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We propose a niche Genetic algorithm (GA) for the two-dimensional (2D) harmonic retrieval in the presence of correlative
zero-mean, multiplicative, and additive noise. Firstly, we introduce a 2D fourth-order time-average moment spectrum which
has extremum values at the harmonic frequencies. On this basis, the problem of harmonic retrieval is treated as a problem of
finding the extremum values for which the niche GA is resorted. Utilizing the global searching ability of the GA, this method can
improve the frequency estimation performance. The effectiveness of the proposed algorithm is demonstrated through computer
simulations.

1. Introduction

2D harmonic retrieval is of interest in signal processing such
as sonar, radar, geophysics, and radio astronomy. In the case
of additive noise, some high-resolution techniques such as
the 2D MUSIC [1], the 2D MEMP [2], and the 2D ESPRIT
method [3] have been developed from their 1D versions. Of
these algorithms, the ESPIRIT algorithm is more effective as
it does not require to search for the peak value in a 2D space.
Different from the abovemethods considering white noise, in
the presence of colored Gaussian noise, Ibrahim and Gharieb
[4, 5] have presented some methods based on fourth-order
cumulants since the cumulants are insensitive to Gaussian
noise while they contain frequency and phase information.

Under certain circumstances, the amplitudes of the
received harmonic signals are random since they are usually
corrupted by multiplicative noise. For example, multiplica-
tive noise is encountered in underwater acoustic applications
due to the dispersive medium [6, 7], and random amplitude
modulation occurs in Doppler-radar signals when the target
scintillates or when the point target assumption is no
longer valid [8]. Techniques based on cyclic statistics have
been proposed to estimate the 2D harmonic frequencies in
multiplicative noise [9, 10]. However, these methods are
based on the assumption that multiplicative and additive
noises are mutually independent and mixing.

In practice, the correlation of the multiplicative
and additive noise should be considered. In correlative
multiplicative and additive noise, Wu and Li [11] has
studied the problem of the quadratic nonlinear coupling
of 2D harmonics based on 2D third-order time-average
moment spectrum. Another two new 2D cyclic statistics
are also introduced to estimate the harmonic frequencies
in [12, 13], respectively. However, both the methods
suffer from a resolution limit and no strategy of searching
for the extremum values is discussed. In this paper, we
propose a new strategy to improve the frequency estimation
performance. Since the fourth-order time-average moment
spectrum defined in [13] peaks at the harmonic frequencies,
the harmonic retrieval can be treated as finding the
extremum values in a 2D space. Utilizing the global searching
ability, a GA-based algorithm is presented to estimate the
frequencies of 2D harmonic corrupted by correlative
multiplicative and additive noise. Simulation examples show
that the improved frequency estimation can be achieved.

The organization of the paper is as follows. In Section 2,
we introduce a special 2D fourth-order time-average
moment spectrum. In Section 3, a GA-based algorithm
is proposed to estimate harmonic frequencies. Numerical
examples are presented in Section 4, and conclusions are
drawn in Section 5.
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2. 2DHarmonic Model

Consider a discrete-time L-component 2D harmonics in
multiplicative and additive noise model

x(m,n) =
L∑

l=1
sl(m,n) exp

{
j
(
ω1lm + ω2ln + φl

)}
+ v(m,n),

(1)

where m = 0, 1, . . . ,T1 − 1, n = 0, 1, . . . ,T2 − 1, (ω1l,ω2l)
denotes the lth frequency pair and φl represents the lth phase.
sl(m,n) and v(m,n) denote multiplicative and additive noise,
respectively. In this paper, the following assumptions are
given by

(AS1) (ω1l,ω2l) ∈ (0, 2π/3) × (0, 2π/3), l = 1, . . . ,L, fre-
quency pairs are mutually unequal and not coupled;

(AS2) φls are deterministic constants in (−π,π];

(AS3) sl(m,n)s and v(m,n) are mutually correlative and
stationary stochastic processes with the mean msl �
E[sl(m,n)] = 0 andmv � E[v(m,n)] = 0;

(AS4) sl(m,n)s and v(m,n) satisfy the so-called cross-
mixing condition [12]:

∞∑

ξ1···ξp=−∞

∞∑

η1···ηp=−∞
sup
m,n

∣∣∣cum
{
sl0(m,n), sl1

(
m + ξ1,n + η1

)
,

. . . , slp
(
m + ξp,n + ηp

)}∣∣∣

< +∞,
(2)

where sli(m,n) ∈ {sl(m,n), s∗k (m,n)}, s0(m,n) �
v(m,n), i = 0, . . . , p; l, k = 0, . . . ,L.

