-dimensional space (usually 2D) as images of the objects
in a way that the interpoint distances approximate as much
as possible to the original pairwise dissimilarities [18].

To arrange the set of prototypes {Pi}i-1.c in an r-
dimensional space (r < C), a similarity matrix of C-
prototypes needs to be created, based on the perceptual judg-
ment among these class representatives. Using the display
setup shown in Figure 1, the C-prototypes (C = 15 in our
case) were presented in pairs and the users were asked to
register the perceived similarities by selecting a value in the
range [0-3]. All the pairs were portrayed in randomized or-
der and the values were collected, after averaging across all
subjects, in order to form the [C X C] similarity matrix S.
These values were weighted by integer numbers in the range
[0-14] conveying the information regarding the relative or-
dering of similarity. This modulation was considered neces-
sary, since during the initial round of experimentation we
noticed that the similarity level of zero dominated the mea-
surements. Taking into consideration that the perceived sim-
ilarity depends on the general context of the image pairs to
be contrasted, we introduced row vectors W;, i = 1,2,...,C,
with each one corresponding to a specific prototype and
having values W;(j), j = 1,2,...,C a certain permutation
of the set {0,1,...,C — 1}. Putting it in words, since the
“tiger” image P4 is considered to be perceptually closer to
the “horse” image P, the weight W4(10) = 1 should be
defined, and since the “grassland” prototype comes next, the
weight W14(9) = 2 should be defined accordingly, and so on
(while W14(14) = 0). Using these modulating weights, the
similarity matrix became S’ = § -* W (with “-*” denoting
array multiplication). Finally, the entries of 8’ matrix were
normalized (by division with the maximum) so as to lie in
the range [0-1].

The above matrix was converted to a dissimilarity ma-
trix D, D(i,j) = 1 — S§'(i,j), which in turn underwent
a transformation step, via the “minimum-rule” D(i, j) «
min(D(i, j), D(j,i)) to become symmetric. The original
asymmetric nature of D was due to the fact that percep-
tual similarity between prototype images P; and P; was es-
timated by interchanging each time the reference image. The
estimated [C X C] dissimilarity matrix was next entered to
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F1GURE 2: The selected class prototypes.

aroutine performing the classical (metric) MDS algorithm
[26] (e.g., using the Matlab implementation of cmdscale
routine). The output was given by the formula Yicy,) =
MDS, (D), defining a set of C-vectors lying in an r-
dimensional space (r < C, is a user-defined parameter)
[18, 26]. In this way, the C = 15 class prototypes were em-
bedded as a r-dimensional point set, with interpoint dis-
tances being analogous to perceptual dissimilarities between
images. In general, the higher the dimension r is, the more
reliable this representation is. However, the use of small val-
ues for r (i.e., r < 4) enables a visualization that can pro-
vide direct insight into the structure of perceptual space. The
creditability of this low-dimensional diagram can be evalu-
ated using the following index:

Ee 2§j>1D(i,J’) —lyi - )’j”Lz

Using r = 2, we obtained E = 0.91, a result with twofold sig-
nificance. It indicates that the image-perception space was in-
deed low-dimensional as predicted by theory (see Section 2),
and moreover that a trustworthy representation of the space
of image prototypes could be provided in a convenient 2D
format.

In Figure 3, the organization of class prototypes reflected
in the MDS-based point diagram is given in the form of a 2D
biplot in order to ease interpretation (the computed 2D co-
ordinates have been used to place the corresponding thumb-
nails). The displayed biplot not only approximates the per-

(2)

ceptual space, but also provides a self-explanatory represen-
tation of the structure in the set of class prototypes.

Not surprisingly, the above 2D visualization reflects the
influence of color. This is in agreement with the current be-
lief in CBIR, according to what color-related features are suf-
ficient characteristics for organizing color-image databases.
In addition, color information has been generally recognized
as the most important indicator of the general “mood” of
an image and seems to correlate well with semantics [6-8].
In Figure 3, for example, images with prominent blue color
are located at the bottom-left region of this biplot. More-
over, the categories of “Airplanes” and “Eagles” tend to gather
together and deviate from “Views,” “Mountains,” and “Sea”
classes. On the other hand, images with green hue appear
at the bottom-right corner; among them, the “Tigers” and
“Horses” categories tend to cluster together due to their close
semantic meaning. Thus, the prototypical images seem to be
distributed into different color-related regions in the derived
diagram. Apart from this, the semantic knowledge of the pre-
assigned classes is also reflected in the shown geometrical ar-
rangement of selected class prototypes.

