Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 75373, 15 pages
doi:10.1155/2007/75373

Research Article

SPRINT: A Tool to Generate Concurrent Transaction-Level

Models from Sequential Code

Johan Cockx, Kristof Denolf, Bart Vanhoof, and Richard Stahl

Interuniversity Micro Electronics Center (IMEC vzw), Kapeldreef 75, 3001 Leuven, Belgium

Received 1 September 2006; Accepted 23 February 2007

Recommended by Erwin de Kock

A high-level concurrent model such as a SystemC transaction-level model can provide early feedback during the exploration of
implementation alternatives for state-of-the-art signal processing applications like video codecs on a multiprocessor platform.
However, the creation of such a model starting from sequential code is a time-consuming and error-prone task. It is typically done
only once, if at all, for a given design. This lack of exploration of the design space often leads to a suboptimal implementation. To
support our systematic C-based design flow, we have developed a tool to generate a concurrent SystemC transaction-level model
for user-selected task boundaries. Using this tool, different parallelization alternatives have been evaluated during the design of an
MPEG-4 simple profile encoder and an embedded zero-tree coder. Generation plus evaluation of an alternative was possible in less
than six minutes. This is fast enough to allow extensive exploration of the design space.

Copyright © 2007 Johan Cockx et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Advanced state-of-the-art applications such as multime-
dia codecs must achieve a high computational power with
minimal energy consumption. Given these conflicting con-
straints, multiprocessor implementations not only deliver
the necessary computational power, but also provide the re-
quired power efficiency. Multiple processors operating at a
lower clock frequency can provide the same performance as a
single processor at a higher clock frequency, but with a lower
energy consumption [1, 2]. A multiprocessor implementa-
tion can be further optimized by selecting a specialized pro-
cessor for each task, providing a better power-performance
trade-off than the single general purpose processor.

An efficient implementation of these applications on
such a platform raises two key challenges. First, parallel tasks
must be identified and extracted from the sequential refer-
ence specification. There must be an excellent match between
the extracted tasks and the architecture resources: any sig-
nificant mismatch results in performance loss, a decrease of
resource utilization and reduced energy efficiency of the im-
plementation. Second, the memory and bus/communication
network on the platform consume a major part of the energy
[3-6], and optimizations reducing this power dissipation are
crucial.

However, the task of exploring various program parti-
tions presents one of the major bottlenecks in current design
environments. To evaluate a given partition, a concurrent ex-
ecutable model is required. Traditionally, the first concur-
rent executable model created is a register transfer level HDL
model for custom hardware implementation or implementa-
tion code for a programmable multiprocessor.

The creation of such a model is clearly too time consum-
ing to allow elaborate exploration of alternatives. Transaction
level modeling [7] is an attempt to raise the level of abstrac-
tion for concurrent modeling. Although the higher abstrac-
tion and higher simulation speed of a transaction level model
do facilitate early evaluation of design partitions, the manual
creation of such a model is still time consuming and error-
prone. In many design cases it is therefore not created at all.
As a result, extensive exploration of alternatives is typically
not feasible, leading to an inefficient implementation.

To overcome this problem, we have implemented
SPRINT, a tool that automatically generates an executable
concurrent model in SystemC [8] starting from sequential
code and user-defined directives. The SystemC model op-
tionally includes processing delay estimates. SPRINT can au-
tomatically derive delay estimates from the source code based
on the number and types of operations. Alternatively, delay
estimates can be obtained through a theoretical analysis or

EURASIP Journal on Advances in Signal Processing

System specification (C)

[Preprocessing and analysis]

9 High-level (C)
= 3 algorithmic and
T‘T: Golden specification (C) data transfer and ¢
g storage exploration
% [High-level optimization] Atomium
3
< Memory-optimized specification (C) .
— Partitioning w
------------ R SR, T
exploration
Functional model (parallel) SPRINT
i —
9 [SW tuning] [HDL translatlon
—é — — Low-level
© SW process . -+ HW process » implementation and
= verification procedures
<
:

Executable(s) + netlist

FIGURE I: Systematic C-based design flow.

from external estimation tool and can be annotated to the se-
quential source code. The concurrent timed SystemC model
provides valuable performance feedback to the designer in an
early phase of the design flow.

SPRINT is part of a systematic C-based design flow tar-
geting the implementation of advanced streaming applica-
tions on multiprocessor platforms. It benefits from prepro-
cessing and high-level optimizations applied to the C code
before partitioning and support the independent develop-
ment and testing, potentially by multiple team members in
parallel, of parts of the application after partitioning.

SPRINT has been used for several multimedia designs,
including an Embedded Zero Tree coder [9] and an MPEG-4
video encoder [10, 11]. With SPRINT, the validation of the
concurrent behavior of the complete design was obtained in
less than six minutes, including the generation of the model
itself. This fast verification path provides the possibility to
identify conceptual design errors in an early stage of the de-
sign, avoiding expensive design iterations and resulting is a
significant speed-up of the design. Moreover, the automated
generation of the concurrent model enables the exploration
of different parallelization alternatives, ultimately resulting
in an improved implementation of the embedded system.

The remainder of this paper is organized as follows. The
next section provides an overview of the design flow used
for both design cases. The functionality and implementation
of the SPRINT tool is detailed Section 3, and experimental
results for both design cases are given in Section 4. Section 5
gives a concise overview of related work and discusses the
distinguishing features of our approach. The paper is closed
with conclusions.

2. SYSTEMATIC DESIGN FLOW

Multimedia application code is usually provided by stan-
dardization bodies like MPEG [12]. The provided code typi-

cally defines a wide range of options, which are the so-called
profiles and levels. The primary goal of this code is to serve as
a reference for verification of a realization of particular func-
tionality or profile. The structure of the code is generally not
immediately suited for implementation. Direct paralleliza-
tion of this code for a multiprocessor platform leads to an
inefficient software implementation, and direct HDL transla-
tion is error-prone and lacks a modular testing environment.
A systematic design approach starting with high-level opti-
mizations and supporting parallelization and structured ver-
ification is required.

Figure 1 shows the applied design flow, starting from a
system specification (typically reference code provided by
an algorithm group or standardization body like MPEG)
that will gradually be refined into the final implementation:
a netlist with a set of executables. Two major phases are
present: (i) a sequential phase where the initial specification
is preprocessed, analyzed, and high-level optimized and (ii) a
parallel phase in which the application is divided into paral-
lel processes and refined to a register transfer level for hard-
ware implementation or implementation code for software
implementation. The design flow consists of five logically se-
quenced steps.

(1) Preprocessing and analysis prunes the reference code
to retain only the required functionality for a given ap-
plication profile. An initial complexity analysis identi-
fies bottlenecks and points out the first candidates for
optimization. This step is supported by the Atomium
tool suite [13].

(2) High-level optimization reduces the overall complex-
ity with a memory centric focus, as data transfer and
storage have a dominant impact on the implemen-
tation efficiency of multimedia applications [10, 14].
The code is reorganized into functional modules with
localized data processing and limited communication.

Johan Cockx et al.

Sequential C code

void fetch(int* A) {
for (inti = 0;i < 64;i ++)
int tmp;
scanf(“%d”, & tmp);
Ali] = tmp;

User directives

make_task(fetch)
make_task(main::add)
make_task(process)

void process(int sum){
static int max = 0;
if (max < sum) max = sum;
printf(“%d %d \ n” sum, max);

int main() {
for (intn = 0;n < 100;n+ +) { SPRINT
int M[64], sum;
fetch(M);
add:{
sum = 0;
for (inti = 0;i < 64;i ++)
sum + = M[i];

if (sum > 128) {
process(sum);

Fetch Add
for () { for () {
A—request(); sum = 0;
for (i =05i < 64;5i ++) { Al64] A—request();
scanf(“%d”, & tmp); for (i = 0;i < 64; i+4+)
A—write(tmp,i); sum+ = A—read(i);
A—commit();
A—commit(); suml —put(sum);
b
.|
suml
SystemC
Main
Process Gone)
< for (n = 0;n < 10057 ++) {
fors(l;})rl{: sum2 —get(); sum2 sum = suml —get();
; e if (sum > 128) {
if (max < sum) max = sum; p (o)
printf(“%d %d \ n”, sum, max); sum2 —put(sum);

FIGURE 2: A small example illustrating how SPRINT transforms sequential code to parallel SystemC code with user specified task bound-
aries. The example includes block FIFO (A[64]) and scalar FIFO (suml,sum?2) channels including a channel (sum2) with a data-dependent

communication rate.