Note that if the variance σ2sl � E[s2l (m,n)] − m2
sl =

0, the model in (1) would become the classical case of
harmonics with constant amplitude in additive noise. The
first assumption ensures that the fourth-order time-average
moment spectrum which will be defined latter peaks at the
harmonic frequencies. The second assumption ensures the
identifiability of harmonic phases. In the third assumption,
without loss of generality, the mean of the additive noise
can be assumed to be zero. A nonzero mean can always
be estimated consistently via the sample mean and then
subtracted from the data. When the mean of multiplicative
noise sl(m,n), msl /= 0, ∀l, Wang et al. [9] and Yang and Li
[10] have presented some effective methods to estimate the
harmonic frequencies.

Generally, sl(m,n) and v(m,n) are always assumed to
be mixing and mutually independent [6–10]. In order to

describe the correlativity of multiplicative and additive noise,
Xu et al. [12] derived the cross mixing condition. If sl(m,n)
and v(m,n) are mixing and mutually independent, they are
also cross mixing. On the contrary, if sl(m,n) and v(m,n)
are cross mixing, they must be mixing, but it doesn’t mean
that they are mutually independent. The correlativity of
multiplicative and additive noise can be described by cross-
mixing condition. The cross-mixing property implies that
samples of the processes that are well separated in time can
be regarded as approximately independent [14]. Under the
cross-mixing condition, time averages of the cyclic statistics
converge in the mean-square sense to their sample averages.
In model (1), if sl(m,n) and v(m,n) are cross-mixing, the
observed signal x(m,n) is cyclostationary, and the sample
estimates of its cyclic statistics converge in the sense of mean
square and are asymptotically normal [15].

For notational simplicity, let s0(m,n) = v(m,n),
(ω10,ω20) = (0, 0), φ0 = 0. Then (1) is given by

x(m,n) =
L∑

l=0
sl(m,n) exp

[
j
(
ω1lm + ω2ln + φl

)]
. (3)

Definition 1. The special fourth-order time-average moment
of x(m,n) is defined as

m4x

(
τ, ξ
)

� lim
T1,T2→∞

1
T1T2

T1−1∑

m=0

T2−1∑

n=0
m4x

(
m,n; τ, ξ

)

= lim
T1,T2→∞

1
T1T2

T1−1∑

m=0

T2−1∑

n=0
E
{
(x∗(m,n))2x∗(m + τ,n + ξ)

× x(m + τ,n + ξ)
}
,

(4)

where τ = (0, τ, τ), ξ = (0, ξ, ξ).

Definition 2. The special fourth-order time-average moment
spectrum is defined as

M4x
(
α,β

)

� lim
T1,T2→∞

1
T1T2

T1−1∑

τ=0

T2−1∑

ξ=0
m4x

(
τ, ξ
)
e− jατe− jβξ

= lim
T1,T2→∞

1
T2
1T

2
2

×
T1−1∑

τ=0

T2−1∑

ξ=0

T1−1∑

m=0

T2−1∑

n=0
E
{
(x∗(m,n))2x∗(m + τ,n + ξ)

× x(m + τ,n + ξ)
}
e− jατe− jβξ .

(5)
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Theorem 1. From [13], the fourth-order time-average
moment spectrum of x(m,n) corresponding to (5) can be
obtained by

M4x
(
α,β

) = 2
L∑

l1=1
E
{
s∗0 (m,n)s∗l1 (m,n)

}
E
{
s∗0 (m,n)sl1 (m,n)

}

× δ
(
α− ω1l1

)
δ
(
β − ω2l1

)

+

⎡
⎣

L∑

l2=1
E
{
s∗0 (m,n)s∗0 (m,n)

}

× E
{
s∗l2 (m,n)sl2 (m,n)

}

+ E
{
s∗0 (m,n)s∗0 (m,n)

}

× E
{
s∗0 (m,n)s0(m,n)

}
⎤
⎦δ(α)δ

(
β
)
,

(6)

where δ(α) is Kronecker function. Equation (6) contains
harmonic frequency information. This relation will be proved
in the appendix.