3.3. Asketch of machine perception based on
derived image similarities

To fully justify the previous biplot of Figure 3, we com-
pared it with the corresponding one arising from the pair-
wise comparisons of class prototypes using a standard image-
similarity measure from machine-vision literature. Although
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F1GURE 3: 2D biplot reflecting the perceptual differences between the class prototypes.

information derived from high-level semantics may greatly
facilitate image similarity matching, the current state of
computer-vision systems have not yet reached to a gener-
ally admissible accuracy level, not to mention that semantic
information is not easily and automatically extracted from
general-purpose photographic images [6]. Since color is ac-
tually an important cue for organizing our database (images
belonging to Corel dataset contain profound color informa-
tion in contrast to texture and shape attributes), we relied on
a recently introduced algorithm for expressing color-image
similarity [20, 23]. The algorithm relied on the extraction
of a set of low-level characteristics (expressing the color spa-
tial layout) from each image to be compared and the subse-
quent statistical comparison using the multivariate W W -test
[20, 22]. To align well with the human color perception, the
whole algorithmic procedure was implemented in the per-
ceptually uniform CIE-Lab color space. Dissimilarities were
computed for all pairs of class prototypes and tabulated in
a [C x C] distance matrix that entered the MDS routine as
previously (Section 3.2). The produced geometrical arrange-
ment of the class prototypes is given in Figure 4 (for r = 2,
the E = 0.73).

The positive influence of color differences in the pairwise
comparisons of class prototypes is clearly apparent in the bi-
plot of Figure 4. However, there are several semantically ir-
relevant classes clustered together. For instance, the “Flower-
pots” category is grouped together with the “Sea,” “Moun-
tains,” and “Views” categories. The “Cars” and “Balloons”
classes also tend to mix in this diagram. In addition, other
class prototypes that subjects perceived as close enough in

perceptual space (see Figure 3) are arranged as totally irrele-
vant in the specific machine-vision-based biplot of Figure 4
(e.g., the “Flowerpots,” the “Flowers,” and the “Grassland”
prototypes).

3.4. Perceptual organization of image database:
the appending technique

The biplot of Figure 3 provides only a rough representa-
tion of the perceptual space geometry regarding the given
database, since its computation involved merely the C = 15
class prototypes. Despite being very informative regarding
the perceptual variations in the database, it does not pro-
vide any information about the detailed structure of the
whole image collection. In principle, such information could
be obtained by repeating the procedure of Section 3.2 for
the whole set of Ny = 750 images. This would result in
an extended biplot, that is, a point diagram of 750 vectors.
Since the class prototypes were selected among the 750 im-
ages, this extended biplot should contain the original one
of Figure 3, making clear how semantic classes are formed.
However, there was a practical problem in implementing
this idea. The amount of necessary pairwise comparisons
((1/2) x 750 x 749) was prohibitive. To surmount this prob-
lem, we adopted the consideration that in order to locate a
stimulus in perceptual space, it is enough to define its simi-
larity with respect to some stored prototypes (see Section 2).
Therefore, only 750 X 15 comparisons should be registered
instead. Fortunately, there was available in the literature [21]
an algorithmic procedure for augmenting a precomputed
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F1GuUre 5: The experimental display for expressing perceptual simi-
larity between a query image Q; and the set of class prototypes Py.

MDS-based point diagram. This enabled us to incorporate
the “projection” of the entire image database in the biplot of
Figure 3.

At the experimental stage of this procedure, we used the
setup shown in Figure 5. All database images were compared
against the C = 15 class prototypes Py, which were presented
simultaneously on the top of the display. In a randomized or-
der, a database image was selected and displayed at the bot-
tom. For each “query”’-image Q;, the subjects were asked to
assign the degree of its similarity with each one of Py. This
resulted in a [C X 1] similarity vector, which was then modu-
lated by weights denoting the rank ordering of prototypes (as
described in Section 3.2). These Ny-vectors were gathered in
a [C X Ny] matrix, the entries of which were normalized (by
division with the maximum) so as to lie in the range [0 — 1].
Similarities were then transformed to dissimilarities and tab-
ulated in matrix L.