This prepares the code for an efficient use of the com-
munication primitives in the next step and facilitates
parallelization.

(3) Partitioning splits the code into concurrent tasks and
inserts the appropriate communication channels. This
step is the focus of this paper. The design is partitioned
into concurrent tasks for a combination of reasons,
including throughput requirements, power require-
ments (parallel processors can run at a lower clock
rate), design complexity (small tasks are easier to im-
plement, and hardware synthesis tools may yield better
results) and the exploitation of heterogeneous proces-
sors (tasks can be assigned to the best suited processor,
or an efficient custom processor can be designed for a
task).

(4) Software tuning and HDL translation refine each task
of the partitioned system independently, either by
mapping it to a target processor or by writing register
transfer level HDL to be synthesized on an FPGA or
as custom hardware. In addition, the communication
channels between the tasks are mapped on the avail-
able communication resources of the target platform.

(5) Integration gradually combines and tests the refined
components to obtain a complete working system.

SPRINT supports the designer during the partition-
ing step by automatically generating a concurrent model
and inserting the appropriate communication primitives for
designer-specified task boundaries. The generated model can
be used to evaluate the partitioning before further refinement
of the tasks. Alternatives can be evaluated by changing the
task boundary directives and regenerating the model. This
way, SPRINT eliminates the necessity to manually identify
all accesses to the inputs and outputs of each task and in-
sert the appropriate communication primitives. By automat-

ing this time-consuming and error-prone task, SPRINT ef-
fectively enables design space exploration. The task code in
the generated model can also be used as a behavioral specifi-
cation for the software refinement or hardware implementa-
tion of a task. Finally, the model can be used to generate test
stimuli and reference outputs to verify the implementation
of each task separately.

3. THESPRINT TOOL

The SPRINT tool automates the generation of a concurrent
model. Based on task boundary directives provided by the
designer, SPRINT transforms the sequential C program into
a functionally equivalent concurrent SystemC model, con-
sisting of tasks and communication channels. Figure 2 shows
the input and output of SPRINT for a small example. This
section discusses five key issues in the design of the SPRINT
tool: the type of parallelism extracted, the set of communi-
cation primitives used, the available mechanisms for timing
annotation, the user directives, and the implementation of
the tool.

3.1. Typeofparallelism

Existing parallelizing compilers for multiprocessor platforms
target symmetric multiprocessors and exploit data paral-
lelism by executing different iterations of a loop in par-
allel on different processors. A large body of work exists
on the extraction of data parallelism from sequential pro-
grams [15-17]. Typically, the techniques used work well on
counted loops manipulating arrays in a regular, predictable
fashion. Ideally, loop iterations are completely independent.
This work is certainly useful and applicable to the design of
multimedia applications, as it can be used during task re-
finement to further split computationally intensive tasks and

EURASIP Journal on Advances in Signal Processing

thus achieve a better load balance. However, it cannot exploit
functional parallelism in which a loop body is split in parts
containing different functionality to be executed on different
processors.

The tasks generated by SPRINT represent functional par-
allelism: each task implements a different subset of the state-
ments in the application. By using functional parallelism,
heterogeneous processors can be exploited. In case of cus-
tom (hardware) processor design, a processor need only im-
plement the functionality of a single task, thus leading to a
smaller, more efficient processor that is easier to design and
synthesize. Interiteration dependencies do not hinder the ex-
traction of functional parallelism, but naturally lead to a
pipelined execution. For this reason, functional parallelism
extracted from a loop is often called pipelining. Functional
parallelism can often be extracted in spite of the presence of
uncounted loops, data-dependent control flow and hard to
analyze array accesses. For these reasons, SPRINT only ex-
tracts functional parallelism and leaves the extraction of data
parallelism, when needed, to other tools to be applied during
task refinement.

To distinguish the coarse-grain functional parallelism ex-
tracted by SPRINT from fine-grained forms of functional
parallelism such as instruction level parallelism (ILP) or soft-
ware pipelining, we say that SPRINT uses task-level pipelin-
ing. The tasks can be seen as pipeline stages communicating
through FIFO-like channels.

3.2. Communication channels

Given the designer-specified task boundaries, SPRINT au-
tomatically detects and inserts the required communication
channels. SPRINT uses a restricted set of communication
primitives with well-defined interface functions. The tasks
only interact with the channels through these interface func-
tions. The use of interface functions separates computation
(in the tasks) from communication (in the channels). Thanks
to this separation, tasks and channels can be refined indepen-
dently.

SPRINT uses two classes of communication channels:
unidirectional point-to-point FIFO channels and shared data
channels. Each channel has a set of interface functions with a
well-defined behavior (Table 1). The implementation of the
channel is left unspecified. In fact, different implementations
may be used for different target platforms. A FIFO channel
can be implemented using any available scheme that is con-
sidered appropriate for the target platform, for example a
custom hardware block, available synchronization primitives
in a shared memory, RTOS primitives, busses or a packet
switched network.

The default communication mechanism is a FIFO chan-
nel. Two kinds of FIFO channels are used: scalar FIFO and
block FIFO. A scalar FIFO uses the traditional put and get
interface functions for the communication of scalar tokens.
A block FIFO uses a nonstandard set of interface functions
to enable zero-copy communication [18] for array tokens.
The request function is blocking and waits until a token is
available. The read and write functions allow random access
to the current token. The commit function releases the cur-

TasLE 1: Interface functions for the communication channels in-
serted by SPRINT.

Producer functions Consumer functions

Scalar FIFO Void put(T) T get()
Void request() void request()
Block FIFO T read(int) T read(int)

Void write(T, int)
Void commit()

Void write(T, int)
Void commit()

Shared scalar T read() T read()
Void write(T) Void write(T)
T read(int) T read(int)

Shared array

Void write(T, int) Void write(T, int)

rent token, either (at the producer side) for transmission to
the consumer or (at the consumer side) so that it can be re-
cycled. Together, these functions allow an array token to be
constructed in and read from the channel, without copying
the array to or from local data. A scalar FIFO can be seen as
a special case of a block FIFO, with array size one and using
the traditional FIFO interface functions put and get. A put
call is equivalent to a request-write-commit sequence, and a
get call is equivalent to a request-read-commit sequence.

The use of a FIFO-like communication scheme is a log-
ical choice for streaming applications. It naturally leads to a
data-flow style implementation [19, 20], with tasks implic-
itly synchronized through FIFO channels. A task stalls when
it needs a token from an empty input queue or when it tries
to produce a token on a full output queue. The resulting
implementation can be interpreted as a Kahn Process Net-
work [21]. The behavior is deterministic: the outputs depend
only on the inputs, and not on the relative order of execu-
tion of the tasks. However, correct insertion of FIFO channels
such that the resulting Kahn Process Network is functionally
equivalent to the original code is a nontrivial task that may
require complicated data-flow analysis that is hard or even
impossible to automate.

A shared data channel is only used when the communi-
cation pattern in the sequential code is such that SPRINT
cannot automatically insert a functionally equivalent FIFO.
The interface functions for a shared data channel allow ran-
dom read and write access from multiple tasks without syn-
chronization, but in our design flow, shared data channels are
only used for unidirectional point-to-point communication,
as a generalized FIFO channel. Under certain conditions,
synchronization of accesses to these generalized FIFO chan-
nels is redundant due to the presence of plain FIFOs with
synchronization (see [22, Chapter 9]). However, to identify
shared data as a generalized FIFO, much more sophisticated
program analysis techniques are needed than currently im-
plemented in SPRINT. Shared variables are therefore only
inserted when explicitly requested by the user. The size of
a shared variable must be chosen carefully, taking into ac-
count the lifetime of the data it contains and the depth of
the FIFO channels, to ensure FIFO-like communication and

Johan Cockx et al.

thus safeguard deterministic behavior. Functional correct-
ness of the resulting parallel implementation must be verified
by simulation of the transaction level model. A concrete ex-
ample of the use of shared variables is given in Section 4.2.2.

3.3. Timing annotations

By default, SPRINT generates an untimed transaction level
model. An untimed model may be sufficient to determine the
functional correctness of a task partitioning, but an assess-
ment of the quality of a task partitioning generally requires a
timed model. In general, delays occur both in the application
code (computation delays) and in the communication chan-
nels (computation delays), but the approach used to insert
these delays in the SystemC model differs.

To model computation delays, SPRINT can optionally
insert wait calls in the generated SystemC code. The argu-
ment of the wait call represents the processing time of the
adjacent statements on the target platform.

