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Traditional Secret Sharing (SS) schemes reconstruct secret exactly the same as the original one but involve complex computation.
Visual Secret Sharing (VSS) schemes decode the secret without computation, but each share is m times as big as the original and
the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS) schemes for a binary image
use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black
area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and
advantages. This paper first presents an approach to convert (transform) a (k, k)-SS scheme to a (k, k)-VSS scheme for greyscale
images. The generation of the shadow images (shares) is based on Boolean XOR operation. The secret image can be reconstructed
directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller
than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes.
Then a novel matrix-concatenation approach is used to extend the greyscale (k, k)-SS scheme to a more general case of greyscale
(k,n)-VSS scheme.

1. Introduction

A secret kept in a single information-carrier could be easily
lost or damaged. Secret Sharing (SS) schemes, called (k,n)
threshold schemes, have been proposed since the late 1970s
to encode a secret into n pieces (“shadows” or “shares”) so
that the pieces can be distributed to n participants at different
locations [1, 2]. The secret can only be reconstructed from
k or more pieces (k ≤ n). Since Shamir’s scheme is
a basic secret sharing scheme and is easy to implement,
it is commonly used in many applications. However, the
computation complexity of Shamir’s scheme is O(k log2k)
for the polynomial evaluation and interpolation in [3].
Wang et al. [4] proposed a deterministic (k, k)-secret sharing
scheme for greyscale images. That scheme uses simple
Boolean XOR operations and has no pixel expansion. The
computation complexity of the reconstructed secret image
is O(k). Visual secret sharing (VSS) schemes [5] have been
proposed to encode a secret image into n “shadow” (“share”)
images to be distributed to n participants. The secret can
be visually reconstructed only when k or more shares are

available. No information will be revealed with any k − 1
or fewer shares. VSS schemes, originally based on binary
images, have been expanded to work with greyscale and color
images. In a (k,n)-VSS scheme, the computation complexity
of reconstructing a secret image using k shadows in visual
cryptography is proportional toO(k) and proportional to the
size of the shadow images. Several (k, k)-VSS schemes have
been designed for special k values [6–8]. In a VSS scheme,
every pixel of the original image is expanded to m subpixels
in a shadow image. Thesem subpixels are referred to as pixel
expansion. The quality of the reconstructed secret image
is evaluated by contrast (denoted by α) in VSS schemes.
Pixel expansion m and contrast α are two factors to evaluate
a VSS scheme. Therefore, it is desirable to minimize m
and maximize α as much as possible. Much work has been
directed toward reducing the pixel expansion [9, 10]. Many
of the previous schemes were primarily proposed for binary
images. A number of VSS schemes have also been proposed
for greyscale images [11–13]. The minimum pixel expansion
of the (k, k)-VSS scheme for greyscale image in [13] is equal
to those in [11, 12], namely, m ≥ (g − 1) · 2k−1, where g is
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the number of different grey levels in the secret image. The
deterministic VSS schemes mentioned above have achieved
minimum pixel expansion m and optimal contrast α = 1/m,
but the value ofm can be still quite large, partly becausem is
proportional to the exponential of k.

To further reduce pixel expansion, a number of proba-
bilistic VSS schemes (Prob.VSS schemes) have been proposed
in [14–16]. These schemes were designed for the case of g =
2, that is, for black and white images. In the reconstructed
secret image, the probability of white pixels in a white area is
higher than that in a black area. Therefore small areas, rather
than individual pixels, of the secret image can be recovered
accurately. With the trade-off in resolution, probabilistic
schemes can achieve no pixel expansion (m = 1), and the
contrast is the same as the ones in the deterministic schemes.

Because the SS scheme, VSS scheme, and Prob. VSS
scheme use these different construction methods, it is
important to research the link (or relationship) among these
three methods. Some studies have focused on describing the
relationship of SS schemes and VSS schemes with respect
to pixel expansion and contrast. Cimato et al. [16] first
proved that there exists a one-to-one mapping between
binary VSS schemes and probabilistic binary VSS schemes
with no pixel expansion, where contrast is traded for the
probability factor. Yang et al. [17, 18] introduced secret image
sharing deterministic and probabilistic visual cryptograph
scheme (DPVCS), which is a two-in-one combination of VSS
and PVSS schemes. Bonis and Santis [19] first analyzed the
relationship between SS schemes and VSS schemes, focusing
attention on the amount of randomness required to generate
the shares. They proved that SS schemes for a set of secrets of
size two binary SS schemes and VSS schemes are “equivalent”
with respect to the randomness. Lin et al. [20] presented an
innovative approach to combine two VSS and SS scheme,
the n shares are created for a given grey-valued secret image.
Each share includes both SS and VSS scheme information,
providing two options for decoding. So far the study of
relationships among SS, Prob. VSS, and VSS scheme has
been focused mainly on the relationship between VSS and
Prob. VSS scheme, the randomness relationship between
SS and VSS scheme, and the methods combining VSS and
SS scheme. However, another interesting topic of study
would be the relationship between SS and VSS schemes,
especially with regard to the underlying pixel expansion and
contrast.

In this paper, we give the relationship between the (k,n)-
SS scheme and (k,n)-VSS scheme with respect to pixel
expansion and contrast. We first propose a construction
approach to transform a traditional (k, k)-SS scheme to
a (k, k)-VSS scheme for greyscale images. That is, the
generation of the shadow images is based on Boolean OR
and XOR operations, and the reconstruction process uses
Boolean OR operation, as in most other VSS schemes. In
our (k, k)-VSS scheme, the pixel expansionm is g − 1, much
smaller than the (g − 1) · 2k−1 of traditional VSS scheme and
independent of k. The quality of the reconstructed image,
measured in “Average Contrast” between consecutive grey
levels, is 1/(g − 1) · 2k−1, which is equal to that in the VSS
schemes. Then we extend the traditional (k, k)-SS scheme

to a (k, k)-VSS scheme for greyscale images. In our (k,n)-
scheme, the pixel expansion is smaller than that of previous
deterministic (k,n)-VSS schemes [10, 11], when k ≥ n/4,
k ≥ 4. The average contrast of our (k,n)-VSS scheme is close
to that of deterministic (k,n)-VSS schemes [10, 11] when
k ≥ n/2, k ≥ 2.