After estimating the perceptual dissimilarities between
the database images and the class prototypes, it became feasi-
ble to add in the biplot of the latter the points corresponding
to the former. This task was accomplished via Gower’s tech-
nique [21] employed in a batch mode [26]. In this way, the
geometry of the augmented point diagram reflected all the

Grassland

Sunrises

Balloons &

Butterflies

Fireworks

pairwise relations even among images that had not been di-
rectly compared by users.

Summarizing the so-called appending-technique [26], we
remember that Y|cx, are the coordinates of class prototypes
{Pr}k=1.c in the original biplot of Figure 3 (produced via
MDS with r = 2). Using all the interset dissimilarities be-
tween {Px}r=1.c and {Q;};=1.n, tabulated in L, we computed
the coordinates of Q; on the biplot (i.e., the appended points)
via the following equation:

1 ~1 T
Y =5 (YY) y'dr)”,
2 (3)

dLcxn,) = diag(B) - f[lxNU] -L

where B = —(1/2)HD*H is a matrix related to the centering
operator Hicxc) (H(i, j) = 6;j — 1/C) that is applied to the
dissimilarity matrix of the class prototypes after squaring its
elements, that is, D* (i, j) = D(i, j)?.

The whole image database could therefore be presented
in a point diagram in which the coordinates of the class pro-
totypes are the same as in the biplot of Figure 3. The rest
of the images are expected to scatter around these reference
points reflecting the detailed perceptual organization of the
database. Figure 6 displays the augmented biplot. To effi-
ciently visualize this result, different labels (i.e., symbols and
colors) have been assigned to images from distinct classes.
It is clear that all images coming from the same class are
grouped around their initially selected prototypes (shown via
filled black diamonds). The high concentration of the differ-
ent categories in the 2D projection space is indicative of the
accurate classification performance reported in the previous
sections and the consistency of the visualization provided via
the appending technique. Naturally, there exist some coupled
categories that tend to mix together in the meaningful terrain
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FIGURE 6: Perceptual organization of the entire database based on
the efficient approximation facilitated via the appending technique.

of Figure 6, such as the “Tigers versus Horses,” “Airplanes
versus Eagles,” “Mountains versus Views,” and “Mountains
versus Sea” categories.

A principal advantage of the encountered approach is
that the entire database can be organized using the 2D inter-
face provided via the appending technique. Perceptual simi-
larities between images that had never been estimated could
be easily inferred by the geometry of the biplot in Figure 6. In
this biplot, semantics have been embedded during the defi-
nition of landmarks. We consider prototyping a highly cog-
nitive task that—by defining reference points in perceptual
space—influences the subsequent estimation of perceptual
similarities. These semantics can be further augmented eas-
ily by incorporating the biplot in a GUI environment. The
later could facilitate efficient tracing of the database and vi-
sual data mining as well. It is the scope of Section 4 to provide
a quantitative validation of our belief that the employed per-
ceptual charting of the database constitutes a useful tool for
the efficient handling of image collections. In what follows,
we have restricted ourselves to measure the gain in organiza-
tion performance.

4. EVALUATION OF THE PERCEPTUAL
DATABASE ORGANIZATION

The suggested cognitive organization of the utilized image
database was characterized regarding class separability and
effectiveness in a simple CBIR scheme. To enable compar-
isons, we included also the results from the application of the
machine-vision methodology discussed in Section 3.3.

4.1. Testing class separability using the
Wald-Wolfowitz test

In order to fully justify the term “discriminative,” we con-
sidered it necessary to measure the degree of separability

between the different image categories in the resulted cog-
nitive biplot. To this end, we encountered the multivariate
Wald-Wolfowitz test (W W -test) [22], a nonparametric test
dealing with the multivariate two-sample problem. The spe-
cific test compares two different samples of vectorial obser-
vations (i.e., two sets of points in RP) by checking whether
they form different branches in the overall minimal spanning
tree (MST) [27]. The output of this test, which is expressed
by the indices R and W as described in the appendix, can
be expressed as the probability that the two point samples
are coming from the same distribution. Its great advantage is
that no a priori assumption about the distribution of points
in the two samples is a prerequisite [20, 23].