The best way to estimate computation delays depends on
the target platform, the available tools and the required accu-
racy. Tools to profile execution times on specific processors
exist [23-25]. In case of custom hardware, an experienced
designer may be the only available source of high-level timing
estimates. In both cases, the appropriate wait calls can be in-
serted in the sequential source code. SPRINT will copy such
wait calls to the generated SystemC model. The argument of
the wait call can be a data dependent expression, thus pro-
viding maximum flexibility.

Alternatively, SPRINT can insert symbolic delays during
code generation. This method is based on counting the num-
ber of operations of different types (read, write, addition,
multiplication, ...) found in the C code. The operation count
is then multiplied by a symbolic value representing the aver-
age execution time for that type of operation on the target
processor. An actual value must be provided when the gener-
ated SystemC code is executed.

Communication delays are modeled in the SystemC im-
plementation of the channel interface functions (Table 1). By
default, a generic implementation is used. This generic im-
plementation models blocking behavior of the FIFO chan-
nels, but no communication delays. The generic implemen-
tation can easily be replaced by a more detailed, platform spe-
cific SystemC model with communication delays.

3.4. Userdirectives

To facilitate the exploration of partitioning alternatives, user
directives are not annotated in the sequential source code,
but provided in a separate file. This avoids cluttering of the
source code and allows a designer to maintain multiple di-
rective files for the same design.

User directives refer to the source code using function
names, labels, and variable names. There are three ways to
select statements to be moved to a new task:

(i) make_task(function) selects all statements in the func-
tion body;

(ii) make_task(function::label) selects a single (but possibly
hierarchical) labeled statement; and

(User directives)

(Sequential C program >

1. C parsing

| Abstract syntax tree |

2. Control flow extraction

N

| 3. Task creation

~_

4. Structured statement reconstruction

| Control flow graph

| Abstract syntax tree |

5. Code generation

| SystemC 2.0 program |

FiGurg 3: SPRINT consists of five phases transforming a sequen-
tial C program into a parallel SystemC program. The user provided
input is indicated by rounded boxes and italics.

(iii) make_task(function::labell-label2) selects all state-
ments from labell to label2 inclusive.

Each directive creates a new task. Together with the orig-
inal “main” task, n directives result in n + 1 tasks. By default,
FIFO channels are inserted to all intertask communication.
Shared data communication channels must be requested ex-
plicitly using a shared _variable(var) directive.

3.5. Implementation

As shown in Figure 3, the transformation is done in five
phases.

(1) With C parsing, an abstract syntax tree (AST) is gener-
ated.

(2) From this AST, a Control Flow Graph (CFG) is ex-
tracted for each C function. Nodes correspond to state-
ments, edges to control transfers. Structured state-
ments (if-then-else, for and while loop, block, switch)
are flattened. To aid variable liveness analysis, a spe-
cial clear statement is automatically inserted where lo-
cal variables in a block statement go out of scope; at
that point, the local variable is known to be dead.

(3) During task creation and based on the user directives,
the CFG is transformed to model the different concur-
rent tasks. Channel access statements are inserted as
required.

(4) After processing all directives again, an AST is gener-
ated from the CFG using structured statement recon-
struction techniques.

(5) Finally, the code for the concurrent SystemC model is
generated.

Abstract syntax trees, C parsing, control flow extraction
and code generation are well-known techniques [26] and are

EURASIP Journal on Advances in Signal Processing

not further discussed. Structured statement reconstruction
is based on natural loops [26] and some heuristics; it is inde-
pendent of how the input code was structured. A more de-
tailed discussion is outside the scope of this paper.

Task creation

Task creation consists of the following seven steps that are
executed for each make_task directive. The result is a newly
created task containing the statements selected in the user
directive. These seven steps, together with the other phases
in Figure 3, are implemented as fully automated routines of
SPRINT.

Step 1 (single-entry single-exit check). Control flow edges
entering the group of statements selected by the make_task
directive are called entry edges; a statement at which such an
edge ends is an entry statement. Similarly, control flow edges
leaving the selected group of statements are called exit edges;
a statement at which such an edge ends is an exit statement.
SPRINT checks if there is only one entry and one exit state-
ment for given task. If otherwise, a report is generated, pro-
viding details to the designer, who can adjust the task bound-
aries accordingly.

Step 2 (single parent task check). The function containing
the selected statements is called the parent function of the
new task. If the parent function is called in two or more
parent tasks, channels to or from the new task will not be
point-to-point. Such cases are not automatically handled by
SPRINT, but a detailed report is generated for the designer.

Step 3 (split channel access check). Channel access state-
ments accessing the same channel must stay within the same
task to guarantee the correct order of execution. They must
either all stay in the parent task or all move to the new task.
Since it is possible that channel access statements have been
inserted in the parent task during a previous task creation,
the requested task boundaries may cause channel accesses
to become distributed over multiple tasks. In such a case,
SPRINT does not proceed in task creation process. It gen-
erates a report that provides details to the designer, who can
adjust the task boundaries accordingly.

Step 4 (identification of communication channels). In this
step, SPRINT identifies all base variables of the new task that
will be changed into communication channels in the next
steps. Due to the existence of pointers in C, it is not always
immediately apparent from the source code which variables
communicate data between the selected group of statements
and the other statements of the parent task.

SPRINT distinguishes a variable reference from a variable
access. A statement refers to a variable if the variable’s name is
mentioned in the statement. It can either directly access (read
or write) the variable, or take the address of the variable. A
statement accesses a variable if it reads from or writes to the
variable. Reads and writes can be direct or indirect (through
a pointer). For example, the statement A[i] = tmp in the

sequential C code in Figure 2 refers to the pointer variable A,
but (indirectly) writes to the array variable M.

SPRINT identifies communication channels based on
variable references, not accesses. This means that communi-
cation channels can be identified prior to pointer analysis. A
communication channel is inserted for each variable referred
to by statements both inside and outside the selected group
(Steps 6 and 7). This means that a communication channel
always corresponds to a user-named variable, which is called
the base variable of the channel. For example, the pointer
variable A in Figure 2 is referenced both inside and outside
the fetch task. Note that the make_task(fetch) directive cre-
ates a task containing the statements in the body of the fetch
function, and that the declaration of A is in the header of
the function, so outside the task. A communication channel
is therefore inserted for A, and A is the base variable of the
channel.

Note that the need for a communication channel can al-
ways be detected by looking at variable references only. In
case of communication through an indirectly accessed loca-
tion, a pointer to that location must have been communi-
cated previously. If the communication of this pointer oc-
curred through a named variable referenced both inside and
outside the selected group of statements, that variable flags
the presence of a communication channel. Otherwise, the
pointer was communicated through an indirectly accessed
location, and the same reasoning applies recursively. In the
example of Figure 2, data is communicated through the ar-
ray variable M, but the need for a communication channel is
detected by looking at references to A.

In the current implementation, a base variables must be
a scalar, an array of scalars, a pointer to a scalar, or a pointer
to an array of scalars, where a scalar is a variable that is not an
array, struct or pointer. Examples of scalar types in C are int,
unsigned char and float. In our experience, this restriction
is not a serious limitation for the optimized sequential code
for streaming applications to be processed by SPRINT, but it
does allow us to use a fast tailored implementation of pointer
and liveness analysis (Step 6).

Step 5 (task creation). The new task consists of an infinite
loop containing the selected statements. In the parent task,
the selected statements are removed and entry edges are set
to point to the exit statement.

Step 6 (pointer and liveness analysis). Liveness analysis de-
termines the direction of a FIFO channel to be inserted: an
input FIFO is inserted for data that is live at an entry edge,
and an output FIFO is inserted for data that is live at an exit
edge (Step 7).

Liveness is analyzed for the data to be communicated: for
a nonpointer base variable, this is the base variable itself, and
for a pointer base variable, this is the set of all locations po-
tentially pointed to. A location is live at an edge in the CFG
if the edge is on a path from a statement writing the variable
to a statement reading the variable [26]. In Figure 2, liveness
is analyzed for M, not for the base variable A. M is live in the
body of the for-loop of the fetch function and in the block
labeled add.

Johan Cockx et al.

Modified C code

void fetch(int* A) {
for (inti = 0;i < 64;i++)
int tmp;
scanf(“%d”, & tmp);
Ali] = tmp;

void process(int sum) {
static int max = 0;
if (max < sum) max = sum;
printf(“%d %d \n”, sum, max);

intmain() {
for (intn = 031 < 1005 + +) {

int M[64], sum, N[64];
fetch(M);

fetch(N);

add:{
sum = 0;
for (inti = 0;i< 64;i++)

sum + = M[i]+Nl[i];

s
if (sum > 128) {
process(sum);

FIGURE 4: Modified sequential C code of Figure 2 illustrating the
problem of a base variable A that can point to multiple locations.