The rest of the paper is organized as follows. In Section 2,
we briefly review binary Prob. VSS scheme. Section 3
presents an approach to convert a greyscale (k, k)-SS scheme
to a (k, k)-VSS scheme. In Section 4, we present a novel
approach to extend the above (k, k)-SS scheme into a more
general greyscale (k,n)-VSS scheme. Section 5 concludes the
paper.

2. A Review of Probabilistic VSS Scheme

Here, we briefly review probabilistic visual secret sharing
scheme [14–16]. The followingDefinition 2.1 is directly from
Yang’s scheme [15].

Definition 2.1 (see [15]). A (k,n)-Prob. VSS scheme can be
shown as tow sets, white set C0 and black set C1, consisting
of nλ and nγ n × 1 matrices, respectively. When sharing a
white (resp., black) pixel, the dealer first randomly chooses
one n×1 columnmatrix inC0 (resp.,C1), and then randomly
selects one row of this column matrix to a relative shadow.
The chosenmatrix defines the color level of pixel in every one
of the n shadows. A Prob. VSS Scheme is considered valid if
the following conditions are met.

(1) For these nλ (resp., nγ) matrices in the set C0 (resp.,
C1) the “OR”-ed value of any k-tuple column vector
V is L(V). There values of all matrices form a set λ
(reps. γ).

(2) The two sets λ and γ satisfy that p0 ≥ pTH and
p1 ≤ pTH − α, where p0 and p1 are the appearance
probabilities of the “0” (white color) in the set λ and
γ, respectively.

(3) For any subset with {i1, i2, . . . , iq} of {1, 2, . . . ,n}with
q < k, the p0 and p1 are the same.

The first two conditions are called contrast, and the
third is condition called security. From the above definition,
the matrices in C0 and C1 are n × 1 matrices, so the pixel
expansion is one.

For conventional VSS schemes, a pixel in the original
image is expanded to m subpixels and the number of white
subpixels of a white and black pixel is h and l. When stacking
k shadows, we will have “m − h” B “h” W subpixels for a
white pixel and “m − l” B “l” W subpixels for a black pixel.
Hence, from the observation, if we use all the columns of the
basis matrices S0 and S1 of a conventional VSS scheme as the
n × 1 column matrices in the sets C0 and C1, we can let the
pixel appear in white color different probability instead of
expanding the original pixel to m subpixel and the frequency
of white pixel in white and black areas in the recovered image
will be p0 = h/m and p1 = l/m.
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3. The Proposed ConvertingMethod for
a (k, k) Scheme

The purpose of this section is to show how to convert a
(k, k)-SS scheme to a (k, k)-VSS scheme. First, we give quality
measures of the recovered secret image. Then we introduce
a seemingly simple but very valid method that can be used
easily to transform a greyscale image to a binary image.
Finally, we prove that the proposed method for converting
the (k, k)-SS scheme to a (k, k)-VSS scheme is valid.

3.1. Quality Measurement of Recovered Secret Image. Since
the existing probabilistic schemes were only proposed for
binary images, the contrast between black and white pixels
was naturally chosen as an important measurement of
quality. The scheme we proposed is for greyscale images.
We use the expected contrast between two pixels with
consecutive grey levels in the original image to indicate the
quality of reconstruction. This is referred to as “Average
Contrast”, defined as follows.

Let S = [si j] be the φ × ϕ original secret image, i =
1, 2, . . . ,φ, j = 1, 2, . . . ,ϕ, and si j ∈ {1, . . . , g}. Suppose that
U = [ui j] is the (mg ·φ)×(mg ·ϕ) reconstructed image, where
mg is the pixel expansion factor. For si j = l, l ∈ {1, . . . , g},
the corresponding pixel in Ucan be denoted as Ul = {ui j |
si j = l}, l ∈ {1, . . . , g}.

The appearance of Ul depends on the Hamming weight
of the m dimensional vector. Because of the randomness
of the shadow images, H(U) is a random variable. We are
interested in the average Hamming weight for all pixels Ul.

Let a(h)i j be the (i, j)th Boolean value in the hth shadow
image. Then the reconstruction results is

ui j = a(1)i j + a(2)i j + · · · + a(k)i j . (1)

The symbol “+” represents Boolean OR operation in formula
(1). In other words, matrixU is Boolean OR operation of the
shares U = A1 + · · · + Ak.

Let Pt = P(H({ui j = t | si j = l })) be the probability of
H(Ul) taking value t with t ∈ {1, . . . , g}, the expected value

of H(Ul) is E(H({ui j = t | si j = l })) = ∑g−1
t=0 t · Pt . We

now define Average Grey βl and Average Contrast αl for the
reconstructed image as

βl = E

⎛

⎝
H
(
ui j | l

)

mg

⎞

⎠ =
E
(
H
({

ui j = t | si j = l
}))

mg
,

αl = βl − βl−1, l ∈ {2, . . . , g}.
(2)

3.2. Brief Review the (k, k)-SS Scheme Based on Boolean XOR
Operation. The (k, k)-SS scheme in [4] is deterministic and
the reconstructed image is exactly the same as the original
one. A secret image S can share k shadows A1, . . . ,Ak. After
obtaining all k shadows, we can perform XOR operations to
recover the secret image A.

The (k, k)-SS scheme in [4] for greyscale images is given
in Algorithm 1.

From Algorithm 1, the symbol “⊕” represents XOR
operation, the computation complexity of reconstructed

secret image is O(k). The reconstructed secret image
needs to perform Boolean XOR operation described in
[15] while conventional VSS scheme performs Boolean
OR operation. If a and b are integers, a ⊕ b can be
expressed in terms of OR and XOR operations as: a ⊕ b =
OR (NOT (OR (NOT a, b)), NOT (OR (a, NOT b)) ). The
XOR operation can be performed by four NOT operations
and three OR operations. Thus, the scheme described above
is more complex than VSS schemes based on OR operations.
In this case, we cannot directly use SS scheme of [15] to con-
struct a VSS scheme. A new approach must be constructed.
To address this, we propose a method to convert a greyscale
secret image to a binary image. Then, we construct a (k, k)-
VSS scheme to transform XOR operation to OR operation
based on scheme of [15]. The following subsection will
introduce this new method to encode greyscale images into
binary images.