W W -test was applied to pairs of image classes. For each
pair of classes to be compared, the corresponding points
from the biplot in Figure 6 were the vectorial inputs. The
output was a value of the W-index. The more positive the
W-value is, the higher the overlap between the correspond-
ing point distributions is, and therefore the lower the class
separability. Ideally, each individual image category should
not mix together in the original perceptual space, since our
cognitive judgment clearly separates them apart (as realized
by the five individuals at the beginning of our psychophysical
experiment). However, in the 2D cognitive biplot of Figure 6,
there are some classes that seem to overlap. A few examples
are provided in Figure 7, where the images belonging to over-
lapping categories are compared using the W W-test. In each
single diagram, two sets of vectors corresponding to the 100
images (comprising the two different categories to be con-
trasted) are compared in the 2D space. The aggregate MSTs
are constructed using Prim’s algorithm [28] and the nodes
corresponding to different categories are labelled differently
(e.g., in Figure 7(a) the brown crosses are associated with
the “Tiger images,” while the green cycles are associated with
the “Horse-images”). It can be easily noticed that the points
corresponding to different samples constitute, roughly, dif-
ferent subtrees in the overall MST. The measured indices
provided by the multivariate W W-test are (a) R = 22 and
W = —5.8431, (b) R = 14 and W = —7.4541, (¢c) R = 27
and W = —4.8351,and (d) R = 7 and W = —8.8653. This
clearly indicates the difference in the distribution governing
each distinct image class.

The lowest class separability is detected between the
“Mountain” and “Views” categories (Figure 7(c)). By look-
ing at the prototype images of the corresponding classes (de-
picted in Figure 2), one may notice that they seem to be—
semantically—very closely related. Such observations might
prove significant in the original preassignment of database
images in different categories. The previous two categories
could be considered as a unified image class, reducing fur-
ther the overall processing time of the appending technique
as well as computational complexity.

To fully justify the previously reported class separability
results, which were measured in the approximated perceptual
space, we carried out the corresponding measurements in a
space approximating the machine-vision perception (as this
is emerging from the methodology in Section 3.3). Dissim-
ilarities were estimated for all the pairs of images in the
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—5.8431, (b) Airplanes versus Eagles: W = —7.4541, (c¢) Mountains versus Views: W = —4.8351, and (d) Mountains versus Sea: W =

—8.8653.

database. The application of MDS (using r = 2, E was esti-
mated ~0.73) resulted in the point configuration shown in
Figure 8 (left panel). For visualization purposes, two cou-
pled pairs of categories are depicted in Figure 8 using the
same symbols as in the corresponding diagrams of Figures
6 and 7 (while all the remaining images are depicted as a
swarm of black dots). Apparently, the distinct image cate-
gories are relatively mixed together in the 2D reduced space,
having low inter-cluster density. By applying the W W -test to
the two depicted pairs of classes (see Figure 8, right panel),
the measured indices were found to be (a) R = 44 and
W = —1.4098 for the “Tigers versus Horses” couple and
(b) R = 46 and W = —1.0072 for the “Airplanes versus Ea-
gles” couple. As it was mentioned earlier, the bigger value of
the R- and the higher value of the W-parameters indicate
the lower discrimination power of the machine-vision ap-
proach (contrasted to Figure 7). By systematically comparing
(all pairs of different categories) the results of W W -test for
both database organization methodologies (i.e., cognitive bi-
plots and the machine-vision-based scheme), we verified that
a much higher class separability was achieved with the new
approach. These outcomes motivated the inclusion of term
discriminative in the name “cognitive biplot” so as to fully

characterize the performance of the computed organization
terrain shown in Figure 6.

4.2. Using the approximated perceptual space
for searches in the database

The high class separability in the produced biplot motivated
us to further investigate its potential use for efficient image
retrieval purposes. In the field of CBIR, query-by-example
search engines are highly popular, since they can be con-
structed readily. The definition of a proper image-similarity
measure is practically all that is needed. Using this measure,
a comparison of the query-image with all the images in the
database is performed and the most similar ones are retrieved
(i.e., a search for nearest neighbors in the feature space im-
plied by the similarity function). In this study, we found it
interesting to measure the performance of a search engine
built over the cognitive discriminative biplot. The perspec-
tive would be that after organizing a database as above, a
query image could be easily compared with the semantic
prototypes (in the setting of Figure 5), and using the ap-
pending technique could be placed on the discriminative ter-
rain of Figure 6. There, the geometrical relationships actually
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separability using W W-test, (a) Tigers versus Horses (W = —1.4098), (b) Airplanes versus Eagles (W = —1.0072).

extrapolate the measured perceptual comparisons to the
whole database, and therefore the points close to the “projec-
tion” of the query image would correspond to the images to
be retrieved from the database. To fully justify the above idea,
we used an experimental procedure that is common practice
in current CBIR research, that is the construction of precision
(Pr) and recall (Re) curves for the corresponding query-by-
example search engine [29].