In the presence of pointers, liveness analysis relies on
pointer analysis to identify all accesses (including indirect
accesses) to a given location. Note that pointers automat-
ically arise in C when an array is passed as a parame-
ter to a function: C automatically converts the array pa-
rameter to a pointer parameter. This is a common sit-
uation in C code for multimedia applications. We per-
form an inter-procedural context-insensitive flow-insensitive
Andersen-style [27] pointer analysis for all potential targets
of a pointer base variable. Potential targets of pointer base
variables are all scalar and array of scalar variables. Heap lo-
cations are not analyzed; if a base variable can refer to a heap
location, a report is generated the designer, who can take cor-
rective action.

If the base variable of a channel can point to more than
one location, and at least one of these locations is an array,
an additional context-sensitive analysis is performed to ver-
ify that the target locations are never live at the same time.
This is a necessary condition for the use of zero-copy chan-
nels (shared array and block FIFO, see Section 3.2). To avoid
the overhead of a general context-sensitive analysis, this anal-
ysis is only done for the potential targets of a pointer base
variable. If the condition is not fulfilled, a report is generated
providing details for the designer, who can than adjust the
code appropriately, taking design constraints into account.

To illustrate the problem of a base variable pointing
to multiple locations, assume that the sequential code in
Figure 2 is modified such that it contains a second call to the
fetch function, as in Figure 4. Now A can point to M or N,
and M and N are live at the same time. Since the block FIFO
channel A cannot contain both M and N at the same time, M
and N would have to be communicated one by one. Since a
task can only access one token at a time in a given block FIFO
channel, the first array would then have to be copied out of
the channel into a temporary buffer before the second array
could be accessed. In general, the copying cancels the effect

of zero-copy communication and may ruin high-level mem-
ory optimizations applied during the sequential phase of our
systematic design flow (Section 2). For this reason, we prefer
to ask the designer to take appropriate action.

Step 7 (channel insertion). For each base variable, a channel
is inserted. The kind of channel depends on user directives
(for shared data) and on the type of the communicated data.

(1) A shared data channel is inserted only if the base vari-
able is marked as shared by a user directive. If the base vari-
able is an array, or if it is a pointer and at least one location
pointed to is an array, a shared array channel is inserted. Oth-
erwise, a shared scalar is inserted. All accesses to the chan-
nel data, including indirect accesses, are replaced by read()
and write() operations on the channel. The simple example
in Figure 2 does not contain shared data channels, but three
examples of shared data channels in an MPEG-4 encoder will
be discussed further (Section 4.2).

(2) Otherwise, if the base variable is an array, or if it is
a pointer and at least one location pointed to is an array, a
block FIFO is inserted. To avoid array copying, the data to be
communicated will be constructed directly in the array. This
means that every access to the array is replaced by a read()
or write() operations on the block FIFO. If a pointer derefer-
ence may access more than one location, all the locations it
may access must be part of the same block FIFO channel, so
that the access can be replaced by a single read() or write()
operations. In addition, a request() call is inserted before the
first access and a commit() call is inserted after the last access,
both in the new task and in the parent task. To maximize par-
allelism and decrease the probability of split channel access
problems (Step 3), code motion is used to move the request()
and commit() calls as close as possible to the data accesses.

In the example of Figure 2, A[i] = tmp is replaced by
A->write(tmp, i) and sum += M][i] is replaced by sum +=
A->read(i) during processing of the make_task(fetch) di-
rective. Due to code motion, the A->request() and
A->commit() calls in the parent task are moved into the
block labeled add, just before and after the for-loop, respec-
tively. During processing of the make_task(main::add) direc-
tive, the A->request() and A->commit() calls are moved to
the add task, together with the other statements in the block.
Without code motion, these calls would have stayed outside
the block, and the split channel access check (Step 3) would
have failed.

The direction of the FIFO depends on the results of live-
ness analysis (Step 6). If channel data is only live at an entry
edge of the new task, a channel is created from the parent
task to the new task, and vice versa. If channel data can be
live both at an entry edge and at an exit edge, a report is gen-
erated to the designer, who can take corrective action. An au-
tomatic solution would involve copying of arrays, which is to
be avoided.

(3) Otherwise, the base variable is either a scalar or a
pointer to scalar locations, and a scalar FIFO is inserted. As
for block FIFOs, the direction of the FIFO depends on the
result of liveness analysis. A put() call is inserted in the pro-
ducer task after the last access, and a get() call is inserted in

EURASIP Journal on Advances in Signal Processing

TasLE 2: Experimental results for the EZT coder (801 lines of sequential C code).

Simulation speed

Configuration No. of tasks Target SPRINT (s) SystemC compilation (s) (s/image 256 X 256) No. of cycles per frame Speed-up
seq 1 SW 0.3 3.0 2.22 170.6 M 1.0x
par-a 3 SW 1.6 3.6 3.12 141.6 M 1.2x
par-b 7 SW 34 4.0 11.11 43.6 M 3.9x
par-c 5 SW 2.5 3.9 8.33 44.0M 3.9x

the consumer task before the first access. To maximize par-
allelism and decrease the probability of split channel access
problems (Step 3), code motion is used to move the put()
and get() calls as close as possible to the data accesses. Exam-
ples of scalar FIFO channels in Figure 2 are sum1 and sum?2.

4. EXPERIMENTAL RESULTS

To asses the usability of SPRINT, the following questions
must be answered.

(1) Can SPRINT effectively parallelize real applications on
realistic platforms?

(2) Is the evaluation of a partitioning, including model
generation, compilation and simulation, fast enough
to support interactive exploration of the design space?

To obtain answers to these questions, we have applied
SPRINT on two multimedia designs: an Embedded Zero Tree
Coder (about 800 lines of sequential C code) and an MPEG-4
Simple Profile Video Encoder (about 10000 lines of sequen-
tial C code). A description of these designs and how they
were parallelized is given below. The results are summarized
in Tables 2 and 3. All results were obtained on a Pentium 4
3.20 GHz with 1 GB RAM running RedHat Linux 2.4.21 with
gce 3.2.3, SystemC 2.1 and SPRINT 2.8.13. Reported execu-
tion times are elapsed times on an otherwise unloaded pro-
Cessor.

4.1. Embedded zero-tree coder

Embedded Zero Tree (EZT) coding is a recursive compres-
sion scheme for wavelet coefficients [28, 29]. It is used for
image compression in MPEG-4 standard for Visual Texture
Coding [12] for 3D modeling. In contrast to the well-known
MPEG-4 video coding, this is an image coding application.
The sequential C code used in this test case has been
taken from the design data of the OZONE chip [9]. The
preprocessing and high-level optimization phases of our sys-
tematic design flow had already been applied to this code.
During optimization, the recursive core of the reference code
was replaced by two iterative passes: a code definition pass
and a code production pass. This transformation facilitates
memory optimizations and at the same time enables a par-
allel implementation of the two passes. For hardware imple-
mentation, the code was then partitioned in three pipelined
tasks: code definition, code production and arithmetic cod-

ing. A detailed explanation of the EZT algorithm [28, 29] and
the optimizations applied for hardware implementation [9]
is beyond the scope of this paper.

We have used SPRINT to explore a software mapping
for this design on a multiprocessor platform. For timing,
we used SPRINT’s automatic insertion of wait statements,
and assumed that every operation takes one clock cycle.
The generic implementation of the communication chan-
nels, with zero communication delay, was used.

Three partitioning configurations have been evaluated.
In configuration par-a, SPRINT creates the same three tasks
that were used in the hardware implementation. Simulation
results (Table 2) for a 256 X 256 pixels version of the well-
known Lena image show that a speed-up factor of only 1.2x
is achieved. An examination of the task activity diagram re-
veals that the bottleneck is the code definition task. This task
mainly performs bit manipulations that are comparatively
slower in software than in hardware. In configuration par-
b, the code definition task was therefore further parallelized
by splitting of four additional tasks. The resulting task dia-
gram is shown in Figure 5. Assuming one processor per task,
a speed-up of 3.9x can now be achieved on 7 processors. The
task activity diagram for this configuration (Figure 6) shows
that the processors for the code definition task and the arith-
metic coder task are barely loaded. In configuration par-c,
the task boundaries are therefore changed so that the code
definition functionality is in the same task as the compute
code3 functionality, and the arithmetic coder functionality is
in the same task as the code production functionality. This
configuration achieves practically the same speed up on just
five processors.