3.3. New Encoding Method of Greyscale Image. Each pixel of
original image S can take any one of g different grey levels.
S = [si j]φ×ϕ, where i = 1, 2, . . . ,φ, j = 1, 2, . . . ,ϕ and si j ∈
{1, . . . , g}. We have g = 2 for a binary image and g = 256
for a greyscale image with one byte per pixel. In a greyscale
image with one byte per pixel, the pixel value can be an index
to a color table, thus g = 256. In a color image using an RGB
model, each pixel has three integers: R (red), G (green) and
B (blue). If each R, G or B takes value between 0 and 255, we
have g = 2563.

In the construction of the shadow images, each pixel of S
is coded as a binary string of g − 1 bits. For si j = l, its coded
form is ci j = bl−1g−1 = 0 g−l1l−1, which is a string of g − l zeros
and l − 1 ones. The order of the bits does not matter.

Example 3.1. For example, b4−16−1 can be written as 00111, or
01101, or equivalently 11010.

Note that the range of grey level for the original image
and the reconstructed image pixels is from 1 to g, but the
range of coded form, ci j , is from 0 to g − 1. Notation gives
a list of variable names for easy lookup.

Each pixel of C is expanded into g − 1 subpixels with
a function T which converts a binary string of g − 1 bits
into a row vector of g − 1 components. Therefore, the pixel
expansion factor of this scheme is m = g − 1. Notice that
this encoding method turns out to be a crucial part of
construction.

3.4. Construction of the Shares. Each pixel of C is expanded
into g−1 subpixels with a function T which converts a binary
string of g − 1 bits into a row vector of g − 1 components.
Therefore, the pixel expansion factor of this scheme is mg =
g − 1.

Now, the description of the proposed scheme is given
in Algorithm 2.

3.5. Proof of the Construction. In this section we will show
that the quality of the scheme depends on the quality of
the reconstructed image U . We now look at a pixel of the
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Input: an integer k with k ≥ 2, and the secret image S.
Output: k distinct matrices A1, . . . ,Ak , called shadow images.
Construction: generate k − 1 random matrices B1, . . . ,Bk−1, compute the shadow images as below:

A1 = B1, A2 = B1 ⊕ B2, . . . ,Ak−1 = Bk−2 ⊕ Bk−1, Ak = Bk−1 ⊕ S.
Revealing: S = A1 ⊕ A2 ⊕ · · · ⊕ Ak .

Algorithm 1

Input: The secret image S, S = [si j] in the coded form C = [ci j]
Output: The shadow images D1, . . . ,Dk .
Share generation: Randomly generate k − 1 matrices R1, . . . ,Rk−1 of size (mg · φ)× (mg · ϕ),

where Rh = Xh, Xh ∈ {0, . . . , 2g−1 − 1}.
D1 = R1,

Dh = Rh−1 ⊕ Rh, h = 2, . . . , k − 1,
Dk = Rk−1 ⊕ C.

The basic construction matrix is U=

⎛

⎝

T(D1)
...

T(Dk)

⎞

⎠, where the transform T converts a binary string of g − 1 bits into a row vector

of g − 1 components. That is, T(Dh) = V (h) = (v(h)1 · · · v(h)g−1), h = 1, . . . , k. The hth row of the basic matrix is used to
construct the share image Dh.
Revealing: U = D1 + · · · +Dk .

Algorithm 2

reconstructed image U = D1 + · · · +Dk. Theorem 3.2 states
the average grey and average contrast of U .

Theorem 3.2. The proposed algorithm is a probabilistic (k, k)-
VSS scheme with Pixel expansionmg = g − 1, Average Grey

βl =
E
(
H
({

ui j = t | si j = l
}))

mg

=
[(
1− 1/2k−1

)(
g − l

)
+ (l − 1)

]

g − 1
, l ∈ {1, . . . , g},

(3)

and Average Contrast αl = βl − βl−1 = 1/(2k−1 · (g − 1)).

Proof. To show security, since the random matrices
R1, . . . ,Rk−1 are all distinct, thus the matrices D1, . . . ,Dk

are also all distinct and all random, therefore each share
does not reveal any information of S and the security of the
scheme is ensured. Then we will prove any k − 1 or fewer
shares will not be obtained any information of C, that is:
Di1 ⊕ Di2 ⊕ · · · ⊕ Dih /=C for any set of integers {i1, . . . , ih}
when 1 ≤ h < k.We consider two cases.

Case 1 (k ∈ {i1, . . . , ih}). In this case, Dk ⊕ (⊕t
j=s Dj) =

C ⊕ Rk−1 ⊕ (⊕t
j=s Dj) where ⊕t

j=sDj means Ds ⊕ · · · ⊕ Dt

with s, . . . , t being the indices in i1, . . . , ih besides n. Since
there are odd number of random matrices involved, at least
one of them cannot be absorbed into zero matrix, thus
Di1 ⊕Di2 ⊕ · · · ⊕Dih must be random thus not equal to C.

Case 2 (k /∈{i1, . . . , ih}). Since no matrix C involved in Di1 ⊕
Di2⊕· · ·⊕Dih to begin with,Di1⊕Di2⊕· · ·⊕Dih is constructed

from the random matrices R1, . . . ,Rh−1 only and it must be
random.

Therefore, the proposed (k, k) scheme satisfies the secu-
rity condition. That is, when fewer than k shadows are used,
the original secret image C will not be revealed.

To show contrast, let mg be the pixel expansion, we have
mg = g−1 according to the construction of the shares above.