From (6), M4x(α,β) is unequal to zero only if (α,β) =
(ω1l,ω2l), l = 1, . . . ,L, or (α,β) = (0, 0). According to
Assumption 1, (ω1l,ω2l) /= (0, 0), the number of the obtained
greatest maxima of |M4x(α,β)| should be L rather than L+ 1
in the (α,β) plane.

From [16], M4x(α,β) can be estimated using single
record, namely,

M̂4x
(
α,β

)

� 1
T2
1T

2
2

T1−1∑

τ=0

T2−1∑

ξ=0

T1−1∑

m=0

T2−1∑

n=0

{
(x∗(m,n))2x∗(m + τ,n + ξ)

× x(m + τ,n + ξ)
}
e− jατe− jβξ .

(7)

Further, we have

M̂4x
(
α,β

) a.s.−−→M4x
(
α,β

)
, (8)

where a.s. represents almost sure convergence which is uni-
form in α and β. Equation (8) means that the single record

estimator M̂4x(α,β) is strongly consistent. Alternatively,
we can estimate the harmonic frequencies by searching

for L greatest maxima of |M̂4x(α,β)| in the (α,β) plane.
Consequently, the frequency estimation of 2D harmonics can
be treated as finding the extremum values of binary function.
In this paper, the GA is proposed to seek L local optimum
solutions.

3. Genetic Algorithm Realization

GA is nowadays one of the most popular stochastic opti-
mization techniques which is inspired by natural genetics
and biological evolutionary process. It is supposed that
individuals with more adaptability in current generation

would have better capability of survival and breeding in the
next generation. One of the most important advantages of
GA is that it can make use of the limited searching processes
to automatically find the optimal or near-optimal result in
the solution space. Compared with the classical optimization
algorithms, GA has such features as follows [17].

(1) GA starts from multipoints instead of one point.
Thereby, it could effectively prevent the searching
processes from stopping in local optimum solutions.

(2) The optimization rule of GA is varied. It is deter-
mined by probability.

(3) The fitness is calculated only from object function.
No other information is necessary.

(4) It automatically seeks the optimal result in the whole
solution space.

(5) The calculation is relatively simple.

GA evaluates a population and generates a new one
iteratively, with each successive population referred to as a
generation. Assume the current generation t is G(t). After
applying a set of genetic operations, the GA generates a new
generation G(t + 1) based on the previous generation. Three
basic operators are used to manipulate the genetic composi-
tion of a population: selection, crossover, and mutation [17].

The detailed implementation of the proposed method is
given as follows.

1◦ Fitness Function. In order to perform GA, it is very
important to define an appropriate fitness function. In GA,
the probability of individual survival to the next generation
depends on its fitness value. The greater the fitness value
of an individual, the greater probability it has to inherit to
the next generation. In this paper, the fitness function is
constructed by the operation of getting the absolute value on
the nonlinear function (7)

fitness
(
α,β

)

=
∣∣∣∣M̂4x

(
α,β

)∣∣∣∣

=
∣∣∣∣∣∣

1
T2
1T

2
2

T1−1∑

τ=0

T2−1∑

ξ=0

T1−1∑

m=0

T2−1∑

n=0

{
(x∗(m,n))2x∗(m + τ,n + ξ)

× x(m + τ,n + ξ)
}
e− jατe− jβξ

∣∣∣∣∣∣
,

(9)

where x(m,n) is the observed signal.

2◦ Generation of the Initial Group. Commonly in GA, the
initial population is randomly generated. The real-coded GA
is adopted in this paper. The length of chromosome graph is
set as 3. The first two genes denote the frequency pairs and
the third gene denotes the fitness value.

The performance of GA is influenced heavily by the
population size. GA may run the risk of serious under-
covering of the solution space and result in a local optimum
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Figure 1: |M̂4x(α,β)| of (7), e(m,n) is white Gaussian noise, SNR = 0 dB.

when the population size is relatively small, whereas GA
would increase the computational load when the population
size is relatively large. Consequently, the population size
should be chosen according to the problem scale.