The execution times for SPRINT model generation, Sys-
temC compilation and the simulation speed are listed in
Table 2. A new configuration for this 800 line example can
be evaluated in less than one minute. This is more than fast
enough to allow interactive exploration.

4.2. MPEG-4 simple profile video encoder

SPRINT has been applied during the design of a high-
throughput and low-power custom chip [30] implementa-
tion of an MPEG-4 Simple Profile video encoder. The same
design has also been partitioned for a software implementa-
tion on a dual core platform with DMA. We use this design
not only to provide experimental results, but also to illustrate
the use of shared data channels in SPRINT.

Johan Cockx et al. 9
Compute Compute
code0 codel
Detail Code Codes Code Syms(Arithmetic |Bits
image definition production coder
Compute Compute
code2 code3
FIGURE 5: Task diagram for configuration par-b of the EZT coder. Thin lines are scalar FIFOs and thick lines are block FIFOs.
TasLE 3: Experimental results for different parallelizations of the MPEG-4 simple profile encoder.
. I Simulation speed
Configuration No. of tasks Target SPRINT (s) SystemC compilation (s) (QCIF frames/s) No. of cycles per frame Speed-up
seq-hw 1 HW 8.3 5.9 24.1 512K 1.0x
par-hw 9 HW 122.8 11.2 16.4 238K 2.2x
seq-sw 1 SW 9.2 7.5 20.8 23.9M 1.0x
par-a 9 SW 126.1 14.4 1.40 13.3M 1.8x
par-b 4 SW 77.6 10.5 1.25 13.4M 1.8x
4.2.1. Functionality, preprocessing, and high- cient to prefetch the pixels needed for motion estimation and

level optimizations

The MPEG-4 part 2 video codec [31] belongs to the class
of lossy hybrid video compression algorithms [32]. Figure 7
gives a high-level view of the encoder. A frame is divided in
macroblocks, each containing 6 blocks of 8 x 8 pixels: 4 lu-
minance and 2 chrominance blocks. The motion estimation
(ME) exploits the temporal redundancy by searching for the
best match for each new input block in the previously recon-
structed frame. The motion vectors define this relative po-
sition. The remaining error information after motion com-
pensation (MC) is decorrelated spatially using a DCT trans-
form and is then quantized (Q). The inverse operations Q!
and IDCT (completing the texture coding chain) and the
motion compensation reconstruct the frame as generated at
the decoder side. Finally, the motion vectors and quantized
DCT coefficients are variable length encoded. Completed
with video header information, they are structured in packets
in the output buffer. A rate control algorithm sets the quan-
tization degree to achieve a specified average bit rate and to
avoid over or under flow of this buffer.

A discussion of all the optimizations applied during the
sequential phase of our systematic design flow (Section 2) is
beyond the scope of this paper, but one particular optimiza-
tion is relevant to illustrate the use of shared data channels
in SPRINT. The original specification contains two frame
buffers for the reconstructed frame (Figure 7), to allow mo-
tion estimation and motion compensation to access the cur-
rent frame while the next frame is constructed. However,
as frame buffers are large and costly, only a single frame
buffer is retained. As long as motion estimation and com-
pensation process the frame in a row-by-row order and the
update of the frame happens in the same order, it is suffi-

compensation and store them in a separate, smaller buffer
before they are overwritten. As a high-level optimization,
the sequential C code has been modified to implement this
prefetching and remove the double frame buffer.

4.2.2. Partitioning for hardware mapping

To achieve the high throughput requirement (47520 mac-
roblocks/s, equivalent to 18.25 megapixels/s) at a low-power
consumption [30], a video pipeline architecture is envisaged
exploiting the inherent functional parallelism of the encod-
ing algorithm. Every functional unit becomes a separate stage
of the pipeline, and is implemented as a task specific proces-
sor, except for the rate control task, which is implemented
as a software task to be executed on an embedded processor.
Each channel is implemented as an on-chip two-port mem-
ory, except for the reconstructed frame buffer that is assigned
to an external memory.

Before moving to the (work intensive) register transfer
level implementation of the processors, a SystemC transac-
tion level model was generated by SPRINT. The partitioning
used for this design consists of 9 tasks (Figure 8). To model
timing, wait statements were manually added to the code of
each task by an experienced designer, based on the expected
number of memory accesses and processing cycles for the
corresponding processor. The model was used to verify func-
tional correctness, to assess the achieved parallelism and to
generate a test bench per task, allowing verification of the
register transfer level implementation of each processor.

The shared data channels require special attention. For
efficiency reasons, three channels have been implemented as
shared data channels: reconstructed frame, search area and

10 EURASIP Journal on Advances in Signal Processing
Signals- | rwaves
! Time | ‘ = 31683780 ns 316864490 1
SystemC.Codel ;‘ I Tuy I [
SystemC.Codel | I [y MUt
i SystemC.Codez | TL_CIT MM R r U Tr InOnnrr L e ey
I Systemc.Coded || TN r e e [
SystemC.CodeDefinition “ O 1 Y
| SystemC CodeProduction ||
| SystemC.ArithmeticCoder ‘ LI Ll
FIGURE 6: Extract of the task activity diagram generated during simulation of the EZT coder in configuration par-b.
Rate controller, as well as reused data. The required size is limited
control by the depth of the scalar FIFO from copy controller to mo-
tion estimation. Every execution of the copy controller also
produces a token on this FIFO. When the FIFO is full, the
copy controller will block until the motion estimation has

101110011

*********** i
|
C ! Quantizer || VLC
New frame —)M Q T> encoder —| Buffer
l
|
|
|
|
|
|
|
|

Predictive frame

Motion Reconstructed
compensation frame
TMotion vectors
;
. Mothn
estimation

FiGcure 7: Functional view of an MPEG-4 video encoder.

YUV buffer. Shared data channels provide no synchroniza-
tion. Under certain conditions, however, the synchroniza-
tion of shared data accesses is redundant due to the presence
of FIFO channels between the same tasks (see [22, Chapter
9]). SPRINT cannot verify that these conditions are fulfilled,
but the designer can use the generated concurrent model to
check the correct synchronization through simulation.

Consider for example the search area channel between
the copy controller and the motion estimation (Figure 8).
When motion estimation advances to the next block, the new
search area overlaps the previous search area (Figure 9). For
efficiency reasons, the overlapping part of the search area is
reused, and only the nonoverlapping part is written by the
copy controller. This access scheme was introduced as a high-
level memory optimization during the sequential phase of
the design flow. As a regular FIFO does not support data
reuse, the search area communication channel has been im-
plemented as a circular buffer in a shared data channel.

In the sequential code, the copy controller and the mo-
tion estimation execute in turn. In the concurrent model,
however, this is no longer true, the second execution of the
copy controller can start during or even before the first exe-
cution of the motion estimation. This means that the size of
the search area buffer must be increased so that it can hold
the data produced by two or more executions of the copy

executed at least once. If the depth of the FIFO is N, the copy
controller can be a most N executions ahead of the motion
estimation.

A similar reasoning can be made about the synchroniza-
tion of accesses to the YUV buffer and the reconstructed
frame. In these two cases, there is no direct FIFO between
the tasks accessing the shared data, but there is in both cases
an indirect path consisting of FIFOs only. Such an indirect
path can also provide sufficient synchronization; the maxi-
mum lag between the producing and consuming tasks is re-
lated to the sum of the depths of the FIFOs on the path. In
general, a necessary (but not sufficient) condition for correct
synchronization of shared data accesses is that there is a di-
rect or indirect path consisting of FIFO channels between the
tasks accessing the shared data. This condition is checked by
SPRINT.

The amount of data produced by the copy controller is
variable in our design. Usually, three macroblocks are pro-
duced, but at the edges of the frame, there are more. At a cer-
tain moment during the design process, this was not taken
into account. The problem could not be detected by execut-
ing the sequential code. Without the concurrent model gen-
erated by SPRINT, this synchronization problem would only
have been detected during integration of the register transfer
level code of the processors, and a fix would have been much
more costly.

4.2.3. Partitioning for software mapping

As an additional experiment, we have used SPRINT to con-
struct a partitioning for a dual core processor with a DMA
controller. For timing, we used the same approach as for
the EZT design: automatic insertion of wait statements and
one clock cycle per operation. If the same partitioning in
9 tasks as for the hardware implementation (Figure 8) is
used, the activity diagram reveals that the motion estima-
tion task is the bottleneck and consumes nearly as much pro-
cessing time as all other tasks together. It was therefore de-
cided to assign motion estimation to the first processor and
all other tasks except the input controller and the copy con-
troller to the second processor. Input controller and copy
controller were assigned to the DMA controller. To reduce

Johan Cockx et al.