Since U = T(d1) + · · · + T(dk) with “+” being Boolean
OR, we have

U = T(X1) + (T(X1)⊕ T(X2)) + · · · (T(Xk−2)⊕ T(Xk−1))

+ (T(Xk−1)⊕ T(s)).
(4)

Substituting T(Xi) with Vi, i = 1, . . . , k − 1. We use variables
V0 substitute T(s). We get

U = V1 + (V1 ⊕V2) + · · · + (Vk−2 ⊕Vk−1) + (Vk−1 ⊕V0),
(5)

Here,V0 is the coded from the original image S. That is,V0 =
0g−l1l−1 for si j = l. SinceV1+(V1⊕V2) = V1+V1V2 = V1+V2

and V1 +V2 + (V2 ⊕V3) = V1 +V2 +V3, we have

Ul =
{
ui j | si j = l

}
= V1 +V2 + · · · +Vk−2

+Vk−1 + (Vk−1 ⊕V0), l ∈ {1, . . . , g}.
(6)

This can be rewritten as

Ul = U0 +Vk−1 + (Vk−1 ⊕V0), (7)

where U0 = V1 +V2 + · · · +Vk−2.
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We know that Vk−1 + (Vk−1 ⊕V0) must have at least l− 1
bits being 1. That is Vk−1 + (Vk−1 ⊕ V0) can be written as
xg−l1l−1 where each of the g − l bits, denoted by x, may take
value 0 or 1. Therefore, Ul = {ui j | si j = l} = U0 + xg−l1l−1 =
yg−l1l−1 also has at least l−1 bits being 1. The probability for
each y bit to be 1 is p = 1 − 1/2k−1 since every of such bit
depends on k − 1 random matrices. The total number of 1’s
among these g − l bits (the Hamming weight of the vector)
is a random variable with a binomial distribution, and the
expected value of the Hamming weight is

(

1− 1
2k−1

)

· (g − l
) = p

(
g − l

)
. (8)

It follows that the expected Hamming weight of the entire
g − 1 vector is

E
(
H
({

ui j | si j = l
}))

=
(

1− 1
2k−1

)

· (g − l
)
+ (l − 1),

l ∈ {1, . . . , g}.
(9)

Thus the Average Grey is

βl=
E
(
H
({

ui j | si j = l
}))

m
=
[(
1−1/2k−1

)(
g − l

)
+(l − 1)

]

g − 1
.

(10)

and the Average Contrast of the reconstructed image is

αl = βl − βl−1 = 1
2k−1 · (g − 1

) . (11)

Example 3.3 (continuation of Example 3.1). According to (9)
of Theorem 3.2, we obtain

E
(
H
({

ui j | si j = 1
}))

=
(

1− 1
2k−1

)

· (g − l
)
+ (l − 1)

=
(

1− 1
22−1

)

· (3− 1) + (1− 1) = 1,

E
(
H
({

ui j | si j = 2
}))

=
(

1− 1
2k−1

)

· (g − l
)
+ (l − 1)

=
(

1− 1
22−1

)

· (3− 2) + (2− 1) = 3
2
,

E
(
H
({

ui j | si j = 3
}))

=
(

1− 1
2k−1

)

· (g − l
)
+ (l − 1)

=
(

1− 1
22−1

)

· (3− 3) + (3− 1) = 2.

(12)

By the definition of Average Grey and Average Contrast (2),
βl = E(H({ui j | si j = 1}))/g − 1, we have Average Grey

β1 =
E
(
H
({

ui j | si j = 1
}))

g − 1
= 1

3− 1
= 1

2
,

β2 =
E
(
H
({

ui j | si j = 2
}))

g − 1
= 3/2

3− 1
= 3

4
,

β3 =
E
(
H
({

ui j | si j = 3
}))

g − 1
= 2

3− 1
= 1.

(13)

Average Contrast

α2 = β2 − β1 = 1
4
, α3 = β3 − β2 = 1

4
. (14)

We can reach the exactly same average contrast directly
from (11). The average contrast is the same as that of
Example 3.3.

The following Theorem 3.4 is directly from the result
of [15].

Theorem 3.4 (see [15]). In binary (k, k)-Prob.VSS scheme
with m = 1 and the parameters threshold probability pTH =
1/2k−1 and the contrast α = 1/2k−1. Suppose that the secret
image is black and white image, in our Theorem 3.2 above,
Pixel expansionmg = g−1, Average Contrast αl = βl−βl−1 =
1/2k−1 · (g − 1). That is g = 2, we obtainm2 = 2− 1 = 1, and
αl = βl−βl−1 = 1/2k−1 ·(2−1) = 1/2k−1. It is clear that values
of pixel expansion and contrast of Theorem 3.2 above are same
as those of Theorem 3.4.

3.6. The Minimum Size of Recognizable Regions. With a
probabilistic scheme, small regions (not individual pixels) of
the secret image are correctly reconstructed. The smaller such
regions can be, the better this scheme is. We now discuss the
minimum size of the region that can be correctly recognized.

Before examining a region of N pixels, we start with one
pixel taking grey level l, that is, si j = l. The reconstructed
pixel is Ul = {ui j | si j = l} = xg−l1l−1, x ∈ {0, 1}. Let Yl

be the Hamming weight of U , we have Yl = H(Ul) ∈ {l −
1, . . . , g − 1} and

P(Yl = l − 1 + t) =
(
g − l
t

)

· pt · (1− p
)g−l−t , (15)

where p = 1− 1/2k−1. Clearly, Yl has a binomial distribution
with mean and variance being.

We have

μy = l − 1 + p
(
g − l

)
, δ2y =

(
g − l

)
p
(
1− p

)
. (16)

Now we consider a group of N pixels with the same
grey level l in the original image. Since all pixels are
treated separately in the share generation, these N random
variables are independent and identically distributed (i.i.d.).
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Therefore, the total visual effect of the region is closely related

to the Z =∑N
i=1 Y

(i)
l , and

E(Z) = E

⎛

⎝
N∑

i=1
Y (i)
l

⎞

⎠ =
N∑

i=1
E
(
Y (i)
l

)

= Nμy = N
[
p
(
g − l

)
+ (l − 1)

]
,

(17)

where p = 1− 1/2k−1,

Var(Z) = Var

⎛

⎝
N∑

i=1
Y (i)
l

⎞

⎠ =
N∑

i=1
Var

(
y(i)l

)
= Nσ2y

= N
[
p
(
1− p

)(
g − l

)]
.