3◦ Selection. The operation is to choose the good individual
and get rid of the bad one from the group. The larger the
fitness, the larger probability the individual has to be selected.
To achieve this, the roulette wheel selection is used. The
fitness of the ith individual is denoted as Fi. The selection
probability of the ith individual is computed as Pis =
Fi/
∑m

i=1 Fi. At the same time, we reserve the best individual
to the next population.

4◦ Crossover. The crossover is to exchange some parts of
an individual with corresponding parts of another. The
crossover is performed in the following way. Assume that Xi

andXj are pairs of parent chromosome, whether to crossover

or not depends on the crossover probability Pc. The result of
crossover is

X ′i = (1− λ)Xi + λXj ,

X ′j = (1− λ)Xj + λXi,
(10)

where λ is a uniformly distributed random number in [0, 1].

5◦ Mutation. The mutation operator adopts “Nonuniform
Mutation” [18]. Compared with the classical uniform
mutation operator, this operator has the advantage of
making fewer changes on the genes with the number of
generations increasing. This property makes the tradeoff
between exploration and exploitation. It is more favorable
to have exploration in the early stages of the algorithm,
while exploitation becomes of greater importance when the
obtained solution is closer to the optimal solution. The
mutation can be completed in the following way: assuming
xk is the kth component of the individual Xi, the mutation
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Figure 3: RMSEs of frequency estimation versus the data size,
e(m,n) is white Gaussian noise, SNR = 0 dB.

probability Pm determines whether to mutate or not. The
result of mutation is

x′k =
⎧
⎨
⎩
xk + Δ

(
x,ukmax − xk

)
, if β > 0.5,

xk − Δ
(
x, xk − ukmin

)
, if β < 0.5,

Δ
(
x, y

) = y ·
(
1− r(1−t/T)b

)
,

(11)

where positive number b controls the dependence degree
of random fluctuation to evolution number t. r and β are
uniformly distributed as random numbers on the interval
[0, 1]. T is the largest evolution number.

6◦ Condition to Terminate the GA Iterations. When the
number of generation reaches T , the iterations would be
terminated.

In this paper, we seek all the optimal solutions of nonlin-

ear function |M̂4x(α,β)|, including local optimal solutions
and global optimal solutions. However, the simple genetic
algorithm is unable to get all optimal solutions. According
to the niche phenomenon in nature [19, 20], a niche GA-
based method is proposed to estimate harmonic frequencies.
A niche in nature can be viewed as a subspace in the
environment. Accordingly, a niche is commonly thought as
a peak of the fitness function. The niche techniques gather
the individuals on several peaks of fitness function in the
population according to genetic likeness. The structure of a
niche is implemented by decreasing the fitness value of the
individual. The concrete method is implemented by calcu-
lating the Euclidean distance between parent individual and
arbitrary other child individual and then judging whether
two individuals are in the circle defined by estimating niche
radius d. Compare with simple GA, niche GA can find more
than one optima during evolution. The basic steps of the
algorithm are given as follows.

(1) Set the generation number t = 0. Create an
initial population which includes M individuals and
evaluate their fitness.

(2) Sort the population according to their fitness and
memorize the first N individuals.

(3) Produce a new population through selection,
crossover and mutation.

(4) Evaluate the fitness of every new individual.

(5) Keep theM individuals from step 3 and N memorial
individuals from step 2. Evaluate the distance d
between each two of them. Introduce a penalty P to
the individual with lower fitness when d < R.

(6) Combine the M individuals with the N individuals.
Sort the M + N individuals according to their
fitness. Save the first N individuals and the first M
individuals.

(7) Set t = t + 1 and repeat steps 3–6 until t = T .

4. Simulations

Computer simulations are presented here to illustrate the
main aspects of this paper. In all simulations, we generate
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Figure 4: |M̂4x(α,β)| of (7), e(m,n) is i.i.d white exponential noise, SNR = 0 dB.