11

Reconstructed frame

— > Co :
contr}gler' Compensated
: : block [Texture
© Search - Buffer update
; area Yuv Texture
New o o pror | block
ma%&)@_) Motion ‘épext.ure
estimation, compensation coding
From Motion :
capture vectors Quantized
card macroblock
5| Input] Current
Controller/ macroblock Entropy
coding
Metrics| Parameter
settings
AN Bitstream
N packetization
Done-setup B Output
Software bitstream
Done-frame | orchestrator

FIGURE 8: Task diagram for the par-hw and par-a configurations of the MPEG-4 simple profile encoder. Thin lines are scalar FIFOs, thick
lines are block FIFOs, and dotted lines are shared variables. To avoid cluttering the diagram, parameter setting channels are shown only

partially.

FIGUre 9: Data reuse in the overlapping region of the search area for
motion estimation.

context switching overhead on the second processor, the mo-
tion compensation, texture update, texture coding, entropy
coding and bit-stream packetization functions were imple-
mented as a single task. Merging the software orchestrater
with this task proved undesirable, because it introduced a se-
quence constraint that reduced the effective parallelism. The
final configuration contains four tasks: a motion estimation
task, a DMA task implementing input controller and copy
controller, a software orchestrater task and a task implement-
ing the remaining functional blocks.

4.2.4. Results

Results for both hardware and software partitioning are sum-
marized in Table 3. The seq-hw and seq-sw configurations
correspond to a sequential execution with timing for the
hardware and software implementations, respectively, and
are used as a reference point to evaluate the achieved speed-
up. Simulation speed was measured using the Foreman QCIF
test sequence containing 299 frames.

The processing speed observed during simulation of the
par-hw configuration (238 Kcycles/frame) is close to the
processing speed measured on the hardware implementa-
tion [10] (3.2 MHz for 15 frames/s QCIF, corresponding to

213 Kcycles/frame), indicating that the timing estimates used
were realistic. The speed-up obtained for this configuration
is only 2.2x for nine processors, but this is not a problem
as the target of the partitioning was not to obtain the high-
est possible throughput, but low-power consumption and an
efficient design process. The partitioning used results in rela-
tively simple processors for which an energy-efficient imple-
mentation is possible. These processors consume practically
no power when idle. Also, smaller processors are easier to de-
scribe in VHDL and are handled more efficiently by synthesis
tools. In addition and thanks to the separation of computa-
tion and communication, multiple designers can work on the
refinement of these processors in parallel.

Starting from 9588 lines of sequential C code and user-
defined task boundaries for up to nine tasks, SPRINT can
generate a concurrent SystemC model in about two minutes.
The simulation of a complete QCIF sequence (299 frames)
for the hardware partitioning (par-hw configuration) is fin-
ished in less than 20 seconds. In comparison, simulation with
the Modelsim VHDL simulator, only possible after comple-
tion of the HDL design of the encoder system, requires more
than 6 hours for the same QCIF sequence. Simulation speed
for the software configurations is an order of magnitude
slower than for the hardware configurations. This is due to
the more detailed timing annotations used in the software
configurations. Even in the slowest configuration (par-b), a
simulation of the complete test sequence takes only 4 min-
utes.

The fast generation of a high-level concurrent model
combined with the gain in simulation speed allows the explo-
ration of different parallelization alternatives. Moreover, due
to the gain in simulation performance (about three orders
of magnitude), an extensive test set can be used to assess the
system performance early in the design cycle before even the
architecture mapping or hardware design has started. For all
configurations, the total time needed to generate a new con-
current model and evaluate it using the 299-frames Foreman

12

EURASIP Journal on Advances in Signal Processing

TaBLE 4: A comparison of SPRINT with related approaches.

Input Partitioning Data-flow analysis Output
COMPAAN ANLP Automatic Static, array YAPI KPN
FP-MAP C Automatic Dynamic None
DSWP C Automatic Static, recursive data structures Itanium object code
SPRINT C User-defined Static, scalar SystemC TLM

QCIF test sequence is less than six minutes. We believe that
this is more than fast enough to allow interactive exploration
of the design space.

5. RELATED WORK

Parallel computing and parallelization are wide research ar-
eas that have been studied in a large number of projects. Due
to this broad scope, we only list the most closely related ap-
proaches that have focused on the task-level pipelining.

Starting from an initial sequential implementation (of a
given application, typically written in C), two general ap-
proaches to multiprocessor partitioning are manual refine-
ment and automated parallelization. The manual approach
to embedded system mapping is typically based on a sys-
tematic methodology [33]. This, however, is a difficult and
error-prone process, as shown in [34]. The final solution
can be very optimal for given platform, but is typically very
platform-specific, hard to adapt and maintain. Moreover, a
complete rewriting or a new solution has to be developed for
other platforms.

Another manual approach to multiprocessor partition-
ing is the use of higher level programming languages that
express parallelism in an explicit form, for example, paral-
lel languages with support for task-level pipelining as ZPL
[35], or more specialized languages, for example, streaming
languages as StreamC [36] or KernelC [37]. Use of such lan-
guages, accompanied with an effective compiler and an ap-
propriate back-end for given platform, can considerably sim-
plify the exploration and mapping process. Even though this
approach can lead to solutions with good performance (as re-
ported in [34] for ZPL), it still requires manual code rewrit-
ing from the initial implementation to the chosen program-
ming language, which is a nontrivial task.

Automated parallelization in general requires either ad-
vanced compilers [15-17, 38] or source-to-source transfor-
mation tools [39]. Even though the topic of automated par-
allelization has been researched for decades, the problem
of effective code parallelization seems to persist. Further-
more, only very few approaches, such as IBM X1 HPF [38],
have implemented support for task-level pipelining, while
the most advanced compilers, such as SUIF [15], have fo-
cused on advanced program analysis and transformations for
data parallelism.

The IBM X1 HPF compiler [38] and its derivatives are
to our knowledge the only compilers that automatically per-
form functional pipelining without user annotations to the
input code (HPF). As reported in [34], the compiler per-
forms well, yet only on a limited number of kernels. It does

not pipeline non-perfectly nested loops, or more complex
control-flow that could still be pipelined with a minor user
intervention. Similar restrictions/results seem to be very
common also for the other automated approaches to paral-
lelization.

The approaches that are most closely related to SPRINT
are COMPAAN, FP-MAP, and DSWP. Like SPRINT, they use
task-level pipelining to parallelize embedded applications.
The key features of these approaches are compared in Table 4.

COMPAAN [40, 41] automatically creates a task (or pro-
cess) for each function call in an affine nested loop pro-
gram (ANLP) written in MATLAB syntax. Using the results
of an exact array data-flow analysis, array inputs and outputs
are converted to special optimized FIFOs that can reorder
and/or duplicate tokens as necessary. The output represen-
tation generated by COMPAAN is a Kahn Process Network
(KPN). One of the limitations of this approach is that the
structure of the ANLP determines the task boundaries; to ob-
tain a different partitioning, the source code must be edited.
Task boundaries cannot be located in code executed under
nonlinear or data-dependent conditions. This restricts the
usability of COMPAAN to only ANLP input, which reduces
its practicality by processing only to specific, well-formed
loops.

FP-MAP [42] accepts arbitrary C code and is not lim-
ited to ANLP as COMPAAN. It automatically distributes the
statements of a given loop nest over a given number of pro-
cessors, minimizing the initiation interval of the pipeline.
The distribution algorithm relies on estimates of execution
times and branch execution probabilities obtained via pro-
filing. Execution times are assumed to be independent of
the processor, and the cost and feasibility of the resulting
communication on the target platform is not taken into ac-
count. The data-flow analysis used in FP-MAP is dynamic:
data dependences are registered during execution of the C
code for a given set of inputs. This means that FP-MAP
can analyze data flow for arbitrary control flow including
data-dependent conditions and for arbitrary index expres-
sions. FP-MAP does not automatically insert communica-
tion channels or generate code; the result is an assignment of
statements to processors. Thus, it is an interesting approach
to task-level pipelining, yet it is not a practical tool usable
for mapping real-life multimedia programs to multiproces-
sor embedded systems.