(18)

Based on Central Limit Theory, these binomial distribution
can be safely approximated by Gaussian distribution, and we
can obtain the lower bound for N . According to Empirical
Rule, about 99.73% of all values fall within three standard
deviations of the mean. Hence, to recognize a region of grey
level l, the region size should satisfy

μl − 3σl > μl−1 + 3σl−1 +N · d, (19)

where d determines the minimum separation between the
two distributions. That is

N
[
p
(
g − l

)
+ (l − 1)

]− 3
√
Np

(
1− p

)(
g − l

)

> N
[
p
(
g − l + 1

)
+ (l − 2)

]

+ 3
√
Np

(
1− p

)(
g − l + 1

)
+Nd,

N
[−p + 1− d

]
> 3

√
Np

(
1− p

)(
g − l

)

+ 3
√
Np

(
1− p

)(
g − l + 1

)
,

N >
3
√
N ·

√
p
(
1− p

) ·
(√(

g − l
)
+
√(

g − l + 1
))

1− p − d
.

(20)

Therefore

N > 9p
(
1− p

) ·
⎛

⎝

√
g − l +

√
g − l + 1

1− p − d

⎞

⎠

2

. (21)

Note that the range of original image pixel value is
slightly different from the range of its coded form, that is
si j ∈ {1, 2, . . . , g} and ci j ∈ {0, 1, . . . , g − 1}. When l = g,
the above inequality becomes

N >
9p
(
1− p

)

(
1− p − d

)2 , (22)

which indicates the minimum size of a recognizable region
between grey level g and grey level g − 1. When g = 2,
the above is the minimum region size in a binary image.
In the (k,n) probabilistic VSS scheme proposed in [15], the
minimum region size is

NYang > 9 ·
⎛

⎝

√
p0(1− p0) +

√
p1(1− p1)

p0 − p1 − d

⎞

⎠

2

. (23)

Table 1:Minimum region sizes of a binary image with the proposed
greyscale (k, k)-VSS scheme or the scheme of [14].

D Black and white (2, 2) Black and white (3, 3)

0.00 9 27

0.05 12 43

0.10 15 75

0.15 19 169

0.20 25 675

0.25 36

0.30 57

0.35 100

0.40 225

0.45 900

With p1 = 0 and p0 = 1/2k−1, it becomes

NYang >
9 · p0 ·

(
1− p0

)

(
p0 − d

)2 . (24)

Table 1 gives some specific region sizes for various d values.
Comparing (22) and (24), it is immediate the following

two results.

Result 1. The minimum size of a recognizable region
between grey level g and grey level g − 1 of the proposed
scheme is the same as that between black and white region
in the (k, k)-Prob.VSS scheme of the (k,n)-Prob.VSS scheme
in [16].

Result 2. When our proposed scheme is applied to binary
images, that is, g = 2, its minimum region size is the same
as that in [15].

4. Converting a (k, k)-SS Scheme to
a (k,n)-VSS Scheme

We now extend the above (k, k)-VSS scheme for greyscale
images into a (k,n)-VSS scheme.

4.1. Construction of the Shares. We give Example 4.1 to
illustrate Algorithm 3.

Example 4.1 (continuation of Example 3.3). The greyscale
(2, 3)-VSS scheme with g = 3. The three basic construction
matrices for the three distinct (2, 2)-VSS schemes are

B(2,2)
i1 =

⎛

⎜
⎝

T
(
d(1)|w

)

T
(
d(2)|w

)

⎞

⎟
⎠, w = 1, . . . ,

(
3
2

)

. (25)

For example, ci j = 01, d(1) ∈ {10, 00, 01, 11}, we let d(1)|w =
00, or 10, or 11. The three basis matrices are listed in Table 2
as follows.
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Input: The secret image S, S = [si j] in the coded form C = [ci j].
Output: The shadow images D1, . . . ,Dn.
Share construction procedure: For (k,n) scheme, we create a construction matrix with n rows from the k rows

of the construction matrix of the (k, k)-VSS scheme as described previously. We do it in four steps.
Step 1: Generate ( nk ) distinct construction matrices for ( nk ) different (k, k)-VSS schemes to the same secret image. Notice that the

random matrices are Rh = X(h), X(h) ∈ {0, . . . , ( nk ) · (2g−1 − 1)}. For the wth scheme, its construction matrix is

B(k,k)
w =

⎛

⎜
⎝

T(D(1)|w)
...

T(D(k)|w)

⎞

⎟
⎠ =

⎡

⎢
⎢
⎣

V
(w)
1
...

V
(w)
k

⎤

⎥
⎥
⎦, where w = 1, . . . , ( nk ), h = 1, 2, . . . , k and D(h)|w is created directly

from D(1)|w , . . .,D(k)|w
needs w group distinct random matrices, each group matrix has k − 1 distinct random matrices.
The D(h)|w includes k − 1 distinct random matrices. (See Section 3.5 for details), and V (w)

h is am-dimensional row vector.
Step 2: Consider a function f : Z+ → Z+, q ∈ {1, . . . , k}, f (q) ∈ {1, . . . ,n}, for example, when n = 3 and k = 2,

one possible such functions are f (1) = 1, f (2) = 2, or f (2) = 1, f (3) = 2, or f (1) = 1, f (3) = 2. There are ( nk ) different
ways to define such a function. Let w ∈ {1, . . . , ( nk )} and lw be one of such functions.Here, we denote ( nk )
by the number of k-combinations of an n-element set.

Step 3: Generate a random matrix B
(k,n)
w of n rows, B

(k,n)
w =

⎡

⎢
⎣

V
(w)
1
...

V
(w)
n

⎤

⎥
⎦.