In short, each image in turn was considered as the query
image, and therefore its appended “projection” on the bi-
plot of Figure 6 was the starting point of the search. We es-
timated all the Ny — 1 distances between the query-related
point and the rest of the “projections” using the Euclidean
norm (i.e., all computations involved a subset of distances
Dy(iyj) = 1™ = Y™, i,j = 1,2,...,No), and per-
formed the ranking of them. The sorted list reflected an or-
der for the database images that enabled the selection of the
first T images as the most similar ones, where T is a user-
defined parameter controlling the size of the selected list of
images returned by the engine (e.g., T = 10 refers to the
first top 10 images). In the evaluation of the search results,
we exploited the fact that images had been assigned to dis-
tinct semantic classes. Let N be the number of actually sim-
ilar images (i.e., N = 50 in our case) and CR the number of
images among the T selected ones that actually come from
the same class (i.e., correct results). The well-known indices
Pr and Re were calculated as usual, that is, Pr = CR/T and
Re = CR/N [29]. The procedure was repeated for all the N-
images in each class and the individual indices were finally
averaged (within each class). For the sake of comparison, we
reported the two indices for the corresponding search engine
employing the machine-vision similarity of Section 3.3.

Figure 9 contrasts the retrieval performance of the two
search engines showing the precision index as a function of

the number of the selected list, T (T = 5 : 5 : 50), for all
the C = 15 image categories separately. The depicted char-
acteristic symbols used in each corresponding curve are in
exact analogy to those used in Figure 6 to visualize the im-
ages coming from different categories. It is clearly evident
that the cognitive-biplot-based approach outperforms signif-
icantly (roughly 40%) the machine-vision one in terms of
accuracy in retrieval. An interesting remark is that the “Sun-
rises” class depicted by the green-star symbol holds the ab-
solute retrieval score of 100% as shown in Figure 9(a). The
specific category is well organized and clearly separated in the
projection space of Figure 6. In Figure 9(b), the correspond-
ing Pr index shows much lower values (and this is one of the
“best-behaving” classes).

Finally, the retrieval performance of the two different
schemes, as methods for accessing image databases, was eval-
uated following the standard procedure of constructing the
precision-versus-recall diagram.

Based on the depicted curves of Figure 10, it is clear that
the perception-dependent scheme outperforms, in terms of
retrieval accuracy, the machine-vision one at an average rate
of 50%. For example, taking the T = 10 most similar images
(provided by the second label point in each curve), the cog-
nitive biplot maintains a precision of 0.9, while on the other
hand the machine vision reaches approximately 0.375. More-
over, the Pr index follows a stable slope with the increment
of the selected list T. One should bear in mind that the re-
trieval process has been implemented for both approaches in
a 2D reduced coordinate space. Specifically, for the machine-
vision scheme this was quite far from the optimal condition
(this would be expected from the measured E-index which
was ~0.73 for the point diagram of Figure 8). Using more di-
mensions to approximate the space of machine perception, a
better performance could be achieved for the corresponding
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of the selected list T of images for (a) the cognitive dependent scheme and (b) the machine-vision-based methodology.
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search engine. The precision index of the computer-vision-
based methodology was slowly rising with the increment
of the number of dimensions. By residing in a 3D projec-
tion space the Pr index exhibited an increment of ~7.5%
(e.g., for T = 10, the Pr score was 0.45), in 4D the incre-
ment was ~13.5% (e.g., for T = 10 the Pr score was 0.51),
and so forth. However, its maximum performance (when the
number of space dimensions coincided with the number of
database images) was ~11% lower than the performance of
the cognitive-biplot-based scheme.