(1) with L = 3, (ω11,ω21) = (0.5, 0.8), (ω12,ω22) =
(1.2, 1.5), (ω13,ω23) = (1.6, 1.2), φ1 = 0.1, φ2 = 0.2, and
φ3 = 0.6. The multiplicative noises are generated by

s1(m,n) = e(m,n)− 0.5e(m− 1,n− 1)

− 0.5e(m− 2,n− 2),

s2(m,n) = e(m,n)− 0.3e(m− 1,n− 1)

− 0.7e(m− 2,n− 2),

s3(m,n) = e(m,n)− 0.4e(m− 1,n− 1)

− 0.6e(m− 2,n− 2),

(12)

where the mean msl = 0, l = 1, 2, 3. The additive noise
v(m,n) is also generated by e(m,n) with the mean mv = 0.
The signal-to-noise ratio (SNR) is defined as

SNR = 10 log10

⎡
⎣
∑L

l=1
(
σ2sl

)

σ2v

⎤
⎦. (13)

Example 1. Consider e(m,n) as white Gaussian noise with
the mean me = 0 and the variance σ2e = 1. The fourth-order
time-average moment spectrum is computed according to

(7). Figure 1 shows |M̂4x(α,β)| when the SNR is 0 dB and

the data size is 50 × 50. |M̂4x(α,β)| which varies with α and
β is plotted in Figure 1(a). It can be observed that there are
three obvious peaks. It is shown in Figure 1(b) that three
peaks locate at the accurate positions (ω1l,ω2l), l = 1, 2,
and 3. Figure 1(c) shows the ten greatest estimated mean

of |M̂4x(α,β)| using the GA from 100 Monte Carlo runs.
The x-coordinate denotes the index of individuals and the
y-coordinate denotes the corresponding estimated mean. It
can be shown that there is an obvious boundary among the
estimated values. The estimated number of harmonics is 3.
However, if the SNR is very low, there is no obvious boundary
among the estimate values. In this situation, we should esti-
mate the number of harmonics firstly. More detail of estimat-
ing the number of harmonics has been presented in [21, 22].
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The GA parameters are set as follows. Initial population
M = 300, memorial population N = 120, genetic times T =
300, crossover probability Pc = 0.6, mutation probability
Pm = 0.05, mutation control parameter b = 1, niche
destining distance R = 0.1, and individual penalty P = 10−4.

In this simulation, the performance of the GA-based
and the fourth-order time-average moment spectrum-based
(FOTAMS) method [13] is compared. Figure 2 shows the
root mean squared errors (RMSEs) on the estimated fre-
quency pairs when the data size is 50 × 50 which are
computed as functions of the SNR from 100 Monte Carlo
runs. The frequency estimates of the proposed method are
more accurate than that of the FOTAMS-based method
whatever the SNR is. The RMSEs of the estimated fre-
quency pairs versus the data size K × K at SNR = 0 dB
are shown in Figure 3. It is clear that as the data size
increases, the estimation accuracy improves. The estimated
values of the proposed method are also more accurate than
that of the FOTAMS-based method regardless of the data
size.

Example 2. To illustrate that the proposed method is insen-
sitive to the distribution of the noise, e(m,n) is assumed to
be the i.i.d. white exponential noise with the meanme = 0.5.
Other parameters are the same as that in Example 1. Figure 4

shows |M̂4x(α,β)| with SNR = 0 dB. Similar to Example 1,
we can also observe that three obvious peaks locate at the
accurate positions (ω1l,ω2l), l = 1, 2, and 3. Figures 5 and 6
show the RMSEs performance of frequency estimation versus
the SNR and the data size, respectively. It is illustrated that
the GA estimators also perform better than the FOTAMS
estimators.

5. Conclusion

In this paper, a cyclic statistics-based method for frequency
estimation of 2D harmonics in correlative multiplicative
and additive noise is addressed. Since the 2D fourth-order
time-average moment spectrum peaks at the frequencies of
harmonic, the problem of harmonic retrieval can be solved
by finding the extremum values. Exploiting global searching
ability of GA and the niche phenomenon in nature, we
propose a niche GA method to estimate harmonic frequen-
cies. This method can improve the estimation accuracy.
Simulation results demonstrated the effectiveness of the
presented method. Moreover, our method can be extended
to the parameter estimation of 2D harmonics under other
conditions.