For q ∈ {1, . . . , k}, set V (w)
q′ = V (w)

q and q′ = fw(q). In other words, substitute k rows of B
(k,n)
w with the rows of B(k,k)

w

according to function fw . For example, with n = 3 and k = 2, B
(k,n)
w could be

⎡

⎣
V
(1)
1

V
(1)
2
r

⎤

⎦, or

⎡

⎣

r

V
(2)
1

V
(2)
2

⎤

⎦, or

⎡

⎣
V
(3)
1

r

V
(3)
2

⎤

⎦, where r is

randomly generated, w ∈ {1, 2, 3}
Step 4: Concatenate all ( nk ) different matrices B

(k,n)
w together and obtain B(k,n) = B

(k,n)
1 ◦ B(k,n)

2 ◦ · · · ◦ B(k,n)

(nk)
as the resulting n× (m · ( nk )). Construction matrix for our (k,n) scheme. Finally, the hth row of B(k,n)

is used to create share image Ah. Notice that each B
(k,n)
w is different from B(k,k)

w .
Revealing: U = Dw1 +Dw2 + · · · +Dwk for w1, . . . ,wk ∈ {1, . . . ,n}.

Algorithm 3

Table 2: Share construction procedure of (2, 3)-VSS scheme with
g = 3.

R(1)|w d(1)|w ci j d(2)|w = d(1)|w⊕C
1 00 00 01 01

2 10 10 01 11

3 11 10 01 11

We have B(2,2)
1 = (

0 0
0 1

)
, B(2,2)

2 = (
1 0
1 1

)
, B(2,2)

3 = (
1 1
1 1

)
.

Using the
(
3
2

)
possible functions f , we create 3matrices B

(k,n)
w

as follows:

B
(k,n)
1 =

⎛

⎜
⎜
⎜
⎝

{1,2}
︷︸︸︷
0 0
0 1
r r

⎞

⎟
⎟
⎟
⎠
, B

(k,n)
2 =

⎛

⎜
⎜
⎜
⎝

{1,3}
︷︸︸︷
1 0
r r
1 1

⎞

⎟
⎟
⎟
⎠
, B

(k,n)
3 =

⎛

⎜
⎜
⎜
⎝

{2,3}
︷︸︸︷
r r
1 1
1 1

⎞

⎟
⎟
⎟
⎠
.

(26)

The first two rows of B
(k,n)
1 are from the first two B(2,2)

1

matrices. The first row, and the third row of B
(k,n)
2 are from

the first row and the second row of B(2,2)
2 . The second row and

the third row of B
(k,n)
3 are from the first row and the second

row of B(2,2)
3 . Here, the symbol r represents a random bit,

taking value 0 or 1. The two random bits in a matrix may or

may not take the same value. In matrix B
(k,n)
w , rows q1, q2 are

copied from rows 1, 2 of matrix B(2,2)
w , here q1, q2 ∈ {1, 2, 3}.

With
(
3
2

)
= 3 different combinations of two elements out

of the three, there are three different matrices B
(k,n)
w . The

concatenation of these
(
3
2

)
matrices forms the basic matrix

as below

B(k,n) =

⎛

⎜
⎜
⎜
⎝

{1,2}
︷︸︸︷
0 0
0 1
r r

⎞

⎟
⎟
⎟
⎠
◦

⎛

⎜
⎜
⎜
⎝

{1,3}
︷︸︸︷
1 0
r r
1 1

⎞

⎟
⎟
⎟
⎠
◦

⎛

⎜
⎜
⎜
⎝

{2,3}
︷︸︸︷
r r
1 1
1 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

{1,2}
︷︸︸︷
0 0

{1,3}
︷︸︸︷
1 0

{2,3}
︷︸︸︷
r r

0 1 r r 1 1
r r 1 1 1 1

⎞

⎟
⎟
⎟
⎠
.

(27)

We now give an application of the scheme above.

Example 4.2. Application example of the greyscale (2, 3)-VSS
scheme with 3 grey levels.

The secret image is shown in Figure 1(a). The three
shadow images (shares) are in parts 1(b), 1(c), and 1(d). And
the reconstructed image is in Figures 1(e)–1(h).

Theorem4.3. Algorithm 3 is a probabilistic (k,n)-VSS scheme
with
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: (a) The secret image. (b) Share 1. (c) Share 2. (d) Share 3. (e) Share 1+Share 2. (f) Share 1 + Share 3. (g) Share 2 + Share 3. (h)
Share 1 + Share 2 + Share 3.

Pixel expansion:mg = (g − 1) · ( nk
)
,

Average Grey: βl = E(H({ui j | si j = l}))/m = 1+ (g −
1)(2k − ( nk

)
) + (l − 1)/(g − 1) · 2k−1 · ( nk

)
,

Average Contrast: αl = βl−βl−1 = 1/(g−1)·2k−1·( nk
)
.

Proof. To show security, the shares D1|w,D2|w, . . . ,Dk|w
are all random and all independent of each other. From
the construction of the shares given in the Section 4.1,
we can see that the (k − 1) · ( n

k

)
random matrices

D(1)|w, D(2)|w, . . . ,D(k−1)|w, w = 1, . . . ,
( n
k

)
, are all distinct

and all independent of each other. Each B(k,k)
w forms a

(k, k)-VSS scheme. We know that the k rows of matrix

B
(k,n)
w are from the corresponding k rows of B(k,k)

w , and can

be used to reconstruct the secret image. The matrix B
(k,n)
w

is a special (k,n)-VSS scheme, which can construct the
secret image using special k rows of n rows. The matrix

B(k,n) (= B
(k,n)
1 ◦ B(k,n)

2 ◦ · · · ◦ B(k,n)

(nk)
) includes

( n
k

)
distinct

submatrices, B
(k,n)
1 ,B

(k,n)
2 , . . . ,B

(k,n)

(nk)
. In matrix B(k,n), there

exist some special rows, which come from B(k,k)
1 , B(k,k)

2 , . . .,

and B(k,k)

(nk)
. From the construction method above (see in

Section 4.1), those rows are distinct random rows, we cannot
get any information of the secret image from the special
rows of the matrix B(k,n). Each row of the matrix B(k,n) is a
random matrix, namely, A1|w,A2|w, . . . ,Ak|w are all random
and all independent of each other. With less than k shares,
no information about the secret image is revealed, thus the
security of the system is ensured.