5. THE PERSPECTIVE: A PRACTICAL ALGORITHM
FOR USER-DEPENDENT DATABASE
ORGANIZATION

We are concluding by proposing a more realistic algorithm
for organizing image databases. The scope of this section
is not only to provide an upshot of this work, but also to
demonstrate how the presented ideas can be implemented
under the pragmatic scenario of an unknown database
needed to be explored by an individual user. In such a case,
semantically distinct classes will not be available beforehand
(even the existence or the exact number of classes would
be undefined), and therefore prototyping cannot be realized
based on vector-median algorithm.

Since humans are natural experts in analyzing visual in-
formation, we expected that a user could declare readily
some prototypes when faced with the variation of the im-
age database presented in an orderly manner. Taking into ac-
count that perceptual space (at least regarding the perception
of a given image database) is low-dimensional, we predicted
that it could be recovered even from prototypes selected in
a very approximate way. Under this perspective, we experi-
mented as follows.

First, a very small portion of images (7.5%) was select-
ed—rvia random sampling—from the database. A biplot rep-
resentation of machine-vision perception was computed us-
ing this sample of 100 images (similarities were estimated
based on histogram intersection, which is the simplest,
fastest, and most popular technique [30]). The correspond-
ing thumbnails were then incorporated giving rise to a dis-
play in which the user could locate easily a restricted num-
ber (e.g., 5 or 10) of prototypes well suited for the given
database. In the utilized application, the user was not only
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FiGUre 11: (a) The preliminary biplot (based on machine perception) used for prototyping. Based on the 10 highlighted representative
images, a cognitive-biplot approximating user’s perceptual space was estimated; (b) the perceptual organization of the whole image database;
(¢) the precision curves of a search engine build over the discriminative terrain shown in (b).

naive with respect to the database content, but also freely
allowed to select the number of prototype images that best
reflected his/her intuition. After this selection, the percep-
tual organization of the whole database proceeded as de-
scribed in Sections 3.2 and 3.4. Figure 11 demonstrates these
steps and includes the precision diagram associated with the
new cognitive biplot. In the depicted organization scheme
of Figure 11(b) as well as the precision curves presented in
Figure 11(c), we have used the same labels (i.e., symbols and
colors) for representing the distinct image categories as those

used in all earlier stages of our work, in order to accomplish
a straightforward comparison with what has been demon-
strated so far.

Despite the encountered approximation (i.e., only ten
prototypes were chosen in a “fast mode”), a search engine
of high performance was built over the new biplot. Inter-
estingly, some categories exhibit higher retrieval accuracy
when compared with the accuracy measured in Figure 9(a)
(e.g., “Airplanes” depicted with blue bubbles, “Sea” sym-
bolized using cyan squares, “Eagles” depicted by magenta
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crosses), while others exhibit slightly lower retrieval (e.g.,
“Flowers” represented with the blue triangles). However, we
should underline a main difference between Figure 9(a) and
Figure 11(c), that is, the latter is based on single-subject sim-
ilarity evaluation. The results actually confirmed our origi-
nal predictions and showed that the presented approach de-
serves further consideration for building efficient querying
tools that can readily be adapted to the input database and
also get tailored to user’s demands.

6. DISCUSSION

Our inspiration to pursue this study was drawn from Edel-
man’s work on visual representation and recognition [11,
15, 16]. The existence of a low-dimensional perceptual space
revolving around distinct category prototypes was an ap-
pealing consideration, regardless of its neuroscientific signif-
icance. The marriage of a standard psychophysical procedure
with the theory of biplots was attempted as a means of recov-
ering this space and further exploiting the internalized struc-
ture for the visual organization of image databases.

Our experiments with an image database (typical of those
used in CBIR research) showed that a directly interpretable
approximation of the build-in structure could be achieved
and used to predict the database organization regarding
user’s perception. We then proposed a practical algorithm
comprising three consecutive steps: (1) prototyping using a
machine-perception biplot (the cognitive stage), (2) MDS-
based approximation of perceptual space using the selected
prototypes, and (3) embedding of the whole database in the
reduced perceptual space with known topography (the dis-
criminative stage). The latest is related with the technique of
anchoring, a simple technique that represents objects by their
distances to a few well-chosen landmarks or vantage points,
revealing reduced feature dimensionality and lower compu-
tational complexity for image similarity comparisons [31].