Appendix

Proof of Theorem 1

m4x(τ, ξ)

� lim
T1,T2→∞

1
T1T2

T1−1∑

m=0

T2−1∑

n=0
E
{
(x∗(m,n))2x∗(m + τ,n + ξ)

× x(m + τ,n + ξ)
}
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= lim
T1,T2→∞

1
T1T2

×
T1−1∑

m=0

T2−1∑

n=0
E

⎧
⎨
⎩

L∑

l1=0

L∑

l2=0

L∑

l3=0

L∑

l4=0
S∗l1 (m,n)S∗l2 (m,n)

× S∗l3 (m + τ,n + ξ)

× Sl4 (m + τ,n + ξ)

× e− j(ω1l1+ω1l2+ω1l3−ω1l4 )m

× e− j(ω2l1+ω2l2+ω2l3−ω2l4 )n

× e− j(ω1l3−ω1l4 )τ

× e− j(ω2l3−ω2l4 )ξ

⎫
⎬
⎭

=
L∑

l1=0

L∑

l2=0

L∑

l3=0

L∑

l4=0
E
{
S∗l1 (m,n)S∗l2 (m,n)S∗l3 (m + τ,n + ξ)

× Sl4 (m + τ,n + ξ)
}

× e− j(ω1l3−ω1l4 )τe− j(ω2l3−ω2l4 )ξ

× δ
(−ω1l1 − ω1l2 − ω1l3 + ω1l4

)

× δ
(−ω2l1 − ω2l2 − ω2l3 + ω2l4

)
. (A.1)

According to the formula of Cumulant-Moment (C-M),
we have

E
{
S∗l1 (m,n)S∗l2 (m,n)S∗l3 (m + τ,n + ξ)Sl4 (m + τ,n + ξ)

}

= E
{
S∗l1 (m,n)S∗l2 (m,n)

}

× E
{
S∗l3 (m + τ,n + ξ)Sl4 (m + τ,n + ξ)

}

+ Cum
{
S∗l1 (m,n)S∗l2 (m,n), S∗l3 (m + τ,n + ξ)

× Sl4 (m + τ,n + ξ)
}
. (A.2)

In the following, it is proved that the fourth-order time-
average moment spectrum of the second term (denoted as
M) is zero:

M =
∣∣∣∣ lim
T1,T2→∞

1
T1T2

×
T1−1∑

τ=0

T2−1∑

ξ=0
Cum

{
S∗l1 (m,n)S∗l2 (m,n), S∗l3 (m + τ,n + ξ)

×Sl4 (m + τ,n + ξ)
}
e− jατe− jβξ

∣∣∣

≤ lim
T1,T2→∞

1
T1T2

×
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣Cum
{
S∗l1 (m,n)S∗l2 (m,n), S∗l3 (m + τ,n + ξ)

×Sl4 (m + τ,n + ξ)
}∣∣∣. (A.3)

(Leonov-Shiryaev [14]):

M ≤ lim
T1,T2→∞

1
T1T2

×
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣Cum
{
S∗l1 (m,n), S∗l3 (m + τ,n + ξ)

}

× Cum
{
S∗l2 (m,n), Sl4 (m + τ,n + ξ)

}

+ Cum
{
S∗l1 (m,n), S∗l4 (m + τ,n + ξ)

}

× Cum
{
S∗l2 (m,n), Sl3 (m + τ,n + ξ)

}

+ Cum
{
S∗l1 (m,n), S∗l2 (m,n),

S∗l3 (m + τ,n + ξ),

Sl4 (m + τ,n + ξ)
}∣∣∣.

(A.4)

(Triangle Inequality):

M ≤ lim
T1,T2→∞

1
T1T2

⎧
⎨
⎩

T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl1 Sl3
(τ, ξ)CSl2 Sl4

(τ, ξ)
∣∣∣

+
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl1 Sl4
(τ, ξ)CSl2 Sl3

(τ, ξ)
∣∣∣

+
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl1 Sl2 Sl3 Sl4
(0, τ, τ; 0, ξ, ξ)

∣∣∣

⎫
⎬
⎭.

(A.5)

(Schwarz Inequality):

M ≤ lim
T1,T2→∞

1
T1T2

×
⎧
⎪⎨
⎪⎩

√√√√√
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl1 Sl3
(τ, ξ)

∣∣∣
2
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl2 Sl4
(τ, ξ)

∣∣∣
2

+

√√√√√
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl1 Sl4 (τ, ξ)
∣∣∣
2
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl2 Sl3
(τ, ξ)

∣∣∣
2

+
T1−1∑

τ=0

T2−1∑

ξ=0

∣∣∣CSl1 Sl2 Sl3 Sl4
(0, τ, τ; 0, ξ, ξ)

∣∣∣

⎫
⎪⎪⎬
⎪⎪⎭
.