To show the pixel expansion, similar to the proposed
(k, k)-VSS scheme (see Section 3), the pixel expansion mg =
(g−1)·( nk

)
is obvious from the shadow construction process.

We now look at its Average Grey and Average Contrast.

Since U = T(V ′
h1) + · · · + T(V ′

hk) and there is only one
set V ′corresponding to the (k, k)-VSS scheme. Based on
Theorem 3.2 above, concatenation of random matrices does
not affect the total Hamming weight. Thus

Ul =
{
ui j | si j = l

}
= x

g−l
U 1l−1 +

((
n
k

)

− 1

)

x
g−1
U

= x
[(g−1)(nk )+1−l]
U 1l−1.

(28)

From Theorem 3.2, the Average Grey of the (k, k)-VSS
scheme isH(V ′)=(1− 1/2k−1) · (g − l) + (l− 1) for the pixels
with grey level l in the original image, the other

( n
k

) − 1
sets of V ′ are random vectors. Among these V ′ vectors, the
number of 1’s is (1− 1/2k−1)(g − 1), that is

E(H(Ul)) = E
(
H
({

ui j | Si j = l
}))

=
(

1− 1
2k−1

)

· (g − l
)
+ (l − 1)

+

((
n
k

)

− 1

)(

1− 1
2k−1

)
(
g − l

)
,

E(H(Ul)) =
(
g − 1

) ·
(
n
k

)

+
(l − 1) +

(
1− g

) · ( nk
)

2k−1
,

βl = E(H(Ul))
m

= 1 +
(l − 1) +

(
1− g

)( n
k

)

2k−1
( n
k

)(
g − 1

) ,

(29)

Therefore, αl = βl − βl−1 = 1/(g − 1) · 2k−1 · ( nk
)
.

When n = k, Theorem 4.3 reduces to the case of the
(k, k)-VSS scheme.

When g = 2, it reduces to a black and white VSS
scheme with pixel expansion m = ( n

k

)
and Average Contrast

αl = 1/2k−1 · ( nk
)
.
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4.2. Comparison with a Previous VSS Scheme with Respect to
Pixel Expansion. Wewill compare our scheme above with the
traditional schemes in terms of their pixel expansion.

Blundo et al. [10] gave an estimate of the value of the
pixel expansion of (k,n)-VSS scheme for black white image,
the following Theorem 4.4 is from Lemma 3.3 of [10].

Theorem 4.4 (see [10]). For any n > k ≥ 2, the pixel
expansionm of (k,n)-VSS scheme is

m ∈
[(

n− 1
k − 1

)

2k−2 + 1,

((
n− 1
k − 1

)

2k−1 + 1

)]

. (30)

Muecke [11] and Blundo et al. [12] gave optimal pixel
expansionm∗ for in g grey level (k,n)-VSS schemes.

Theorem 4.5 (see [11, 12]). In (k,n)-VSS scheme with g grey
levels, the pixel expansion m∗ and contrast αg between grey
levels are

m∗ = (g − 1
)
m, αg = α

g − 1
, (31)

wherem and α are pixel expansion and contrast of binary VSS
schemes.

Formulas (30) and (31) imply that

m∗ = (g − 1
) ·m ∈

[((
n− 1
k − 1

)

2k−2 + 1

)
(
g − 1

)
,

(( (
n− 1
k − 1

)

2k−1 + 1

)
(
g − 1

)
)]

(32)

The relative contrast is α∗i = 1/m∗, i = 0, . . . , g − 2.
From Theorem 4.3, the pixel expansion of a probabilistic

(k,n)-VSS scheme ismg = (g−1)·( nk
)
, The Average Contrast

is αl = βl − βl−1 = 1/(g − 1) · 2k−1 · ( nk
)
, l = 1, . . . , g.

It is clear that the pixel expansion in our (k,n)-VSS
scheme (see the Theorem 3.4) is smaller than that of previous
deterministic (k,n)-VSS schemes [10, 11], when k ≥ n/4,
k ≥ 4. Average contrast of our (k,n)-VSS scheme is close
to that of deterministic (k,n)-VSS schemes [10, 11] when
k ≥ n/2, k ≥ 2, and in other cases our contrast is lower than
that of (k,n)-VSS schemes [10, 11].

In a deterministic SS scheme for greyscale image, we pay
a higher computation complexity that the reconstruction is
guaranteed. In our proposed scheme we pay smaller pixel
expansion with a (small) probability of making mistake in
reconstructing the secret image. In some applications wemay
wish a trade-off: we are willing to sacrifice some contrast in
order to reduce the complexity of VSS scheme or vice versa.

4.3. The Minimum Size of Recognizable Region in (k,n)-VSS
Scheme. In the proof of Theorem 4.3, we obtained:

Ul =
{
ui j | si j = l

}
= x

g−l
U 1l−1 +

((
n
k

)

− 1

)

x
g−1
U

= x
[(g−1)(nk )+1−l]
U 1l−1.

(33)

For the pixels with grey level l in the original image, the
reconstructed pixel Ul has Hamming weight H(Ul) ∈ [l −
1, (g − 1)

( n
k

)
]. The probability of H(Ul) = l − 1 + t is:

pl−1+t =
⎛

⎜
⎝

(
g − 1

)
(
n
k

)

+ 1− l

t

⎞

⎟
⎠ ·

(

1− 1
2k−1

)t

·
(

1
2k−1

)[(g−1)(nk )+1−l]−t
,

t = 0, . . . ,
(
g − 1

) ·
(
n
k

)

− l + 1.

(34)

In our analysis of the region size, let random variable Xl

represent the Hamming weight above, thus Xl ∈ [l − 1, (g −
1) ·( nk

)
] and Xl has a binomial distribution with mean vaue

and variance:

μx =
⎛

⎝
(
g − 1

)
⎛

⎝
n

k

⎞

⎠ + 1− l

⎞

⎠ ·
(

1− 1
2k−1

)

+ (l − 1),

δ2x =
⎛

⎝
(
g − 1

)
⎛

⎝
n

k

⎞

⎠ + 1− l

⎞

⎠ ·
(

1− 1
2k−1

)

· 1
2k−1

.