DSWP [43] is another automated compiler-based ap-
proach to task-level pipelining. Its focus is, similarly to ours,
on the outer loops with many iterations. In particular, the
DSWP technique focuses on recursive data structures in such
loop constructs. The technique is based on identification of

Johan Cockx et al.

13

Strongly-Connected Components (SCC) in the dependence
graph of the input program. Such an SCC must not be split
to ensure unidirectional flow of dependences between the re-
sulting tasks. Similar to FP-MAP, a load balancing heuristic
is used to distribute the SCCs over the pipeline stages (tasks).
DSWP uses the so-called synchronization array for commu-
nication among threads [44]. The synchronization array is
dedicated hardware that implements a simple FIFO chan-
nel. The approach leverages prior research on instruction
level parallelism (ILP) by utilizing an existing compilation
framework, the impact compiler. Thus, it has a back-end that
is currently targeting the itanium processors. Some of the
disadvantages of this approach are missing communication
optimization, no support for source-to-source transforma-
tion, and no possibility of user interaction that we believe is
needed for exploration of the solution space for optimized
application mapping.

SPRINT provides a unique combination of features that
is especially suited to explore the partitioning of an embed-
ded streaming application. It accepts any ANSI-C code. Task
boundaries are defined by the designer, which is an advantage
given the less than ideal results obtained with existing au-
tomatic parallelization tools. The required communication
channels are automatically detected and inserted using well-
known, robust, and fast scalar data-flow analysis techniques.
These techniques are sufficiently powerful to handle com-
plex real-life applications with nonlinear index expressions
and data-dependent conditions. In our design flow, sequen-
tial optimization steps precede the partitioning, which facili-
tates the data-flow analysis. If desired, a more advanced data-
flow analysis can be used instead. Finally, SPRINT generates
a concurrent transaction level model that can be used to in-
teractively explore alternative solutions and rapidly evaluate
their performance. The generated model is also suitable for
further automated of manual refinement. To the best of our
knowledge, SPRINT is the first tool to generate a concurrent
transaction level model from sequential ANSI-C code.

6. CONCLUSIONS

To support our systematic C-based design flow for ad-
vanced multimedia applications with stringent performance
and power requirements, we have developed a tool called
SPRINT that generates a concurrent SystemC transaction
level model starting from sequential C code and user-selected
task boundaries. This tool automates the time-consuming
and error-prone task of manually creating such a model, thus
encouraging the designer to extensively explore alternative
partitionings and avoid the premature selection of a subopti-
mal implementation. To the best of our knowledge, SPRINT
is the first tool to generate a concurrent transaction level
model from sequential C code.

To match the characteristics of the target applications and
enable effective exploitation of heterogeneous target plat-
forms, SPRINT uses task level pipelining and a carefully se-
lected set of FIFO-like communication channels. The imple-
mentation can handle full ANSI-C code and relies on selec-
tive and tuned program analysis techniques to achieve a high
performance.

The effectiveness of the SPRINT tool has been experi-
mentally verified by applying it to two designs: an Embed-
ded Zero Tree Coder (800 lines of sequential C code) and an
MPEG-4 Simple Profile Encoder (10000 lines of sequential
C code). For both designs, multiple concurrent models for
different realistic target platforms, including both hardware
and software platforms, have been generated and evaluated.
In all cases tried, the model could be generated, compiled
and evaluated in less then six minutes. This is fast enough to
allow extensive exploration of the design space.

ACKNOWLEDGMENT

The authors would like to thank Henk Corporaal for the in-
sightful discussions and his valued contribution to this paper.

REFERENCES

[1] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power
digital design,” in Proceedings of the IEEE Symposium on Low
Power Electronics, pp. 8—11, San Diego, Calif, USA, October
1994.

[2] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K.
Bernstein, “Scaling, power, and the future of CMOS,” in Pro-
ceedings of IEEE International Electron Devices Meeting (IEDM
’05), p. 7, Washington, DC, USA, December 2005.

[3] H. De Man, F. Catthoor, G. Goossens, et al., “Architecture-
driven synthesis techniques for VLSI implementation of DSP
algorithms,” Proceedings of the IEEE, vol. 78, no. 2, pp. 319-
335, 1990, special issue on the future of computer-aided de-
sign.

[4] T. H. Meng, B. M. Gordon, E. K. Tsern, and A. C. Hung,
“Portable video-on-demand in wireless communication,” Pro-
ceedings of the IEEE, vol. 83, no. 4, pp. 659-680, 1995, special
issue on low power electronics.

[5] A. Lambrechts, P. Raghavan, A. Leroy, et al., “Power break-
down analysis for a heterogeneous NoC platform running a
video application,” in Proceedings of the 16th IEEE Interna-
tional Conference on Application-Specific Systems, Architectures
and Processors (ASAP °05), pp. 179-184, Samos, Greece, July
2005.

[6] M. A. Viredaz and D. A. Wallach, “Power evaluation of a hand-
held computer,” IEEE Micro, vol. 23, no. 1, pp. 66—74, 2003.

[7] L. Cai and D. Gajski, “Transaction level modeling in system

level design,” Tech. Rep. 03-10, CECS, University of California,

Irvine, Calif, USA, 2003.

http://www.systemc.org/.

B. Vanhoof, M. Peon, G. Lafruit, J. Bormans, M. Engels, and I.

Bolsens, “A scalable architecture for MPEG-4 embedded zero

tree coding,” in Proceedings of the 21st IEEE Annual Custom In-

tegrated Circuits Conference (CICC *99), pp. 65-68, San Diego,

Calif, USA, May 1999.

K. Denolf, C. De Vleeschouwer, R. Turney, G. Lafruit, and J.

Bormans, “Memory centric design of an MPEG-4 video en-

coder,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 15, no. 5, pp. 609-619, 2005.

K. Denolf, et al., “A systematic design of an MPEG-4 video

encoder and decoder for FPGAs,” in Proceedings of the Global

Signal Processing Expo and Conference (GSPx ’04), Santa Clara,

Calif, USA, September 2004.

© ‘o

[10

(11

http://www.systemc.org/

14 EURASIP Journal on Advances in Signal Processing

[12] http://www.mpeg.org/. [32] V. Bhaskaran and K. Konstantinides, Image and Video Com-

[13] Atomium, http://www.imec.be/atomium. pression Standards: Algorithms and Architectures, Kluwer Aca-

[14] F. Catthoor, E. de Greef, and S. Suytack, Custom Memory Man- demic Publishers, Boston, Mass, USA, 1997.
agement Methodology, Kluwer Academic Publishers, Boston, [33] A. C. Downton, R. W. S. Tregidgo, and A. Cuhadar, “Top-
Mass, USA, 1998. down structured parallelization of embedded image process-

[15] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, et al., “Maxi- ing applications,” IEE Proceedings-Vision, Image and Signal
mizing multiprocessor performance with the SUIF compiler,” Processing, vol. 141, no. 6, pp. 431-437, 1994.

Computer, vol. 29, no. 12, pp. 84-89, 1996. [34] E. C. Lewis and L. Snyder, “Pipelining wavefront computa-

[16] D. A. Padua and M. J. Wolfe, “Advanced compiler opti- tions: experiences and performance,” in Proceedings of the 5th
mizations for supercomputers,” Communications of the ACM, IEEE International Workshop on High-Level Parallel Program-
vol. 29, no. 12, pp. 1184-1201, 1986, special issue. ming Models and Supportive Environments (HIPS ’00), pp.

[17] M. E. Wolfand M. S. Lam, “A loop transformation theory and 261-268, Cancun, Mex1co,’ May.ZOOO.
an algorithm to maximize parallelism,” IEEE Transactions on (35] L. .Snyder, A Programmer’s Guide to ZPL, MIT Press, Cam-
Parallel and Distributed Systems, vol. 2, no. 4, pp. 452-471, bridge, Mass, USA, 1999. .