The novelty of the proposed algorithm is that it goes be-
yond the current machine-vision schemes in which the fea-
ture selection and/or the definition of similarity measure are
designed so as to match the user’s perception. Here, the user
expresses directly similarity judgments for a restricted num-
ber of images. The rest perceptual comparisons are predicted
via “extrapolation” based on the structure underlying the
biplot computations. It is worth mentioning that once the
database has been organized, the search for similar images
given a previously unseen query image can be cast in a very
efficient way. It is only a visual comparison with ~10 proto-
types and the application of appending technique (in which
simple matrix operations are encountered) that is required.

Our efforts are currently concentrated in speeding up the
stage of database organization, in which each image is con-
trasted with the selected prototypes. This stage can take con-
siderable time in the case of huge databases. This can be alle-
viated in two ways. First, by modifying the interactive envi-
ronment (Figure 5) so as perceptual similarity can be cast in
a more convenient way. For example, Borgne et al. [32] orga-
nized a psychophysical experiment for image categorization,
so as to determine a human perception space for identifying

perceptual categories. In their work, one image was presented
along with eight randomly selected images and the subject
was asked to quickly select the most similar image to the ref-
erence one, as well as to indicate its proximity among four
different levels. Some straightforward extensions for testing
the robustness of our organization methodology could be,
for example, by randomly selecting a prototype inside each
predetermined class, or even systematically omitting a proto-
type/class when constructing the biplot. The second method-
ological way to operate is by modifying the corresponding
algorithmic step so as to work at multiple resolution levels
organized in a pyramidal manner.

We believe that the ideas discussed in this paper de-
serve further consideration, since the cognitive discrimina-
tive biplots can serve as extremely powerful interfaces for
user-friendly database browsing. Embedded in simple GUI
environment, they can facilitate flexible navigation in im-
age databases. Of extreme interest is their user-adaptive
character, as well as the potential for becoming tailored
to application-specific image databases. Their operation by
domain experts could be equivalent with knowledge-based
semantic indexing and browsing. An important issue that
needs further consideration is the asymmetric nature of the
originally estimated distance matrix D. In applications where
human similarity judgment is investigated, the resulted dis-
similarity matrix is nonsymmetric due to the fact that per-
ceptual similarity between two prototype images P; and P;
is estimated by interchanging each time the reference image
[32]. The sequential symmetric operations that take place
cuts off some useful semantic information of nonsymme-
tries, since nonmetric data are forcefully embedded into a
vector space [33, 34]. The specific matter is of crucial impor-
tance and remains open for further investigation and future
research directions.

Finally, it should be mentioned that regarding the en-
gagement of users in expressing perceptual similarities, a
similar in-spirit approach has been carried out recently [5,
6, 8, 32]. We consider this direction as a potential alternative
to relevance-feedback and expect to attract more researchers
in the near future.

APPENDIX

Let {Xi}i—1.» and {Yi}i—1., be two multidimensional point
samples of independent random vectors with distributions
F, and F,, respectively. The classical two-sample problem
tests the hypothesis Hy whether they are coming from the
same multivariate distribution:

Hy : F.(i) = F,(i), foreveryic R?, (A.1)

where the distribution functions Fy and F, are unknown. In
the multivariate case, the Wald-Wolfowitz test (W W -test) is
built as follows. At first, the sample identity of each point
is not encountered and the overall MST of the two separate
distributional samples is constructed. The edges for which
the defining nodes originate from different samples are after-
wards removed. Then, based on the sample identities of the
points, a test statistic R is computed. R is the total number
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of runs, while a run is defined as a consecutive sequence of
identical sample identities. R can be also defined as the num-
ber of disjoint subtrees that finally result. Rejection of Hy is
for small values of R. The null distribution of the test statistic
has been derived, based on combinatorial analysis [22].

Now, consider samples of size m and n, respectively, from
distributions F, and F), both defined in RP. LetN = m+n,
let C be the number of edge pairs of MST sharing a common
node, and let d; be the degree of the ith node. Under Hy, the
mean and variance of R can be computed as follows:

2mn
E[R] = T +1,
Var [R | C]
_ 2mn
 N(N-1)
2mn — N C-N+2
-1)—4 2]t
5 N (N3 VW= 1) dmns 1)
(A.2)
It has been shown that the quantity
_ R_ER] (A.3)

v/ Var[R]

approaches (asymptotically) the standard normal distribu-
tion while the mean E[R] and variance Var[R|C] of R depend
on the sizes m and » of the two point-samples [22]. This en-
ables the computation of the significance level (and p-value)
for the acceptance of the hypothesis Hy.
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