(35)

Now we consider a group of N pixels with the same
grey level l in the original image. Since all pixels are
treated separately in the share generation, these N random
variables are independent and identically distributed (i.i.d.).
Therefore, the total visual effect of the region is closely related

to the Z =∑N
i=1 X

(i)
l , and

E(Z) = E

⎛

⎝
N∑

i=1
X (i)
l

⎞

⎠ =
N∑

i=1
E
(
X (i)
l

)
= Nμx

= N

[

p ·
(
(
g − l

) ·
(
n
k

)

+ 1− l

)

+ (l − 1)

]

,

(36)

where p = 1− 1/2k−1,

Var(Z) = Var

⎛

⎝
N∑

i=1
X (i)
l

⎞

⎠ =
N∑

i=1
Var

(
X (i)
l

)
= Nσ2x

= N

[

p
(
1− p

)
(
(
g − l

)
(
n
k

)

+ 1− l

)]

.

(37)

Using a Gaussian distribution to approximate the above
binomial distribution, we can obtain the lower bound for
N. According to Empirical Rule, about 99.73% of all values
fall within three standard deviations of the mean. Hence,
to recognize a region of grey level l, the region size should
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Table 3: Minimum region sizes of the proposed (2, 3)-VSS scheme with g = 3.

(2, 3)-VSS Between grey levels 1 and 2 Between grey levels 2 and 3

with g = 3 (l = 2, g − l = 1) (l = 3, g − l = 0)

d = 0.00 198 162

d = 0.05 244 200

d = 0.10 309 253

d = 0.15 404 300

d = 0.20 549 449

d = 0.25 791 646

d = 0.30 1235 1010

d = 0.35 2196 1795

d = 0.40 4940 4038

d = 0.45 19760 16150

satisfy μl − 3σl > μl−1 + 3σl−1 +N · d, where d determines the
minimum separation between the two distributions. That is

N

[(
(
g − 1

) ·
(
n
k

)

+ 1− l

)

p + l − 1

]

− 3

√
√
√
√N

[(
(
g − 1

)
(
n
k

)

+ 1− l

)

p
(
1− p

)
]

> N

[(
(
g − 1

) ·
(
n
k

)

+ 2− l

)

p + l − 2

]

+ 3

√
√
√
√N

[(
(
g − 1

) ·
(
n
k

)

+ 2− l

)

p
(
1− p

)
]

+N · d

√
N
(
1− p − d

)
> 3

√
p
(
1− p

)

×
⎛

⎝

√
√
√
√(g − 1

) ·
(
n
k

)

+ 1− l +

√
√
√
√(g − 1

) ·
(
n
k

)

+ 2− l

⎞

⎠

N > 9
p
(
1− p

)

(
1− p − d

)2

·
⎛

⎝

√
√
√
√(g − 1) ·

(
n
k

)

+ 1− l +

√
√
√
√(g − 1) ·

(
n
k

)

+ 2− l

⎞

⎠

2

(38)

where p = 1− 1/2k−1, (1− p−d) > 0, d < 1− p = 1/2k−1.
When k = n, N > 9p(1−p)·(

√
g − i+

√
g − l + 1/1−p−

d)2 is the minimum region size. For a (2, 3) scheme, n = 3,
k = 2, g = 3, when d < 1/2k−1 = 0.5, Table 3 shows the
region sizes for a few d values.

5. Conclusions

This paper proposes an approach to convert a deterministic
(k, k)-SS scheme to a (k, k)-VSS scheme for greyscale images
with maximum number of grey levels g. Its pixel expansion
factor is g−1 which is independent of k and it is significantly

smaller than the previous result 2k−1 · (g − 1). The quality
of the reconstructed image, measured in Average Contrast
between consecutive grey levels, is the same as the traditional
greyscale VSS schemes. When our scheme is applied to
binary images, it has the sameminimum size for recognizable
regions as that of the Prob.VSS scheme of [15]. This (k, k)-
SS scheme is extended to a more general greyscale (k,n)-
VSS scheme based on XOR operations. The pixel expansion
in our (k,n)-VSS scheme (see Theorem 3.4) is smaller than
that of previous deterministic (k,n)-VSS schemes [10, 11],
when k ≥ n/4, k ≥ 4. Average contrast of our (k,n)-VSS
scheme is close to that of deterministic (k,n)-VSS schemes
[10, 11] when k ≥ n/2, k ≥ 2, and in other cases our contrast
is lower than that of (k,n)-VSS schemes [10, 11]. However,
there remains a problem of how to ensure the favorable pixel
expansion and contrast provided by (k,n)-SS scheme is also
available in (k,n)- VSS scheme

Notation

Original image: S = {si j}, i = 1, . . . ,φ, j = 1, . . . ,ϕ,
si j ∈ {1, . . . , g}

Coded image: C = {Cij}, i = 1, 2, . . . ,φ,
j = 1, 2, . . . ,ϕ, ci j ∈ {0, 1, . . . , g − 1}

Reconstructed
image:

U = {ui j}, i = 1, . . . ,m · φ,
j = 1, . . . ,m · ϕ

Number of grey
levels:

g

Grey level values: l, t
Average gray: βl
Average contrast: αl
Intermediate
matrices:

Rh={Xh}, Xh∈{0, . . . , 2g−1 − 1},
Dh = {d(h)i j }, h = 1, 2, . . . ,n

Shadow images: Ah,Dh, h = 1, 2, . . . ,n
Threshold value: k ∈ {2, . . . ,n}
A set of share
indices:

{q1, . . . , qk}

Pixel expansion: M
Basic matrix: B
Binary vectors: V
Probability: P
Region size (pixels): N
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The number of k
combinations of an
n element set:

( n
k

)

Index to (k, k)
schemes in the
generation of a
(k,n) scheme:

w = 1, . . . ,
( n
k

)

Temporary
variables:

x, y ∈ {0, 1}, q, z ∈ Z1.
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