(A.6)
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So

M4x
(
α,β

)

=
L∑

l1=0

L∑

l2=0

L∑

l3=0

L∑

l4=0
E
{
S∗l1 (m,n)S∗l2 (m,n)

× S∗l3 (m,n)Sl4 (m,n)
}

× δ
(
α + ω1l3 − ω1l4

)

× δ
(
β + ω2l3 − ω2l4

)

× δ
(−ω1l1 − ω1l2 − ω1l3 + ω1l4

)

× δ
(−ω2l1 − ω2l2 − ω2l3 + ω2l4

)
.

(A.7)

M4x(τ, ξ) is unequal to zero if and only if

α + ω1l3 − ω1l4 = 0 mod (2π),

β + ω2l3 − ω2l4 = 0 mod (2π),
(A.8)

ω1l1 + ω1l2 + ω1l3 = ω1l4 mod (2π), (A.9)

ω2l1 + ω2l2 + ω2l3 = ω2l4 mod (2π). (A.10)

We analyze four cases as follows.

(1) None of the four frequency pairs satisfying (A.9) and
(A.10) are unequal to (0, 0). According to (AS1), it is
impossible.

(2) Only one of the four frequency pairs satisfying
(A.9) and (A.10) is zero. According to (AS1), it is
impossible.

(3) Two of the four frequency pairs satisfying (A.9) and
(A.10) are equal to (0, 0). Since (ω1l4 ,ω2l4 ) is not (0, 0)
according to (AS1), there must be two pairs equal to
(0, 0) among (ω1l1 ,ω2l1 ), (ω1l2 ,ω2l2 ), and (ω1l3 ,ω2l3 ).

Thus, the fourth-order time-average moment spec-
trum is

M4x
(
α,β

)

=
L∑

l3=1
E
{
S∗0 (m,n)S∗0 (m,n)

}
E
{
S∗l3 (m,n)Sl3 (m,n)

}

× δ(α)δ
(
β
)

+
L∑

l2=1
E
{
S∗0 (m,n)S∗l2 (m,n)

}
E
{
S∗0 (m,n)Sl2 (m,n)

}

× δ
(
α− ω1l2

)
δ
(
β − ω2l2

)

+
L∑

l1=1
E
{
S∗l1 (m,n)S∗0 (m,n)

}
E
{
S∗0 (m,n)Sl1 (m,n)

}

× δ
(
α− ω1l1

)
δ
(
β − ω2l1

)

= 2
L∑

l1=1
E
{
S∗0 (m,n)S∗l1 (m,n)

}
E
{
S∗0 (m,n)Sl1 (m,n)

}

× δ
(
α− ω1l1

)
δ
(
β − ω2l1

)

+
L∑

l2=1
E
{
S∗0 (m,n)S∗0 (m,n)

}
E
{
S∗l2 (m,n)Sl2 (m,n)

}

× δ(α)δ
(
β
)
.

(A.11)

(4) All of the four frequency pairs satisfying (A.9) and
(A.10) are unequal to (0, 0). Thus, the fourth-order
time-average moment spectrum is

M4x
(
α,β

) = E
{
S∗0 (m,n)S∗0 (m,n)

}

× E
{
S∗0 (m,n)S0(m,n)

}
δ(α)δ

(
β
)
,

(A.12)

thus yielding

M4x
(
α,β

)

= 2
L∑

l1=1
E
{
s∗0 (m,n)s∗l1 (m,n)

}
E
{
s∗0 (m,n)sl1 (m,n)

}

× δ
(
α− ω1l1

)
δ
(
β − ω2l1

)

+

⎡
⎣

L∑

l2=1
E
{
s∗0 (m,n)s∗0 (m,n)

}
E
{
s∗l2 (m,n)sl2 (m,n)

}

+ E
{
s∗0 (m,n)s∗0 (m,n)

}
E
{
s∗0 (m,n)s0(m,n)

}
⎤
⎦δ(α)δ

(
β
)
.

(A.13)
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