1991. [36] A.Das, W.J. Dally, and P. Mattson, “Compiling for stream pro-

[18] D. R. Cheriton, “The V distributed system,” Communications cessing,” in Rroceedings of the 15,th I.nternatio'nal Conf erence on
of the ACM, vol. 31, no. 3, pp. 314-333, 1988. Parallel Architectures and Compilation Techniques (PACT *06),

[19] E. A. de Kock, G. Essink, W. J. M. Smits, et al., “YAPI: appli- pp. 3342, Seattle, Wash, U.SA’ September 2.006‘
cation modeling for signal processing systems,” in Proceedings [37] f Mattson,.W. .] - Dally, S. I%lxn::r., U.J. Kapgs1, and . D. Owens,
of the 37th Design Automation Conference (DAC °00), pp. 402— Co.mmumcatlon SCheduhng’ in Proceedings of the 9th Int.er—
405, Los Angeles, Calif, USA, June 2000. Irjatlonal Conf;regce on.Arcgztectuml:gtgjzoor;f’or Programming

[20] W. A. Najjar, E. A. Lee, and G. R. Gao, “Advances in the o s, Do Soene om0 PP 82752
dataflow computational model,” Parallel Computing, vol. 25, [38] M. Gupta, é Mi d’kiff, E) Schonberg, et ai., “HPF compiler for
no- 13-14,«pp. 1907-1929, 1999. the IBM SP2,” in Proceedings of the ACM/IEEE Supercomput-

[21] G. Kahr}, }"he semantics of simple language for parallel pro- ing Conference, vol. 2, pp. 1944-1984, San Diego, Calif, USA,
gramming,” in Proceedings of the IFIP Congress on Information December 1995.

Processing,]. L. Rosenfeld, Ed., pp. 471-475, North-Holland, [39] D. B. Loveman, “Program improvement by source-to-source
StOd_(hOlm’ Sweden, August 1974. . transformation,” Journal of the Association for Computing Ma-

[22] S. Srlrarp and S. S. Bhatta.cha.ryya, Embedded Multiprocessors: chinery, vol. 24, no. 1, pp. 121-145, 1977.

Scheduling and Synchronization, Marcel Dekker, New York, [40] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. De-
NY, USA, 2000. prettere, “Compaan: deriving process networks from Matlab

(23] R. Eigenmann and P. McClaughry, “Practical tools for opti- for embedded signal processing architectures,” in Proceedings
mizing parallel programs,” in Proceedings of the SCS Multicon- of the International Conference on Design Automation and Test
ference, Arlington, Va, USA, March-April 1993. in Europe, Paris, France, February 2004.

[24] L. Park, M. J. Voss, B. Armstrong, and R. Eigenmann, “In- [41] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating affine
teractive compilation and performance analysis with ursa mi- nested-loop programs to process networks,” in Proceedings of
nor,” in Proceedings of the 10th International Workshop on Lan- the International Conference on Compilers, Architecture, and
guages and Compilers for Parallel Computing, pp. 163-176, Synthesis for Embedded Systems, pp. 220-229, Washington,
Minneapolis, Minn, USA, August 1997. DG, USA, September 2004.

[25] D. A.Reed, P. C. Roth, R. A. Aydt, et al., “Scalable performance [42] I. Karkowski and H. Corporaal, “FP-map - an approach to the
analysis: the Pablo performance analysis environment,” in Pro- functional pipelining of embedded programs,” in Proceedings
ceedings of the Scalable Parallel Libraries Conference, pp. 104— of the 4th International Conference on High Performance Com-
113, Mississippi State, Miss, USA, October 1993. puting (HiPC ’97), pp. 415-420, Bangalore, India, December

[26] A. Aho, R. Sethi, and J. D. Ullman, Principles of Compiler De- 1997.
sign, Addison-Wesley, Reading, Mass, USA, 1986. [43] G. Ottoni, R. Rangan, A. Stoler, M. J. Bridges, and D. I. Au-

[27] L. O. Andersen, Program analysis and specialization for the C gust, “From sequential programs to concurrent threads,” IEEE
programming language, Ph.D. thesis, Computer Science De- Computer Architecture Letters, vol. 5, no. 1, pp. 6-9, 2006.
partment, University of Copenhagen, Copenhagen, Denmark, [44] R. Rangan, N. Vachharajani, M. Vachharajani, and D. 1. Au-

(28]

[29]

(30]

(31]

May 1994,

J. M. Shapiro, “Embedded image coding using zero trees of
wavelet coefficients,” IEEE Transactions on Signal Processing,
vol. 41, no. 12, pp. 3445-3462, 1993.

J. M. Shapiro, “A fast technique for identifying zero trees
in the EZW algorithm,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’96), vol. 3, pp. 1455-1458, Atlanta, Ga, USA, May
1996.

K. Denolf, A. Chirila-Rus, and D. Verkest, “Low-power
MPEG-4 video encoder design,” in Proceedings of the IEEE
Workshop on Signal Processing Systems Design and Implementa-
tion (SIPS °05), pp. 284-289, Athens, Greece, November 2005.
“Information technology-Generic coding of audio-visual
objects—part 2: visual,” ISO/IEC 14496-2:2004, June 2004.

gust, “Decoupled software pipelining with the synchroniza-
tion array,” in Proceedings of the 13th International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT °04), pp. 177-188, Antibes Juan-les-Pins, France,
September-October 2004.

Johan Cockx received his degree in electri-
cal engineering from the Katholieke Uni-
versiteit, Leuven, Belgium, in 1983. From
1983 to 1985, he was a member of the CAD
Research Group at the ESAT Laboratory of
that university, working on modular circuit
simulation. From 1986 to 1996, he worked
for Silvar-Lisco, later renamed EDC, on
a wide range of electronic design tools

http://www.mpeg.org/
http://www.imec.be/atomium

Johan Cockx et al.

15

including a schematic editor, the core data structure of DSP sta-
tion behavioral synthesis tool suite and a dynamic data-flow sim-
ulator. He was an early adopter of object-oriented programming
techniques in general and the C++ programming language in par-
ticular. In 1996, he joined the Design Technology for Integrated In-
formation and Communication Systems (DESICS) Division of the
Interuniversity Micro Electronics Center (IMEC), Heverlee, Bel-
gium, where he did research on C++-based concurrent timed sim-
ulation of embedded systems (TIPSY—comparable to but preced-
ing SystemC), automated overhead removal from object-oriented
C++ programs, functional parallelization (SPRINT), translation of
C++ code to readable C code and C code cleaning for embedded
application. He is the author/coauthor of two patent applications
and several papers on these subjects.

Kristof Denolf received the M.Eng. de-
gree in electronics from the Katholieke
Hogeschool, Brugge-Oostende, Belgium, in
1998, the M.S. degree in electronic sys-
tem design from Leeds Metropolitan Uni-
versity, Leeds, UK, in 2000, and is currently
a Ph.D. candidate at the Techische Uni-
versiteit Eindhoven, The Netherlands. He
joined the Multimedia (MM) Group of the
Nomadic Embedded Systems Division, at
the Interuniversity Micro Electronics Centre (IMEC), Leuven, Bel-
gium, in 1998. His main research interests are the cost-efficient
design of advanced video processing systems and the end-to-end
quality of experience.

Bart Vanhoof received the Electrical En-
gineering degree from the Katholieke Uni-
versiteit, Leuven, Belgium, in 1989. That
year he joined the Interuniversity Micro
Electronics Center (IMEC). In the Applica-
tion Group of the VLSI systems and design
methodology (VSDM) Division, he demon-
strated the CAD developed in other groups
in several projects in the field of advanced
speech processing, embedded wireless sys-
tems, video codecs, and 3D applications. In the context of this
work, he authors and coauthors several papers. Vanhoof is Mem-
ber of the Multimedia (MM) Group since 1996. This group is part
of the Application group of the Nomadic Embedded Systems (NES)
Division of IMEC. In this group, he applied the SPRINT tool to an
MPEG-4 simple profile video codec. Vanhoof’s current aim is the
development of multimedia applications on embedded multipro-
cessor systems, with a focus on both the hardware and the software
aspects of these realizations. With this design experience, missing
links in the design flow will be identified.

Richard Stahl received the Electrical En-
gineering degree from the Slovak Univer-
sity of Technology in Bratislava, Slovakia,
in 2000. He received the Ph.D. degree from
the Katholieke Universiteit, Leuven, Bel-
gium, in 2006. In 2000, he joined the De-
sign Technology for Integrated Information
and Communication Systems (DESICS) Di-
vision of the Interuniversity Micro Elec-
tronics Center (IMEC) in Leuven, Belgium,
where he did research on automated techniques for exploration of
task-level parallelism in object-oriented programs. He is the au-
thor/coauthor of several papers on this subject.

	Introduction
	Systematic design flow
	The SPRINT tool
	Type of parallelism
	Communication channels
	Timing annotations
	User directives
	Implementation
	Task creation

	Experimental results
	Embedded zero-tree coder
	MPEG-4 simple profile video encoder
	Functionality, preprocessing, and high- level optimizations
	Partitioning for hardware mapping
	Partitioning for software mapping
	Results

	Related work
	Conclusions
	Acknowledgment
	REFERENCES

